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Abstract

Diffusion imaging captures the movement of water molecules in tissue by applying
varying gradient fields in a magnetic resonance imaging (MRI)-based setting. It poses
a crucial contribution to in vivo examinations of neuronal connections: The local dif-
fusion profile enables inference of the position and orientation of fiber pathways. Dif-
fusion imaging is a significant technique for fundamental neuroscience, in which path-
ways connecting cortical activation zones are examined, and for neurosurgical plan-
ning, where fiber reconstructions are considered as intervention related risk structures.

Diffusion tensor imaging (DTI) is currently applied in clinical environments in order
to model the MRI signal due to its fast acquisition and reconstruction time. However,
the inability of DTI to model complex intra-voxel diffusion distributions gave rise to an
advanced reconstruction scheme which is known as high angular resolution diffusion
imaging (HARDI). HARDI received increasing interest in neuroscience due to its po-
tential to provide a more accurate view of pathway configurations in the human brain.

In order to fully exploit the advantages of HARDI over DTI, advanced fiber recon-
structions and visualizations are required. This work presents novel approaches con-
tributing to current research in the field of diffusion image processing and visualization.
Diffusion classification, tractography, and visualizations approaches were designed to
enable a meaningful exploration of neuronal connections as well as their constitution.
Furthermore, an interactive neurosurgical planning tool with consideration of neuronal
pathways was developed.

The research results in this work provide an enhanced and task-related insight into
neuronal connections for neuroscientists as well as neurosurgeons and contribute to the
implementation of HARDI in clinical environments.
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Kurzfassung

Die Diffusionsbildgebung misst die Bewegung von Wassermolekülen in Gewebe mit-
tels variierender Gradientenfelder unter Verwendung der Magnetresonanztomogra-
phie (MRT). Diese Aufnahmetechnik stellt eine große Chance für in vivo Untersuchung
von neuronalen Bahnen dar, da das lokale Diffusionsprofil Rückschlüsse über die Posi-
tion und Richtung von Nervenbahnen erlaubt. Zu den Anwendungsgebieten der Dif-
fusionsbildgebung zählt die Grundlagenforschung in den Neurowissenschaften, in de-
nen Nervenbahnen als Verbindungen kortikaler Areale bestimmt werden, und die neu-
rochirurgische Operationsplanung, in der rekonstruierte Bahnen als Risikostrukturen
für Interventionen angesehen werden.

Die Diffusionstensor-MRT (DT-MRT) ist aufgrund ihrer schnellen Aufnahme- und
Rekonstruktionsgeschwindigkeit derzeitig klinischer Standard zur Bestimmung von
Nervenbahnen. Jedoch erlaubt die DT-MRT nicht die Darstellung von komplexen intra-
voxel Diffusionsverteilungen. Daher etablierte sich eine weitere Modellierungstechnik,
die als High Angular Resolution Diffusion Imaging (HARDI) bekannt ist. HARDI-
Techniken erhielten wachsendes Interesse in den Neurowissenschaften, da sie großes
Potential zur exakteren Darstellung der Nervenbahnen im menschlichen Gehirn besit-
zen.

Um die Vorteile von HARDI-Techniken gegenüber DT-MRT voll auszuschöpfen, wer-
den fortgeschrittene Methoden zur Rekonstruktion und Visualisierung der Bahnen be-
nötigt. In der vorliegenden Arbeit werden neue Techniken vorgestellt, welche zur ak-
tuellen Forschung hinsichtlich der Verarbeitung und Visualisierung von Diffusions-
bildgebungsdaten beitragen. Ansätze zur Klassifizierung, Traktographie und Visuali-
sierung wurden entwickelt um eine aussagekräftige Exploration neuronaler Bahnen
und deren Beschaffenheit zu ermöglichen. Des Weiteren wurde eine interaktive Softwa-
re für die neurochirurgische Operationsplanung implementiert, welche Nervenbahnen
als Risikostrukturen berücksichtigt.

Die vorgestellten Forschungsergebnisse bieten einen erweiterten und aufgabenorien-
tierten Einblick in neuronale Verbindungen sowohl für Neurowissenschaftler als auch
für Neurochirurgen und tragen zum Einsatz von HARDI-Techniken in einer klinischen
Umgebung bei.
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Part I

Introduction





1 Background and organization

1.1 Motivation

The Brownian motion of water molecules in fibrous material such as muscles
or brain white matter is restricted and thus anisotropic. Diffusion imaging is
a magnetic resonance imaging (MRI)-based technique, utilizing the direction-
ality of molecular movement and is thereby able to characterize organized tis-
sue. It poses a large achievement in neuroscience since it is currently the only
non-invasive technique to gain information about the course and integrity of
neuronal pathways in vivo.

Applications of diffusion imaging include fundamental neuroscience and neu-
rosurgical planning. In fundamental neuroscience, information about activa-
tion area connectivity via white matter fibers is crucial. Neuronal connections
obtained by diffusion imaging answer important questions such as: Which cor-
tical zones are potentially involved in a certain task? A further neuroscientific
application is neurosurgical planning, a preoperative stage in which risk struc-
tures are examined and access paths are defined in order to minimize postoper-
ative damages. White matter pathways pose such risk structures since cortical
activation zones are connected via neuronal fibers; they are also responsible for
signal transfer and therefore, enable communication amongst activation zones.
As a result, harming connections disables communication and damage to both
causes severe patient impairment.

Diffusion tensor imaging (DTI) is the widely used technique, representing the
acquired signal with a second order tensor. This model assumes a Gaussian dif-
fusion process and reconstructs a probability density function (PDF). The PDF
describes the diffusion distribution of water molecules within one voxel by us-
ing the minimum of six MRI gradient directions. Tractography techniques esti-
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mate trajectories using the principal eigenvector of the diffusion tensor. The re-
sulting pathways are considered to approximate fiber courses and are the most
common diffusion imaging visualization used by clinicians. However, in re-
gions with complex fiber distributions, a DTI diffusion profile is unable to ad-
equately model the underlying fiber structure. The Gaussian assumption only
supports a single diffusion magnitude within one voxel. Therefore, more so-
phisticated models were developed, such as high angular resolution diffusion
imaging (HARDI), to overcome the limitations of DTI. Most characteristic for
HARDI techniques is the use of up to a few hundred gradients and a higher
b-value to acquire the diffusion signal. Several reconstruction algorithms using
this signal exist. Their outcome, the so called orientation distribution function
(ODF), is a spherical probability function which describes the underlying diffu-
sion profile.

As a result of the detailed diffusion profile, HARDI is more advantageous
than DTI for in vivo white matter examination. The contribution of advanced
fiber visualizations to neuroscience and neurosurgery is the topic of ongoing
research. Resulting from the ability to acquire and model complex diffusion
patterns, various issues in terms of diffusion image processing as well as visual-
ization emerged: First, a significant description of intra-voxel diffusion patterns
in the form of diffusion indices is needed. DTI classifiers are no longer sufficient
to describe the advanced diffusion distribution function. Second, the huge con-
tribution of HARDI is the ability to resolve complex fiber distributions. Novel
white matter tract reconstruction algorithms have to be designed in order to
take full advantage of the information provided by the HARDI diffusion pro-
file. Third, advanced visualization approaches are required in order to facilitate
white matter exploration. HARDI-based fiber pathways are intricate and sim-
ple line visualizations are no longer intuitive. Subsequently, the contribution of
diffusion imaging to many neuroscientific questions is an open issue.



1.2 Contribution 5

1.2 Contribution

The developed and here presented approaches are contributions to an active
field of research and complete the diffusion data analysis pipeline, ranging
from diffusion data processing steps and visualizations to neurosurgical and
neuroscientific applications. Figure 1.1 shows the main contributions of this
thesis: Approaches are categorized and named, and the scientific conferences
in which they were published indicated. The according sections in this thesis
are included as well as illustrations showing representative visualizations. All
contributions are built on each other and are presented successively in the fol-
lowing:

1. HARDI Analysis - Diffusion Classifiers
The ODF describes the distribution of water molecules within a voxel.
However, the spherical probability function is of a complex nature and not
easy for clinicians to interpret. This is where diffusion indices contribute
and provide crucial information in terms of anisotropy and intra-voxel dif-
fusion profiles. Two ODF-based indices were developed in the course of
this thesis and published in [101] and [95]. Both classifiers have the same
goal: The discrimination of voxels containing no white matter structures
or a single, two or multiple fiber pathway distributions.

2. Fiber Reconstruction - Tractography
The most intuitive visualization of diffusion data is the reconstruction of
anatomically meaningful fiber bundles which characterize certain neuronal
pathways. Tractography techniques benefit from the detailed information
provided by the ODF. However, multiple fiber populations in one voxel
lead to more than one ODF maximum and hence require novel, more so-
phisticated tractography approaches than those existing for DTI. Using al-
gorithms designed for one diffusion direction wastes the additional infor-
mation. Therefore, a tractography approach for HARDI was developed
and published [100]. The algorithm evaluates local and global white mat-
ter properties for streamline propagation. The approach was evaluated by
computing pathways of a hardware phantom with known ground truth



6 1 Background and organization

information, as well as fibers running in the centrum semiovale, a region in
the human brain comprising challenging pathway configurations.

3. Visualization - Advanced Fiber Rendering
Line representations of HARDI tractography approaches are more com-
plex than those resulting from DTI since multiple fibers potentially run
within one voxel. For this reason, visualizations often suffer from visual
clutter. An advanced line rendering approach was developed and pub-
lished in [93] in order to enhance spatial depth perception and facilitate
diffusion data interpretation. Proposed methods include spatial depth en-
hancing techniques as well as diffusion classifier colormapping.

4. Visualization - Intra-Bundle Diffusion Characteristics
In neurosurgical examinations clinicians are interested in the extent of cer-
tain bundles. For this reason, a pipeline was designed in which fiber en-
compassing hulls were computed. Subsequently, they are used to visual-
ize intra-bundle diffusion characteristics, with the aim of improving tract-
related examinations. Illustrative rendering and lighting approaches were
applied in order to enhance 3D perception. A clinical study was designed
in which the proposed visualizations were evaluated by neuroscientists.
Questions concerning the general understanding of the methods, the spa-
tial perception of the enhancements, and possible applications in neuro-
science were discussed. Parts of the approach were published in [94] and
a clinical evaluation in [96].

5. Visualization - Focus and Context Rendering
Visualizations combining both fiber and bundle renderings provide cru-
cial context information about the global bundle structure. At the same
time they are able to encode characteristics about fiber properties such as
the local degree of anisotropy or details concerning inner-bundle fiber con-
figurations. A focus and context approach for diffusion visualizations was
designed and published in [99].

6. Neurosurgical Application - Multimodal Visualization
In terms of neurosurgical examinations for brain tumor resection, multiple
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datasets such as DTI, fMRI, as well as contrast enhanced and anatomical
MRI are acquired. Certain structures represented in different datasets have
to be considered in conjunction for efficient data exploration and interven-
tion planning. However, the simple combination of all datasets suffers
from visual cluttering and therefore, requires an intelligent multimodal
visualization approach. Methods unifying the multivalued volumes in an
intuitive and resection-focused visualization were developed including an
evaluation of potential risk structures. In this context, a tool was realized
providing the surgeon with enhanced insights into the neurosurgical case
in order to define and examine risk structures. Parts of the multimodal vi-
sualization approaches were published in [98] and as a submission to the
IEEE Visualization Contest 2010 in [97].

7. Neurosurgical Application - Preoperative Planning
After combining all relevant information within one visual representation,
the next step is to develop a user-friendly and target-oriented interaction
method in which the surgeon determines the most adequate access path to
the lesion. To accomplish this task, the multimodal visualization tool was
extended to define and highlight potential risk structures with respect to
an access path, but avoid visual cluttering. Parts of the developed access
path planning metaphors were published in the course of the IEEE Visual-
ization Contest 2010 in [97] and in [98].

An in-depth understanding of diagnostic processes, therapeutic decisions, and
intraoperative information is achieved by medical visualizations [82]. Enhanced
visualization of spatial as well as functional properties of structures is benefi-
cial: The available time for diagnosis and therapy planning is a well-known
issue in most clinical environments. Using advanced visualization techniques
in order to highlight significant characteristics of the respective medical case
poses a huge contribution. The resulting representations facilitate a faster un-
derstanding and assessment. For example 3D visualizations reveal the spatial
relation between structures of interest and thereby, the mental fusion of individ-
ual 2D scans becomes obsolete. Furthermore, medical visualizations guide the
users attention to significant features, such as visual encodings of the bundle
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integrity in terms of diffusion imaging. Visualizations provide the potential not
only to save vital time but also to reveal important findings.

Commonly, medical visualization approaches include the following steps:
Analysis of clinical questions as well as state of the art methods, software de-
sign and implementation, and a subsequent evaluation of the software in the
course of a user study. These steps are performed in close clinical collabora-
tion and often iteratively since evaluation leads to new feature requirements.
Many factors, such as advanced acquisition techniques and their clinical imple-
mentation influence research in medical image processing and visualization. In
the here presented work, the focus is to discuss the contribution of HARDI to
neuroscience and to develop innovative diffusion image processing and visual-
ization approaches. A further contribution is the implementation of 3D visual-
izations with respect to specific neurosurgical questions. The presented object
of research includes novel and innovative approaches which are currently not
applied in clinical routine examinations. In the case of HARDI, this is due to
long acquisition and reconstruction times as well as the fact that optimal acqui-
sition parameters are not completely defined. In the case of visualization, 2D
slice representations are still popular in everyday clinical examinations. This is
because they do not require any preprocessing and clinicians are familiar with
them. On the other hand, many medical questions take advantage of 3D image
processing and visualization methods. In fact, image processing and computer
graphics techniques offer a great variety of algorithms, applicable to medical
datasets. These approaches facilitate a fast data interpretation and thereby, pro-
vide more detailed insights into the data. In order to make a contribution to
ongoing research, novel methods beyond those implemented in todays clinical
settings are needed. The development of innovative approaches, which aim to
solve current clinical questions, influence future data processing and is mean-
ingful even though not yet considered for routine examinations.

Summarizing, neither HARDI nor 3D medical visualization is applied in ev-
eryday examinations and further research is required. However, both have
great potential to answer vital questions in neuroscience. This work concen-
trates on discussing aspects and presenting innovative ideas in order to con-
tribute to both challenges. A detailed evaluation with respect to applications in
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everyday clinical examinations is however, beyond the scope of this thesis and
is therefore not performed.

The presented approaches were realized using MeVisLab, a development en-
vironment for medical image processing and visualization. It was developed
and is used by MeVis Medical Solutions AG and Fraunhofer MEVIS in Bremen,
Germany [65].

1.3 Organization

The organization of the developed approaches is presented in the following.
Topics are divided into 4 parts: Part II discusses two indices for ODF clas-
sification. A tractography approach for HARDI using the previously intro-
duced HARDI classifier follows in Part III. Part IV comprises three visualization
approaches for white matter structures: single fiber and bundle illustrations
as well as a combined approach using focus and context rendering methods.
Part V introduces a system for neurosurgical planning.

Part I - Chapters 2 and 3 provide the medical motivation and background
information for neuronal pathway reconstruction as well as basic knowledge
for understanding diffusion imaging and HARDI.

Part II - Chapter 4 introduces the developed classifier for ODF characteri-
zation: a global approach called MFC in Section 4.5 and an ODF-based index
called ISMI in Section 4.6. These classifiers are designed to differentiate gray
matter from white matter. In the case of gray matter the distribution is isotropic.
However, in the case of white matter, the proposed indices successfully sepa-
rate into further compartments: single or multiple fiber distribution. Based on
a white matter mask, the idea of MFC is to morphologically eliminate voxels in
such a way that only clusters remain. These clusters represent an estimation of
regions containing multiple fiber populations. ISMI consists of a computation
pipeline, where white and gray matter are distinguished by analyzing the devi-
ation of the ODF from a sphere defined by the maximal radius of the ODF. This
step is followed by a classification into singular and multiple fiber populations
by analyzing the number of local ODF maxima.
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Figure 1.1: Overview of main contributions in the presented work. Emerging issues
for diffusion data processing and visualizations are considered successively
and are categorized in groups: The pipeline starts with extracting informa-
tion about the local anisotropy (Anisotropy Indices) followed by white mat-
ter tract reconstruction (Tractography), visualizations (Diffusion Visualiza-
tions), and applications to neuroscience (Medical Applications). Subgroups
are indicated by a box containing the name of the approach, the scientific
publication, the section, and in addition display a representative picture of
the approach.



1.3 Organization 11

Part III - Chapter 5 addresses the deterministic tractography approach for
fiber reconstruction. HARDI provides more detailed information about local
diffusion distributions within one voxel than DTI. As a result, streamline trac-
tography algorithms dealing with multiple diffusion directions are required.
However, defining the most adequate next step for propagation is challenging
and requires advanced ODF analysis. The developed deterministic method in-
cludes an evaluation of initial tracking orientations using the seed point’s ODF
and distances to white matter boundaries computed from vectors orthogonal to
the current orientation. Furthermore, several tracking characteristics, such as
curvature thresholds, information about local fiber population and the position
of the current tract within the bundle are used to determine the most adequate
propagation direction from the ODF. The approach was evaluated using a phan-
tom dataset and discussed with neurosurgeons considering challenging regions
is the human brain.

Part IV - Chapters 6, 7, and 8 introduce innovative visualization approaches
for diffusion MRI data, using the analysis methods explained in the previous
parts. In terms of visualizing the reconstruction results, various challenges ex-
ist: First, contrary to DTI, HARDI tractography line representations comprise
more complex configurations since various ODF directions are significant for
independent line propagations. For this reason, visualizations suffer from vi-
sual clutter and weak spatial perception in complex regions. To address this
problem, enhanced visualization approaches such as streamtube rendering, col-
ormapping, ambient occlusion, and depth-dependent halos are introduced in
Section 6. Second, the computation of fiber encompassing hulls is beneficial
in cases where the extent or the shape of a bundle is crucial. For example in
neurosurgical examinations to evaluate potential postoperative damages. How-
ever, fiber hulls provide no information about the inner-bundle diffusion char-
acteristics obtained from diffusion classifiers. Therefore, an intra-bundle ray-
casting approach was developed which encodes information about the local
intra-bundle fiber distributions on the hull surface. In addition, a centerline
slicing approach was developed which reveals local diffusion information on a
plane perpendicular to the bundle centerline. The resulting visualizations are
enhanced with spatial depth encodings such as Phong illumination and ambi-
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ent occlusion and were evaluated in the course of a user study. The approach as
well as the results are discussed in Section 7. The third contribution in terms of
white matter visualization combines line and bundle renderings within a focus
and context approach and is called the BundleExplorer (Section 8). A conjunction
of both visualization modalities was achieved using cutting techniques such as
plane slicing and view-vector dependent rendering. Furthermore, inner-bundle
fiber configurations, such as distance to the bundle hull and bundle intersec-
tions, are highlighted by visual enhancements.

Part V - Chapter 9 introduces medical applications for diffusion imaging.
Contributions discuss novel visualization and interaction methods for neuro-
surgical planning. In cases of deep-seated brain tumors, multiple datasets are
acquired to provide information about the extent of the tumor and the spatial re-
lation to risk structures such as vessels, activation areas or neuronal pathways.
Therefore, multimodal volume rendering approaches were designed, fiber fil-
tering methods developed, and visual enhancements realized in order to sup-
port the surgeon in diagnosis and preoperative planning. The multimodal visu-
alization tool is discussed in Section 9.5. Section 9.6 introduces approaches for
intuitive user interaction to define the access path and extends the previously
presented preoperative planning tool. The identification of risk structures, such
as neuronal pathways, activation areas or vessels is addressed as well as ac-
cess path definition issues: Path positioning, visualization, and evaluation are
enhanced by computer graphics techniques. The last step of the proposed sur-
gical planning workflow forms a presurgical view which facilitates the spatial
comprehension of the opening. Parts of the developed tool were submitted to
the IEEE Visualization Contest 2010, where they were rated by neuroscientists
as well as visualization experts. Results are given in the course of this section.



2 Neuroanatomy and neuroscientific
questions

2.1 Overview

Understanding the anatomical connectivity of the brain has long been a sub-
ject of great interest in both fundamental neuroscience as well as neurosurgery
and the study of neurological disorders. The development of diffusion imaging
provides new opportunities in terms of white matter examination: Connectivity
analysis between functional regions allows a step forward in understanding the
organization and functioning of the brain. On the other side, the reconstruction
of major white matter tracts facilitates insight into the severity of the neurosur-
gical case and potential postoperative damages. In addition, neurological and
psychiatric disorders such as stroke, schizophrenia, and multiple sclerosis can
be examined using information about tract integrity. However, in order to de-
velop and evaluate contributions to diffusion image processing and visualiza-
tion, it is crucial to understand the anatomy of the neuronal network as well as
the impact of the MRI diffusion signal. Furthermore, HARDI models as well as
the ODF, the spherical probability function, have to be examined in order to pro-
vide a benefit for diffusion visualization. Therefore, the history of neuroscience
is introduced briefly in Section 2.2 as well as white matter microstructures in
Section 2.3 and major white matter fiber bundles in Section 2.4. Neuroscientific
questions, categorized in fundamental neuroscience (Section 2.5.1), neurologi-
cal disorders (Section 2.5.2) and neurosurgical planning (Section 2.5.3) are also
discussed. The literature on human anatomy, and neuroanatomy in particular,
is extensive [7, 106]. Detailed information about white matter structures in the
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brain is introduced for example by Mori et al. [69]. An introduction to diffusion
imaging is published by Jones [45] and was presented by Hagmann et al. [37].

2.2 History of neuroscience

The human brain is by far the most complex and not yet fully understood sys-
tem in the human body. In history of neuroscience Johann Christian Reil (1759-
1813) and Karl Friedrich Burdach (1776 - 1847) stand out with their important
findings. In 1809 Johann Christian Reil, Professor at the University of Halle,
developed a brain preparation method: He suggested a soaking of the brain
in alcohol. This procedure facilitates brain dissection and thereby reveals the
course of major white matter fiber bundles [87]. Figure 2.1 shows an illustra-
tion of Reil’s findings, published in Archiv für die Physiologie between 1809 and
1812. Later, his findings were confirmed by Karl Friedrich Burdach, Professor
of anatomy, physiology, and forensic medicine at the University of Dorpat. His
studies were combined in his publication Vom Baue und Leben des Gehirns [16].
However, Theodor Hermann Meynert (1833-1892) was the first who classified
major white matter tracts. In addition, he suggested a novel theory of brain
function: Information from multiple sources are required and integrated for ev-
ery brain task. In [66] Meynert suggested the classification of neuronal fibers
into projection, commissural and association fibers (Section 2.4). Based on this
work, he subdivided and categorized neuronal pathways in more detail with a
focus on association pathways, illustrated in Figure 2.2. In 1994 Peter J. Basser,
James Mattiello and Denis LeBihan published their initial paper on MR diffu-
sion tensor imaging [4]. This was the beginning of non-invasive examination of
white matter architecture.

2.3 White matter microstructures

Neurons are cells, responsible for transporting information through the body us-
ing electrical signals. Neuronal cells are connected to form the neuronal network
and belong to the nervous system. They consist of a cell body, dendrites, an axon,



2.3 White matter microstructures 15

Figure 2.1: Illustration of commissural fibers by Johann Christian Reil [86], view from
below.

and axon terminals, as displayed in Figure 2.3. Multiple dendrites branch from
a cell body, however, only a single axon exists within a neuron. An axon is the
extension of the cell body and ranges up to one meter in a human brain. It is
surrounded by a myelin sheath which provides an insulating function and there-
fore, facilitates signal conduction. The combination of the axon and the myelin
sheath forms the actual neuronal fiber. Neuronal signals are passed through the
network along axons terminals, which form synapses with neighboring neurons.
Signals are received through a neuron’s dendrites, processed in the cell body,
and transfered through the axon by so called action potentials. The cell body
of a neuron lies in the gray matter of the brain, whereas the axon, wrapped in
myelin, is found in the white matter. The actual signal processing is a gray mat-
ter task. Whereas information transfer, realized by axons, is performed in the
white matter. Axons of white matter are well organized. In fact, the connectivity
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Figure 2.2: White matter fiber pathways: Illustration of principal association fibers in
the human brain. Image adapted from Gray’s Anatomy [36].

Figure 2.3: Schematic illustration of a neuronal cell: The neuron consists of a cell body,
dendrites, an axon, and axon terminals.
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of certain gray matter brain regions, realized by axonal pathways, is essential
for neuronal connectivity. Therefore, the functioning of axonal conduction is
crucial. Myelin acts as an insulator of axons and determines the propagation
speed of nerve impulses. However, the integrity of myelin sheath is influenced
by many factors such as brain development and neurological disorders and are
discussed in Section 2.5.

2.4 Neuroanatomy

The brain consists of gray and white matter and weights about 1400 grams in
adults. Brain gray matter includes the cortex: the approximately 3-mm-thick
surface of the brain which contains the neuronal cell bodies. White matter how-
ever, consists of densely packed fibers, the axons. The cerebrum is the largest part
of the brain and is divided into left and right hemispheres. It features a large
amount of gyri and sulci, which extend the surface of the cortex. Each cerebral
hemisphere is redivided into the frontal lobe, the parietal lobe, the temporal lobe,
and the occipital lobe, as illustrated in Figure 2.4. The frontal lobe is responsible
for tasks such as voluntary motor function, motivation, and aggression. Recep-
tion and the evaluation of sensory information, except for smell, hearing, and
vision is the task of the parietal lobe. The frontal and parietal lobes are sep-
arated by the central sulcus, which is anteriorly framed by the precentral gyrus
also known as the primary motor cortex, and posteriorly by the postcentral gyrus,
which is the primary somatic sensory cortex. The occipital lobe handles visual
input. The temporal lobe is dedicated to evaluating smell as well as hearing.
Furthermore, it is essential in memory related tasks.

Neuronal pathways are categorized into the following three main compart-
ments: association fibers, which connect certain areas of the cerebral cortex within
the same hemisphere, commissural fibers also known as commissures, which con-
nect one cerebral hemisphere with the other, and projection fibers, which connect
parts of the spinal cord with the cerebrum. Cranial nerves, in contrast to spinal
nerves, emerge directly from the brain. A cranial nerve has one or more of the
following three functions: sensory, including senses such as vision, somatic motor
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Figure 2.4: Illustration identifying gray matter areas of the brain surface: The frontal
and parietal lobe are divided by the primary somatic sensory and primary
somatic motor gyrus.

function or muscle control, and parasympathetic, which is dedicated to control-
ling smooth muscles such as cardiac muscles.

In the following, the major human pathways which are important throughout
this thesis are named and their function briefly explained.

Corpus callosum

The corpus callosum (CC) is a major neuronal pathway, connecting the two cere-
bral hemispheres. It is the largest fiber bundle in the human brain and contains
more than 300 million axons. Degeneration studies in monkeys showed that
the entire cortex is connected by commissural fibers of the CC. Figure 2.5 shows
the CC in a coronal and an axial cross-section. Since the CC is one of the most
important as well as the largest neuronal fiber system, it has been a target of
tractography approaches since the beginning of diffusion imaging. However,
DTI-based fiber reconstruction often fails to make all of the connections due to
its intrinsic assumption. In particular, commissural connections to lateral ar-



2.4 Neuroanatomy 19

eas of both hemispheres are not detectable using DTI-based approaches. This
is caused by the fact that the association fibers, the superior longitudinal fascicu-
lus and projection fibers belonging to the corticospinal tract, run within the same
region.

(a) (b)

Figure 2.5: Schematic illustration of the corpus callosum: Callosal fibers displayed in
coronal (2.5a) and axial (2.5b) cross-sections of the human brain. Image
adapted from Gray’s Anatomy [36].

Pyramidal system

The pyramidal system is a descending neuronal pathway and includes two fiber
tracts: the corticospinal tract and the corticobulbar tract. The course of the pyrami-
dal system in a coronal view is shown in Figure 2.6. The corticospinal tract (CST) is
a motor pathway associated with cortical control of movements below the head,
especially the hands. It originates in the cerebral cortex, more precisely in the
primary motor and premotor areas of the frontal lobes and the somatic sensory
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parts of the parietal lobes, and it terminates in the spinal cord. Damage of the
CST results in reduced muscle tone, clumsiness, and weakness but not complete
paralysis. The main function of the CST is to add speed and agility, especially
to the movement of the hands. However, spinal cord lesions affecting both the
indirect and the direct pathways results in complete paralysis. The corticobulbar
tract (CBT) is involved in direct control of head and neck movements. It origi-
nates in neighboring regions of the CST and follows the same route down to the
brainstem.

Figure 2.6: Schematic illustration of the pyramidal system: The white matter tract asso-
ciated with movement originates in the brainstem and fans into both hemi-
spheres. Image adapted from Gray’s Anatomy [36].
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Superior longitudinal fasciculus

The superior longitudinal fasciculus (SLF) belongs to the association pathways in
the brain and forms a large arc, also known as the arcuate fasciculus. It branches
in the frontal, parietal, occipital, and temporal lobes, as illustrated in Figure 2.2.

Centrum semiovale

The centrum semiovale is a white matter region in the human brain where the CC,
the CST, and the SLF cross. Voxels belonging to this region comprise challeng-
ing diffusion profiles, potentially a two-fiber or three-fiber crossing distribution.
The CC and the CST cause a fanning within one plane for single voxels. Further-
more, the SLF adds a crossing diffusion distribution to the probability function.
In fact, these voxels cause the inability of DTI-based tractography approaches
to reconstruct commissural fibers of the CC. Figure 2.7 shows a directional color
coding of the region of the centrum semiovale.

Figure 2.7: Directional color coded image with zoom of the centrum semiovale, coronal
slice: Fibers belonging to the CST are shown in blue, fibers of the CC in red,
and those belonging to the SLF in green.
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2.5 Neuroscientific questions

As diffusion imaging emerged, the accompanying unique possibility of visu-
alizing and analyzing fibrous structures lead to great attention in the field of
neuroscience. Medical questions concerning either white matter tracts or mus-
cles arose. In the course of the presented research on diffusion visualization,
questions related to neuroscience as well as neurosurgery are addressed. Poten-
tial contributions of diffusion imaging, especially HARDI, to neuroscience were
examined with neuroscientists as well as neurosurgeons. Neuroscientific ques-
tions were discussed with the department of neurosurgery at the Universität-
sklinikum Marburg in Marburg, Germany and the department of neurosurgery
at the Stiftungsklinikum Mittelrhein in Koblenz, Germany. In terms of funda-
mental neuroscience, approaches were examined with members of the Neuro-
science Unit at the Institute of Biomedicine/Physiology, University of Helsinki
in Helsinki, Finland. In order to connect the developed approaches to the elab-
orated medical questions, the main contributions of the thesis are subsequently
linked to neuroscientific questions. In the following, tasks related to fundamen-
tal neuroscience (Section 2.5.1), neurological disorders (Section 2.5.2), and neu-
rosurgical planning (Section 2.5.3) are introduced and potential contributions of
diffusion imaging and visualization approaches discussed.

2.5.1 Fundamental neuroscience

Neurophysiology aims to understand the biological mechanism of the nervous
system, which is in charge of collecting, distributing, and integrating informa-
tion. Little is known about the complex white matter architecture in the hu-
man brain and the anatomical connectivity of certain functional regions of the
brain. Diffusion imaging provides information about local molecular diffusion
and forms the basis for tract reconstruction. DTI was the first technique that al-
lowed the course and integrity of major fiber tracts to be determined. However,
to make a true contribution to fundamental neuroscience, small pathways and
more intricate axonal connections are of great interest to further understanding
of how the brain functions. This is where HARDI offers a significant contribu-
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tion by successfully capturing and modeling more detailed diffusion profiles.
Furthermore, HARDI-based tractography approaches (Part III) provide a more
precise approximation of fiber pathways. Fiber reconstructions emerging from
defined cortical regions help neuroscientists to understand which brain regions
are related to certain tasks and in addition, which cortical zones are involved.
For example in transcranial magnetic stimulation (TMS) studies, cortical regions
related to certain tasks are determined and used as a region of interest for trac-
tography. TMS provides the unique possibility to achieve immediate feedback
when blocking certain cortical areas by inducing electric current. As a result,
brain regions, which are involved with certain tasks, are identified individually.
More important, their impact on certain tasks is examined in the course of an
TMS experiment. Figure 2.8 shows the setup of an TMS experiment.

Figure 2.8: Setup of a TMS experiment related to the study; undertaken by Han-
nula et al. [40] at the BioMag Laboratory at Helsinki University Central Hos-
pital using the Nextim [71] TMS navigation system: The subject sitting in
the chair wears marker equipped glasses in order to localize the head and
match it with preoperatively acquired data, such as DTI. Reflecting markers
are added to the coil in order to localize it and perform blocking or stimula-
tion with high precision.
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In terms of understanding brain functioning, TMS offers a huge contribution:
Task-related cortical zones are not only identified but also triggered by stimula-
tion; as such, their impact is examined with immediate feedback. In the course
of an TMS experiment, scientists examine the behavior of a subject perform-
ing a specific task while they blocked or stimulated involved cortical activation
zones. The inclusion of a previously acquired diffusion dataset also facilitates
task-related tractography by using a seed region for fiber reconstruction, which
is defined by the TMS target region. Therefore, further white matter connec-
tions lead to secondary activation areas being additionally involved in the spe-
cific task. In a subsequent step these areas can be subject to TMS stimulation or
blocking in order to examine their influence on the task. HARDI tractography
approaches have further potential to enhance research in this field since hypoth-
esis concerning task-involved cortical activation areas include small pathways.
As a result of HARDI tract reconstruction, more intricate and small fiber config-
urations can be examined. A TMS study including DTI was performed by Han-
nula et al. [40]. The authors successfully reconstructed the connection between
the primary somatic sensory cortex (S1) and the middle frontal gyrus (MFG). In ad-
dition they could corroborate their hypothesis that a single TMS pulse to the
MFG plays an important role in tactile-related working memory performance.

Furthermore, a combination of diffusion imaging and functional magnetic
resonance imaging (fMRI) is promising. fMRI reveals task-related activation
zones by measuring the blood oxygenation level in the brain when performing
a specific task such as finger tapping. A multimodal analysis approach, using
acquired fMRI hot spots, directly relates white matter tracts as the anatomical
connection of activation areas (Section 9.5). Therefore, both TMS- and fMRI-
related tract reconstructions lead to anatomical as well as functional meaning-
ful information about white matter connectivity which is beneficial in terms of
fundamental neuroscience and neurosurgical planning.

It has been reported that the degree of diffusion anisotropy is related to age
and gender. Myelinization is the process of myelin growing around axons,
which acts as an insulating membrane that facilitates the conduction of nerve
impulses. For this reason, myelinated fiber tracts comprise a higher anisotropy
than non-myelinated ones. In fact, the degree of fiber-myelinization is related
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to the maturity of the brain: Newborns show less myelin around fiber tracts.
Consequently, brain development is examined using diffusion imaging and dif-
fusion classifiers, showing the integrity of fiber pathways (Section 4.5 and 4.6).
On the other hand, an age-related loss of regional white matter is reported. This
anatomical change results in decreased anisotropic diffusion. Diffusion imag-
ing provides quantitative data by analyzing the diffusion probability function
using diffusion anisotropy classifiers. As a result, diffusion imaging is used to
monitor both brain development and aging.

2.5.2 Neurological disorders

Since diffusion imaging measures the degree of free diffusion, quantitative anal-
ysis of regions is also feasible. Differences in white matter diffusion profiles
indicate abnormalities in terms of tract location or integrity.

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease, fea-
turing a relapsing-remitting course in which symptoms emerge and improve
over a certain period. Studies have shown that MS not only causes demyeli-
nation but also axonal damage. This leads to a white matter directionality loss
in the diffusion profile which is detected by diffusion imaging. Using tract re-
constructions in combination with anisotropy classifiers (Section 7) or regional
anisotropy examination (Section 4.5 and 4.6) is helpful in diagnosing, under-
standing, and monitoring MS.

In terms of neurodegenerative diseases such as mild cognitive impairment (MCI)
or Alzheimer’s disease (AD), diffusion imaging provides important information:
Anisotropy classifiers, ODF-based fiber visualization (Section 6) or whole bun-
dle visualization (Section 7) are beneficial in order to predict type, location, as
well as timing of tissue degeneration. For example, MCI has been proven to be
a precursor of AD; therefore an early diagnosis of MCI is vital in terms of iden-
tifying white matter degeneration and examining the development of AD. In
addition, detailed diffusion analysis is beneficial in staging neurodegenerative
diseases and monitoring the progress.
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2.5.3 Neurosurgical planning

Brain lesions, such as tumors, are one of the most common abnormalities in the
brain. Essential brain properties such as functional zones located on the cortex
and white matter tracts connecting these are considered as risk structures in sur-
gical interventions. In fact, damage to both activation zones as well as neuronal
fibers, can lead to severe postoperative impairment. Therefore, the aim in neu-
rosurgical planning is the minimization of postoperative damages. Nowadays,
neurosurgery is feasible for deep-seated lesions or even lesions located close to
essential white matter tracts. This is due to sophisticated MRI technology such
as fMRI and diffusion imaging. Preoperatively, essential information about the
spatial relationship between the lesion and vital brain structures is obtained
through imaging and visualization. Challenging neurosurgery is preceded by a
planning phase in which multiple volumes are combined (Section 9.5) and risk
structures as well as safest access paths are defined (Section 9.6).

One of the leading clinical questions in terms of neurosurgical planning and
pathology examination is whether a white matter tract is displaced or infil-
trated by a lesion. Combining diffusion classifiers and tractography approaches
within one visual representation (Section 6 and Section 7) provides vital infor-
mation for answering this question. Fiber characteristics such as integrity in-
formation are directly visualized on the bundle hull and are thereby combined
with information about the spatial position of the lesion.



3 Diffusion imaging

3.1 Overview

Diffusion imaging is able to characterize organized tissue due to the fact that
the movement of water molecules in fibrous material largely occurs with the
fiber course. It poses a large achievement in neuroscience since it captures
information about the organization of neuronal pathways in vivo. Applica-
tions include fundamental neuroscience and neurosurgical planning. Diffusion
imaging models the probability density function that describes the diffusion of
water molecules in one voxel. Diffusion tensor imaging is a technique that fits
the acquired signal into a second order tensor. This model uses a minimum
of six gradient directions and assumes a Gaussian diffusion process. However,
because of the model assumption of DTI, only one diffusion direction can be
represented. To overcome this limitation, more sophisticated models were in-
troduced and called high angular resolution diffusion imaging (HARDI). Here,
advanced imaging and reconstruction techniques are applied in order to model
the underlying diffusion profile properly.

The previous chapter comprises a brief introduction to human brain white
matter structures as well as contributions of diffusion imaging to neuroscience
and neurosurgical planning. However, principals of molecular diffusion, MRI
and HARDI techniques are crucial to understanding, designing, and evaluat-
ing reconstruction and visualization methods for medical purposes. For this
reason, this chapter is dedicated to providing the necessary background infor-
mation for diffusion imaging. Fundamentals in terms of molecular diffusion
as well as reconstruction techniques that transforms the acquired signal into
a meaningful representation are introduced. Subsequently, the constitution of
diffusion datasets is presented. This chapter starts with an introduction into the
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physics of diffusion (Section 3.2) followed by an existing diffusion profile de-
scription (Section 3.3) and an illustration of diffusion in the human brain (Sec-
tion 3.4). Subsequently, the concept of diffusion magnetic resonance imaging
is introduced (Section 3.5), including the basics of magnetic resonance imag-
ing (Section 3.5.1), the extension of MRI to acquire diffusion information (Sec-
tion 3.5.2), as well as the reconstruction methods diffusion weighted imaging
(Section 3.5.3) and diffusion tensor imaging (Section 3.5.4). The challenge of
acquiring, modeling, and visualizing complex diffusion profiles such as fiber
crossings is an important subject within this thesis and therefore subsequently
discussed in greater detail (Section 3.6). First, an introduction to challenging
white matter configurations is provided (Section 3.6.1). Second, a review as
well as an evaluation of state of the art HARDI reconstruction methods is pre-
sented in order to motivate the decision for the applied reconstruction method
within this thesis (Section 3.6.2). Furthermore, since the acquisition of HARDI
datasets requires an intense study of MRI parameters and because an adequate
dataset is always influenced by many competing factors, an introduction to ac-
quisition aspects of HARDI is also provided (Section 3.6.3). The chapter closes
with the presentation of the utilized diffusion datasets (Section 3.7).

3.2 Physics of diffusion

Einstein was the first who formally described molecular diffusion [27], which is
also referred to simply as diffusion or Brownian motion. In 1827, the botanist
Robert Brown discovered the jostling of pollen grains under the microscope.
Einstein later explained that the pollen grains were subject to the thermal move-
ment of the surrounding water molecules. Hence, the jostling indirectly ex-
hibited the movement of water molecules: the process of diffusion. Gener-
ally speaking, molecular diffusion is the displacement of any type of molecule
in fluid agitated by thermal energy. The displacement occurs randomly since
molecules constantly collide with one another. Figure 3.1 illustrates a so called
random walk of a single molecule. Molecular movement is best described by a
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Figure 3.1: Brownian motion: Thermal energy causes molecular movement, which
leads to constant collision and a random walk. The displacement observa-
tion starts at position r0 and time t0 and ends at position r after time interval
τ . The arrow illustrates the displacement vector d.

displacement probability density function which indicates how likely a molecule
will travel in a certain direction with a certain distance.

To demonstrate the concept of diffusion, let us schematically analyze the dis-
placement of N water molecules. First, one records a molecule’s position at
time t = t0, which is referred to as r0. The effective diffusion time is indicated
by τ = ∆ − δ/3 and represents the time when the gradients are active. After
gradient activation, the current point in time is t = t0 + τ and the molecule’s
position is indicated by r. Figure 3.1 illustrates the random walk of a molecule.
For each displacement vector d = r−r0 one now computes the amount of water
molecules, n, which traveled the distance |d|, during the time interval τ . In the
following, τ will be referred to simply as the diffusion time. Most of the water
molecules pass short distances, while others travel long distances. Figure 3.2
shows the histogram of the described diffusion process for a displacement vec-
tor d, the associated displacement distribution P (d, t).

According to Einstein [27] the process of diffusion can be mathematically
formulated: Diffusion is characterized by the mean-squared displacement that
molecules travel for a certain time interval (m2/s), leading to
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Figure 3.2: Diffusion probability displacement distribution: The histogram presents the
diffusion of water molecules for a specific distance |d| (x-axis), defined by
the displacement vector d during diffusion time τ . The y-axis shows the
probability for each distance based on the proportion of molecules traveled
that far during the diffusion time.

< r, r0 >= 6Dτ, (3.1)

in 3D. D is referred to as the diffusion coefficient, the viscosity of the medium
and <> denotes the ensemble average which is the average mean-squared dif-
fusion distance along the direction d.

3.3 Diffusion profiles

In order to understand the directionality of diffusion, imagine a drop of ink in a
glass of water; water is a free diffusion medium. If there is no flow, the center of
the ink does not move and the shape of the ink eventually becomes a sphere. In
this case, only the diffusion coefficient D, which is the magnitude of the move-
ment, is sufficient to describe the diffusion. The diffusion coefficient is related
to the diameter of the sphere: The faster the diffusion, the larger the diameter of
the sphere. Now, imagine a piece of paper, woven with dense vertical fibers and
sparse horizontal fiber. If a drop of ink fell on that paper, the ink-pattern would
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(a) (b)

Figure 3.3: Simple diffusion profiles: Diffusion is either free (3.3a) or restricted (3.3b).

occur in a larger scale vertically than horizontally. In this case, the process of
diffusion is directional and characterized by an orientation and a strength.

Water molecules moving into any direction in space in equal measure are re-
ferred to as isotropic diffusion, whereas a displacement which is aligned with
a certain axis is called anisotropic diffusion. Free diffusion occurs isotropically,
as depicted in Figure 3.3a. A restricted diffusion, as described in the second
example, is present if the molecular movement is hindered by certain barriers,
as shown in Figure 3.3b.

To demonstrate the concept of diffusion barriers and restrictions in more de-
tail, one can think of a second illustration: Imagine a glass filled with water.
Molecular diffusion itself is free and isotropic, hence water molecules move
randomly within the glass. For this reason, the barrier for molecular move-
ment is the boundary of the water glass. If one inserts water filled imperme-
able spheres into the glass, the water molecules within the spheres move ran-
domly and isotropically within their boundary and the molecules outside move
around the spheres. If one inserts water-filled cylinders, the molecular move-
ment is restricted as before. However, the shape of the barrier facilitates a larger
diffusion displacement in the direction of its extent rather than perpendicularly.
Hence, the overall diffusion within the cylinder is anisotropic. Each of the pre-
sented cases leads to a different diffusion profile, which are illustrated in Fig-
ure 3.4. The first case features free diffusion with a large diffusion magnitude,
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(a) (b) (c)

Figure 3.4: DTI diffusion profiles: Isotropic diffusion with a low diffusion magnitude
(3.4a) and isotropic diffusion with a high magnitude (3.4b). Both pro-
files show no directionality; however, they differ in the distance the water
molecules travel. Contrarily, anisotropic diffusion favors a specific direction
(3.4c).

whereas the second case, including the water filled spheres, shows free diffu-
sion as well, but a smaller displacement distance. The diffusion is restricted
for the water filled cylinders since the molecular movement is defined by the
anisotropic shape of the object.

3.4 Diffusion in the human brain

Previously, diffusion was explained as the thermally induced random move-
ment of molecules which is categorized as either isotropic or anisotropic. Based
on this, in the following, diffusion profiles of neuronal microstructures are dis-
cussed and the question of how fibrous tissue can be identified by diffusion
imaging answered.

Human brain white matter consists of neuronal pathways which feature a fib-
rillar structure. They are organized as bundles consisting of coherently aligned
axons surrounded by myelin sheaths (Section 2.3). Recall the free and restricted
diffusion profiles introduced in Section 3.2: Molecular movement with approx-
imately the same magnitude in all spatial directions is classified as isotropic
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diffusion; whereas restricted movement, favoring one direction, as anisotropic
diffusion. In the case of neuronal pathways, water molecular movement is re-
stricted by barriers and as a result directed. In fact, to this day it is not clearly
defined which kind of microstructure, within an axon, plays the important role
in causing anisotropy. It was long time thought that the degree of myeliniza-
tion, which influences the integrity of the insulating sheath around the axons,
was the leading designator. However, current research considers intact axonal
cell membranes as the primary cause for directional molecular movement. Nev-
ertheless, myelin is still an important factor in terms of determining the direc-
tionality of diffusion, even though it only further modulates anisotropy. Cer-
tainly in either case, water molecules travel to a greater extent in the direction
of the fiber course rather than perpendicular to it. For this reason, local diffu-
sion is oriented along the course of an axon; subsequently, the measured degree
of directionality, magnitude, and direction is considered as an indicator of mi-
crostructures as well as integrity.

3.5 Principles of diffusion magnetic resonance imaging

Earlier in this chapter it was mentioned that Einstein formulated molecular dif-
fusion after Brown discovered the motion of pollen grains, which were indi-
rectly affected by the thermal movement of water molecules. In the following,
the relation of molecular diffusion in brain white matter and the course of neu-
ronal fibers was discussed. However, one issue remains: How can the diffusion
of water molecules in the brain be measured in order to obtain a diffusion distri-
bution and thereby infer the neuronal network? How can diffusion be linked to
an imaging signal? This chapter aims at providing basic knowledge to answer
these questions.

The fundamental technique for measuring diffusion is magnetic resonance
imaging which is extended by an advanced gradient scheme to record molec-
ular movement. In order to provide a fundamental understanding of diffusion
imaging, this section begins with an introduction to MRI (Section 3.5.1). In the
following, acquisition aspects for measuring molecular diffusion, and thereby
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extending conventional MRI, are introduced (Section 3.5.2). In terms of model-
ing the signal, the first method that emerged was diffusion weighted imaging
(Section 3.5.3). However, this technique is unable to provide information about
the diffusion direction as it only indicates the diffusion magnitude. For this
reason, diffusion tensor imaging (Section 3.5.4) was developed.

3.5.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) signals originate from protons located in
the nucleus of the hydrogen atom. In particular, the characteristic radio waves
which are emitted by protons within a magnetic field are measured. Protons
comprise a rotation which is commonly known as the spin. In quantum me-
chanics, the spin is considered to be a type of angular momentum which creates
an individual, randomly oriented magnetic field for each proton. Since proton
orientation is distributed randomly, tissue does not have a net dipole. How-
ever, within an external magnetic field ~B, the principal axes of protons become
aligned with the vertical magnetic field and create a net magnetic field. Af-
ter applying a second magnetic field horizontally, formed by a radio frequency
pulse, the protons begin to precess about their vertical axes with an angular fre-
quency called the Larmor frequency ω, as illustrated in Figure 3.5. With a given
gyromagnetic ratio γ, the Larmor frequency is dependent on the magnitude of
the applied magnetic field,

ω = −γ~B. (3.2)

Proton precession creates a magnetic field which changes over time and emits
an electric current. In fact, the electric current which is sent out by the pre-
cessing protons is the signal measured by MRI. The resulting net magnetic field
features a horizontal and a vertical component. Changes in these two compo-
nents are measured as protons respond to magnetic fields and radio frequency
pulses. After turning off the horizontal radio frequency pulse, protons realign
with the original magnetic field and fall out of synchronicity with each other:
they dephase. This dephasing, also known as relaxation, leads to a loss in hori-
zontal magnetization and a weakened signal in the horizontal component. The
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Figure 3.5: Spin of a proton: Illustration of a proton precessing about the magnetic field
with Larmor frequency.

measured time constant is called T2 and describes the falling out of synchronic-
ity of the precessing protons.

On the other hand, the time the protons take to realign with the initial verti-
cal magnetic field is encoded in T1-weighted MRI scans. Protons have different
time constants in which they align with the original magnetic field. This de-
pends on several factors, such as whether they are embedded in fat or white
matter. After introducing the actual causes of the MRI signal, the final aspect
for consideration is the location of the signal in 3D. This aspect is crucial since it
facilitates the acquisition of a volume dataset and the subsequent assignment of
the scan to a distinct anatomical region. This is accomplished by using magnetic
gradients which generate orthogonally oriented magnetic fields. These gradi-
ents are superimposed onto the initial magnetic field ~B. The strength of each
applied field changes gradually with respect to its axis. As a result, the Lar-
mor frequency of a proton is altered according to its position along the applied
axis. Therefore, a precise spatial encoding of the MRI signal, which is sent out
from a proton within one volume element (voxel), is achieved. For complete 3D
encoding, the first gradient is used to select a single slice. The following two
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gradients further subdivide the slice in columns and rows. A Fourier transform
is then applied in order to assign the acquired signal to a voxel.

3.5.2 Diffusion magnetic resonance imaging

The aim in diffusion imaging is to define the probability distribution func-
tion, which evaluates the likelihood that water molecules displace over a cer-
tain distance within a certain time. To extract the displacement probability of
molecules, diffusion must be linked to the MRI signal intensity, which was de-
scribed in the previous subsection. Three major achievements have to be named
which were crucial in enabling a characterization of molecular diffusion using
magnetic resonance imaging. These findings include the work of Hahn [38] and
Torrey [112] as well as that of Stejskal and Tanner [109].

In 1950, Hahn discovered that a signal decrease occurs in a heterogeneous,
magnetic field due to the motion of spins. However, it was Torry, who formally
described the magnetization of spins in 1956. These findings form the basis for
diffusion imaging. Later, in 1965, Stejskal and Tanner performed the first Pulsed
Gradient Spin-Echo (PGSE) sequence to measure diffusion. They demonstrated
the relation of the magnitude of a spin echo signal in a PGSE sequence to the dis-
placement PDF of spins using a Fourier transform. The PGSE technique uses the
observation that protons moving in the direction of the magnetic field gradient
are effected by the magnetic field strength. However, this influence depends on
their position along the gradient vector. In fact, further applied magnetic field
gradients alter the phase of the precessing protons with respect to the magnetic
field strength. Implementing this fact in order to monitor molecular movement
results in the addition of two magnetic field gradients to those already applied
in MRI in order to encode the position within a slice. Gradient pulses (GD)
comprise a certain duration δ, indicating how long the GD is, and a separation
∆, which is the time between two gradients applied. Figure 3.6 schematically
shows instances of a PGSE sequence, including the signal read out which is the
spin echo (SE). The resulting phase shift of the proton spins, caused by the
gradients, is proportional to their displacement over time. More precisely, the
first gradient pulse aims to label the water molecules: It causes a phase shift



3.5 Principles of diffusion magnetic resonance imaging 37

Figure 3.6: PGSE experiment to measure molecular diffusion distributions: Schematic
illustration of an MRI Stejskal-Tanner sequence over time for a single diffu-
sion direction of interest. Two diffusion gradient pulses are added to con-
ventional MRI with a gradient pulse duration and a diffusion time interval,
resulting in a spin echo.

depending on the strength of the gradient at the molecule’s position for the
time t = 0. Afterwards, a 180◦ radiofrequency pulse (RF) is applied to reverse
the phase shift of the spins. The second gradient pulse exhibits the molecular
displacement caused by diffusion for the time interval ∆. In fact, all spins re-
maining at the same position with respect to the gradient vector, return to their
initial orientation. Those have traveled along the gradient vector are now sub-
ject to a different field strength and do not align with their initial orientation but
undergo a further phase shift. The additional phase shift decreases the signal
intensity for the voxel under consideration. As a result, voxels with underlying
anisotropic diffusion, and which hence comprise large molecular movement,
result in a lower diffusion signal. The lower signal results from the fact, that
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less spins are aligned in voxels with large molecular movement. This is because
underlying spins comprise different phases since they are affected by different
magnetic field strengths. Caused by the random orientation of the spins, the
overall magnetism within a voxel is reduced. For each applied magnetic field
gradient direction, the signal intensity reveals the molecular displacement for a
given direction of interest.

Summarizing, for each diffusion direction of interest, two gradient pulses are
needed to determine the amount of water molecules which traveled in the spe-
cific direction. The output for each PGSE sequence is a scalar value for each
voxel. And evident diffusion imaging comprises a longer acquisition time than
conventional MRI as a result of the enhanced MRI acquisition. Additionally,
the setup of a PGSE sequence, as illustrated in Figure 3.6, shows that enhancing
the gradient duration time in order to enhance the diffusion signal, results in a
longer acquisition time.

3.5.3 Diffusion weighted imaging

The most simple and earliest approach to measuring the diffusion of molecules
in tissue is diffusion weighted imaging (DWI). In fact, DWI is the application
of a single PGSE sequence and as follows, uses only one gradient direction. A
DWI sequence results in one scalar value for each voxel. This scalar describes
the probability that water molecules displace in the direction of interest, which
is the gradient.

The attenuated signal, resulting from the PGSE sequence S, is related to the
signal in absence of diffusion gradients S0, which is called the baseline or b0 im-
age. The b-value is a scalar, representing the diffusion weighting applied in the
acquisition. For this reason, a sequence without any diffusion gradient applied
has a b-value of 0. This leads to the well-known Stejskal-Tanner equation for
diffusion imaging:

S

S0

= exp

(
−γ2δ2|q|2

(
∆− δ

3

)
D

)
, (3.3)

where |q| is the gradient strength.
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DWI does not include any postprocessing and as a result, bright regions in the
resulting images reflect low directional movement. As explained previously,
the resulting diffusion signal is high if many spins align, which is the case if
less molecules displace. However, the estimation of molecular movement us-
ing DWI is apparently not sufficient since only one potential direction is con-
sidered and examined which results in two disadvantages: First, a low DWI
signal only exhibits that molecules do not displace in the applied direction due
to microstructural barriers. However, it is not identified if the diffusion pattern
is isotropic or anisotropic. Second, the 3D displacement direction of the whole
diffusion process within one voxel is still unknown. For this reason, DWI is only
applicable in terms of a rough determination of the degree of anisotropy within
a voxel. Applications of DWI include stroke: Diagnosing stroke as well as stag-
ing the severity requires a fast acquisition, which is possible using DWI since
two additional MRI gradients are sufficient. Affected brain regions feature a lo-
cal swelling which reduces the overall anisotropy. DWI characterizes restricted
diffusion and performs a contribution in defining affected brain regions.

Later, apparent diffusion coefficient (ADC) imaging was introduced by Mose-
ley et al. [70] as an advanced DWI technique. The measured diffusion signal is
called apparent since no pure water is under consideration and not the true dif-
fusion coefficient determined. ADC is related to a specific b-value and gradient
direction:

ADC = −b · ln
(
DWI

b0

)
, (3.4)

whereDWI is the resulting signal of a diffusion weighted sequence for a certain
gradient direction. The necessary diffusion weighted gradient can be applied
with any arbitrary angle. The authors acquired multiple DWI sequences and as-
sumed a Gaussian diffusion distribution, which reformulates equation 3.3 and
results in

S = S0 exp (−b · ADC) , (3.5)

with b = γ2δ2|q|2
(
∆− δ

3

)
is the b-value, the diffusion weighting factor which

is proportional to the gradient strength and the diffusion time. Moseley et al.
proposed to measure the ADC using two PGSE sequences with orthogonal gra-
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dients and suggested taking the relation ADC1/ADC2 as the anisotropy indi-
cator. However, the output signal was still strongly dependent on the chosen
gradient direction. Still, the diffusion probability is only obtained in predefined
directions. When performing three orthogonal measurements, the output is the
trace of a diffusion tensor. As a result, the idea of directly estimating the dis-
placement of water molecules in 3D emerged, which is the topic of the following
sections.

3.5.4 Diffusion tensor imaging

As introduced in the previous section, ADC imaging utilizes PGSE sequences in
order to measure the degree of directional diffusion for a specific magnetic gra-
dient within one voxel. However, gradients were only applied sparsely and no
rotational invariant model to represent the overall diffusion distribution within
a voxel was present in the introduced scheme. For this reason, diffusion ten-
sor imaging (DTI) emerged as a novel modeling technique. DTI characterizes

Figure 3.7: Diffusion ellipsoid: The shape of the diffusion ellipsoid is defined by the
eigenvalues and eigenvectors of the D.

the diffusion signal by focusing on the directionality of diffusion. Contrary to
DWI, DTI models directional diffusion profiles by means of a diffusion ellip-
soid. The diffusion ellipsoid ca be designated using the scatter pattern pro-
duced by molecules which start from the same point but then displace. The
shape in which the molecules position themselves after a certain period of time
describes the final diffusion ellipsoid.
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The diffusion MRI signal is measured along various gradient directions from
which the shape and orientation of the ellipsoid is determined. The ellipsoid
is computed to best fit the average diffusion distribution within each voxel. In
order to describe the diffusion ellipsoid, three perpendicular principle axes and
their lengths are needed. Unit vectors defining the orientation of the principal
axes, the eigenvectors, are denoted by e1, e2 and e3 and the lengths, corre-
sponding eigenvalues, λ1, λ2 and λ3. Eigenvectors determine the orientation
and eigenvalues the shape of the diffusion ellipsoid. In fact, the direction of the
eigenvector with the corresponding largest eigenvalue describes the orientation
of the main diffusion. A visualization of the diffusion ellipsoid is presented in
Figure 3.7.

Reformulating equation 3.5, results in the diffusion tensor D formulation,

S = S0 exp
(
−b qTDq

)
. (3.6)

The ADC is defined as qTDq. In this reformulation gradient directions are in-
cludes as well: The scalar diffusion coefficient D of equation 3.3 is replaced
by D. D is a symmetric 3 × 3 matrix and characterizes the diffusion ellipsoid
through its eigenvectors and corresponding eigenvalues,Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (3.7)

In fact, one can measure the ADC for any direction in space. However, since
one cannot measure the eigenvectors and eigenvalues of D directly, one has
to measure the diffusion along various orientations and estimate the diffusion
ellipsoid. Using a tensor as a model is straightforward since it directly relates
the measured signal to the elements in the 3× 3 matrix. For example, the ADCx
measured along the x-axis is represented by the tensor value Dxx, the ADCy
by Dyy and ADCz by Dzz. Thereby, the diagonal elements of the tensor are
determined directly. To fill all values of the diffusion tensor one has to measure
at least six independent diffusion axes. As a result, equation 3.6 has to be solved
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at least six times for each voxel, excluding the b0-image. For various gradient
directions, the actual fitting process is realized by tensor diagonalization.

Using a diffusion tensor for anisotropy modeling, the resulting shape implies
a 3D Gaussian diffusion process. Possible diffusion profiles for DTI are shown
in Figure 3.8.

(a) (b) (c)

Figure 3.8: Potential diffusion profiles for DTI: Linear diffusion, with λ1 � λ2 ≥ λ3,
favoring one orientation (3.8a); planar diffusion, with λ1 ' λ2 � λ3, re-
sulting in a pancake shaped ellipsoid (3.8b); and spherical diffusion, with
λ1 ' λ2 ' λ3, not favoring any direction (3.8c).

3.6 Crossing neuronal pathways

The previous section introduced the physics of diffusion and how diffusion is
measured. In addition, models to approximate the diffusion signal in order
to gain information about neuronal microstructures were proposed. The signal
resulting from diffusion imaging describes only an approximation of the under-
lying diffusion process since an axon radius ranges from 0.1 to 10µm. Conven-
tional diffusion MRI acquisitions comprise a voxel spacing of 1 to 5mm [44, 45].
Therefore, voxels contain hundreds of thousands of axons. This leads to the fact
that multiple diffusion directions are accumulated to form the final MRI signal,
which results in complex diffusion profiles. Of course, diffusion MRI parame-
ters, such as voxel size, diffusion gradient strength, and diffusion time can be
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adapted to reduce the mentioned partial volume effect and increase the accu-
racy of the signal. However, this requires stronger magnetic fields, stronger
than the 3T MRI scanners commonly used. In addition, adjustments, such as
increased gradient strength or diffusion time, eventually lead to higher acqui-
sition times, which are no longer clinically feasible. Furthermore, DTI is a sim-
ple reconstruction method, unable to model more than one diffusion maximum
caused by the Gaussian assumption. Figure 3.9 illustrates the problem of com-
plex intra-voxel diffusion profiles. Respective diffusion tensor reconstructions
are shown in the second row. As one can see, multiple diffusion directions
within one plane lead to planar diffusion profiles, which imply no distinct di-
rection.

Evidently, advanced acquisition and reconstruction methods are needed to
provide an examination of the true underlying diffusion profile. For this reason,
innovative diffusion imaging and reconstruction techniques aiming to over-
come the previously mentioned limitations are explained in brief and discussed
with respect to their applicability for signal reconstruction. Section 3.6.1 intro-
duces challenging diffusion profiles, which require advanced modeling tech-
niques, followed by HARDI reconstruction methods, discussed in Section 3.6.2.
In this course, state of the art reconstruction methods, including their advan-
tages and disadvantages, are listed in order to determine the most appropriate
for the issues discussed in this thesis. Acquisition aspects for HARDI are pre-
sented in Section 3.6.3.

3.6.1 Challenging diffusion profiles

One has to understand the complex nature of neuronal pathways and resulting
possible fiber configurations in order to evaluate diffusion signal reconstruc-
tion techniques and the accompanying modeling problems. A brief overview
regarding complex diffusion profiles as well as resulting visualization and ap-
plication issues are presented in the following.

Challenging diffusion profiles occur in cases where neuronal pathways kiss,
cross or fan within one voxel. As mentioned before, these diffusion profiles can
not be modeled using DTI. The exact percentage of voxels requiring advanced
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Result of DTI-based modeling of complex diffusion profiles: The top row
shows the fibers, illustrated as blue tubes, within one voxel and the bottom
row describes the resulting DTI diffusion ellipsoid. Single fiber populations
(3.9a, 3.9b) result in linear diffusion ellipsoids (3.9d, 3.9e) and multiple intra-
voxel orientations (3.9c) in a planar diffusion model (3.9f).

reconstruction strongly depends on the acquisition protocol which defines the
voxel extent as well as gradient properties. However, it is assumed that complex
intra-voxel distributions have a great impact in terms of fiber reconstruction
accuracy [44, 45].

The definition of sufficient acquisition protocols is a challenging task: On the
one hand DTI comprises low acquisition requirements, such as low gradient
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sampling and timing; on the other hand, DTI leads to planar or even spherical
diffusion profiles in cases of challenging intra-voxel populations. Neglecting
the potential false information resulting from DTI leads to severe reconstruc-
tion and visualization misinterpretations. In terms of tractography, streamline
algorithms are prone to integration errors. The uncertainty of neuronal pathway
reconstruction is a known problem and discussed in state of the art DTI tractog-
raphy research [14, 39, 51]. In clinical applications, diffusion imaging poses a
promising contribution in terms of fiber integrity examinations and neurosur-
gical planning. However, confusing fiber crossings and lesions, such as present
in tumor infiltrations or MS, can lead to severe subsequent false interpretations.
In both cases, similar DTI diffusion distributions occur since lesions cause an
isotropic diffusion profile [120]. This is where HARDI contributes to further dif-
fusion image processing since it solves challenging intra-voxel diffusion profiles
and therefore, distinguish between crossings and true isotropic distributions.

Figure 3.10 shows a single fiber distribution and existing complex white mat-
ter configurations of the brain. In fact, DTI is only able to solve the linear diffu-
sion distribution, as illustrated in Figure 3.10a. Diffusion distributions, shown
in Figure 3.10b, 3.10c, and 3.10d result in the same DTI diffusion profile, which
is either planar, as shown in Figure 3.8b or spherical, as illustrated in Figure 3.8c.

As introduced in Section 2.4 the centrum semiovale is a region in the brain,
comprising challenging diffusion profiles. The CC, the CST and the SLF cross
within single voxels.

In the following subsection, state of the art methods aiming to reconstruct the
true underlying diffusion PDF from the diffusion signal are explained briefly.
In addition, a discussion in terms of accuracy and acquisition time is presented
in order to define the most appropriate reconstruction method which is used for
visualizations in this thesis.

3.6.2 High angular resolution diffusion imaging

The goal of reconstruction methods for HARDI data is to transform the dif-
fusion signal in a probability density function (PDF), describing the degree of
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(a) (b) (c) (d)

Figure 3.10: Fiber configurations requiring an advanced reconstruction scheme: Sin-
gle intra-voxel fiber pattern 3.10a and more challenging diffusion distri-
butions, such as fiber crossings 3.10b, kissings 3.10c and fannings 3.10d.

diffusion into any spatial direction. For this purpose, several methods were de-
signed and their concepts are explained and evaluated briefly in the following.
For a more detailed discussion see [44, 45].

Popular HARDI reconstruction techniques include diffusion spectrum imag-
ing (DSI) [123], Q-ball imaging (QBI) [117] as well as spherical deconvolution
(SD) [114]. The output of each method is a local PDF on a sphere, the orien-
tation distribution function (ODF). The ODF describes the probability of wa-
ter molecules diffusing into any spatial direction. Thus, it characterizes intra-
voxel fiber populations. As in DTI the diffusion ellipsoid, the diffusion glyph
is the geometrical representation of the ODF and describes the scatter pattern
of molecular movement. For this work, QBI [117] was chosen as a signal mod-
eling technique. Subsequently, QBI and the analytical reconstruction utilizing
a spherical harmonic basis are discussed in greater detail. However, in order
to understand HARDI acquisition and reconstruction methods, the q-space has
first to be introduced and explained.
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q-space

As discussed earlier, measured signals in MRI are encoded in phase and fre-
quency and result from applied gradients which differ in directions and in-
tensities at distinct acquisition time points. In conventional MRI, signals are
arranged in k-space, a coordinate system identified by acquisition parameters.
A Fourier transform is used to map the MRI signal in k-space to the position
encoded visual image. In diffusion imaging, a similar coordinate system is de-
fined, the q-space. The q-space is a three-dimensional space determined by the
vector q, which is defined as q = γδG, where G is the diffusion gradient vector
and as previously defined γ represents the gyromagnetic ratio and δ is the gra-
dient pulse duration time. The diffusion orientation is the direction of q, the
orientation in question. The diffusion strength, is characterized by the b-value.
Its length is proportional to the gradient strength G. As a result, each diffusion
weighted sequence characterizes a certain position in q-space. More precisely,
one diffusion sequence determined by a diffusion gradient (strength and direc-
tion) for the whole volume has one distinct coordinate in the q-space. Varying
diffusion strengths result in varying radii and varying orientations of q sample
different positions of the q-space. A single acquisition results in one diffusion
weighted brain volume for a specific diffusion gradient. For example, a single
DWI sequence reflects one point in q-space. To estimate the whole underlying
diffusion pattern within one voxel, several acquisitions have to be performed
with different q-vectors. Similar to conventional MRI, q-space data is subject to
a Fourier transform for every position in the brain in order to obtain the actual
diffusion pattern: the diffusion signal for a given orientation and strength. In
order to further illustrate the reconstruction, the signal has to be reorganized
in a way that a q-space sample is present at every brain position. The Fourier
transform relates raw q-space data to a diffusion PDF for each voxel. Figure 3.11
demonstrates the q-space and the according volume with the applied gradient.

Orientation distribution function

In challenging fiber configurations, such as crossing intra-voxel distributions,
two types of orientation distribution functions are distinguished. Since the mea-
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(a) (b)

Figure 3.11: Illustration of the q-space: One point in q-space (3.11a) corresponds to a
diffusion weighted MRI sequence with a certain gradient direction and b-
value (3.11b).

surements are based on the diffusion of water molecules and not fiber courses
themselves, the initial ODF is considered as the diffusion orientation distribu-
tion function (dODF). After postprocessing, the fiber orientation distribution
function (fODF) represents the true underlying fiber distributions. Caused by
the fact that diffusion does not only takes place within the fiber course but also
on a smaller, perpendicular scale, the dODF is usually blurred. Increasing the
b-value via increasing the gradient strength leads to a higher angular resolution
and sharper dODFs, thus towards the fODF. However, diffusion MRI settings
are challenging and parameters have to be adjusted carefully. For example, a
higher b-value leads to a lower signal to noise ratio (SNR). This is caused by
the fact, that applying a longer diffusion time results in a higher variance since
more molecules displace in general. Furthermore, a crucial factor in diffusion
imaging is the acquisition time: Increasing the b-value by increasing ∆ leads to
a longer scanning time, which is in many cases not implementable in a clinical
environment. However, increasing the |q| requires higher Tesla MRI scanners
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than commonly available. For this reason, and also because validation of the
true fODF is demanding, the dODF is commonly used. In the following, ODF
equals dODF.

Diffusion spectrum imaging

DSI was introduced by Wedeen et al. [123]. It is a model-free approach, which
means it does not make any assumptions about the shape of the PDF or un-
derlying fiber configurations. It is the most intuitive and earliest approach for
HARDI reconstruction. A dense sampling of the whole sphere in q-space is
used and a Fourier transform is applied in order to reconstruct the diffusion
profile for each voxel. A DSI sequence consists of 515 diffusion weighted im-
ages, each acquired with varying q-vectors. As mentioned earlier, different
q-vectors, varying in strength and orientation, result in different radii of the
sampling sphere, as illustrated in Figure 3.12a. A b-value of 0 has no diffusion
weighting and therefore no gradient strength. As such, it represents the diffu-
sion sequence at the center of the sphere in q-space. Due to the dense q-space
sampling, DSI leads to a detailed description of the diffusion of complex intra-
voxel diffusion distributions. Additionally, DSI comprises no hypothesis about
the underlying diffusion pattern and maps the entire field of diffusion. How-
ever, several profound disadvantages exist which make the use of DSI imprac-
tical: The most limiting factor of DSI is the acquisition time. Sampling a whole
sphere in q-space requires a large number of q-vectors with varying b-values,
which leads to high acquisition times. For this reason, whole brain studies are
challenging. In the worst case the image resolution must be decreased, in order
to implement DSI acquisitions for clinical use. This, in turn leads to severe par-
tial volume effects. In addition, hardware requirements are high: At least a 3T
MRT is required with the capability of high gradient strengths. Furthermore,
DSI assumes infinite short gradient pulses, but in practice these are not pos-
sible. Summarizing, tractography approaches which successfully reconstruct
neuronal pathways, such as the one proposed by Wedeen et al. [124], lead to
impressive results, however the acquisition setup is challenging.
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(a) (b)

Figure 3.12: Different samplings of the q-space: Green points indicate image sequences
defined by a specific q-vector. Sampling the whole sphere requires q-
vectors with varying b-values (3.12a), whereas shell-sampling uses a con-
stant b-value (3.12b).

Spherical deconvolution

SD, as introduced by Tournier et al. [114] aims to reconstruct the fODF rather
than the dODF directly from the signal. The assumption is that the signal is
the sum of single fiber distributions, each weighted with its fiber density: Each
signal is considered as a convolution of single fiber populations with the actual
fODF. Mathematically, one can write

S(v) =

∫
f(x̂)R(v; x̂)d x̂, (3.8)

with S is the measured signal, f is the fODF, x̂ a specific orientation, R(v; x̂) the
measurement for a single fiber population which is the response function, and v

the settings of the pulse sequence. The signal has its peaks in two orientations:
x̂1 and x̂2. As a result, S is approximated by the sum of R rotated according
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to both orientations x̂1 and x̂2. SD reconstructs the fODF by deconvolving the
signal with the measurements for single fiber populations R for the estimated
orientations. Therefore, it is a model-based technique and requires a diffusion
profile for a single fiber distribution within the dataset. Commonly, the average
diffusion signal of voxels covering the center of the CC is used since these are
considered as the most anisotropic in the human brain.

QBI

QBI, introduced by Tuch [117], is a very popular reconstruction method for
HARDI. Basics of QBI are explained in the following including a short com-
parison with previously introduced methods.

Tuch demonstrated in [117] that the Funk-Radon transform (FRT) can be used
to compute the ODF value Ψ(u) for a direction of interest u from the diffusion
signal of a single shell in q-space. For this reason, QBI is considered as a so
called single shell technique. Recall the previously introduced q-space sam-
pling: different positions in q-space result from different gradient strength and
gradient directions. However, in single shell methods, only the gradient di-
rection is modified; the diffusion strength remains the same. Using a constant
b-value, the sampling forms a shell rather than a sphere in q-space. Figure 3.12
illustrates different q-space sampling approaches.

Applying the FRT for HARDI reconstruction, the diffusion ODF is the radial
projection of the diffusion function: Given a spherical function f(w), with a unit
direction vector w, the FRT is the integral over the great circle C(u) lying in the
plane perpendicular to direction u through the origin. Mathematically, one can
write

Ψ (u) =

∫
C(u)

f(w)dw. (3.9)

Using a spherical harmonic (SH) basis to represent the ODF, results in

Ψ (θ, φ) =
lmax∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) , (3.10)
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where Y m
l (θ, φ) represents a spherical harmonic of order l and phase factor m,

cml denotes the SH coefficient and lmax the truncation order of the spherical har-
monics series. SH coefficients modulate according basis functions in order to
approximate the underlying diffusion signal.

Analytical solution

Descoteaux et al. [22] presented an analytical QBI approach in order to recon-
struct the ODF. The authors proposed modified SH basis functions as well as
a Laplace-Beltrami regularization term. The diffusion signal is modeled using
the weighted sum of SH basis functions. The proposed modified basis consists
of symmetric, real, and orthonormal SH functions Y with elements Yj :

Yj =


√

2 ·Re (Y m
k ) , if − k ≤ m < 0,

Y 0
k , if m = 0, and
√

2 · Img (Y m
k ) , if 0 < m ≤ k,

(3.11)

where Re (Y m
k ) and Img (Y m

k ) denote the real and imaginary parts of Y m
l , re-

spectively, with index j = j(k,m) = (k2 + k + 2) /2+m and k = 0, 2, 4, . . . , l and
m = −k, . . . , 0, . . . , k. Reformulating Eq. 3.10 according to Eq. 3.11 results in

Ψ (θ, φ) =
R∑
j=1

cjYj (θ, φ) , (3.12)

for each of the N gradient directions (θ, φ) with R = (lmax + 1) (lmax + 2) /2,
the number of terms in the modified SH basis. With previous SH coefficient
estimation, the signal is computed for any diffusion direction of interest (θ, φ),
using Eq. 3.12.

Assume S to be an N × 1 vector representing the diffusion signal for each
applied diffusion gradient and B is the N ×R matrix consisting of the modified
SH basis:

B =

 Y1(θ1, φ1) Y2(θ1, φ1) . . . YR(θ1, φ1)
...

... . . . · · ·
Y1(θN , φN) Y2(θN , φN) . . . YR(θN , φN)

 . (3.13)
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Further, C is the vector R × 1, containing the SH coefficients cj which are un-
known. Coefficients are estimated by solving the over-determined linear system
S = BC. Descoteaux proposed using a least-squares estimation to compute the
coefficient vector:

C = (BTB + λL)−1BTS, (3.14)

where L represents the introduced Laplace-Beltrami R × R regularization ma-
trix, which aims to control the impact of SH basis functions to avoid perturba-
tions caused from noise. The Moore-Penrose pseudo-inverse is used in order
to compute BT . The proposed analytical solution equation 3.12 is used for any
spatial direction of interest in order to determine the probability of molecular
displacement.

Discussion of HARDI reconstruction methods

QBI features several advantages compared to previously introduced methods.
These issues are discussed in the following.

Unlike DSI, QBI samples only the shell of the sphere in q-space and is there-
fore considered as a single shell method. The single shell approach demands a
fixed gradient strength and b-value. This leads to a faster acquisition and recon-
struction time for QBI-based methods. Furthermore, using the introduced ana-
lytical reconstruction, ODF reconstruction is of low computational complexity.
The application of HARDI in clinical environments is challenging mainly due
to timings. QBI significantly reduces timings: First, due to its lower acquisition
requirements and second, due to the fast reconstructions provided by analytical
QBI. For this reason, QBI is considered as a contribution towards implementing
HARDI in clinical settings. As a matter of fact, DSI is more precise than QBI
due to the denser q-space sampling. However, a comparison of DSI and QBI by
Tuch et al. [118] showed good similarities for the ODF peak directions of both
methods. As a result, using QBI instead of DSI is reasonable.

The advantage of SD over DSI and QBI is the direct estimation of the fODF.
However, this is only superficially true: In fact, SD is susceptible to noise, which
easily leads to false positive peaks in the fODF [113]. This is where regulariza-
tion terms are needed to prevent the modeling of noise. A further limitation
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of SD is its strong dependency on a model; the response function, which de-
scribes a single fiber diffusion profile. This dependency occurs because the final
deconvolution kernel is formed by sums of the response function. In fact, differ-
ent fiber bundles sizes exist and it is not possible to model different axon sizes,
fiber densities, and packing configurations with one diffusion model.

Recently, methods have emerged which consider the mentioned disadvan-
tages: Constrained spherical deconvolution (CSD) [113] incorporates a regular-
ization and the approach, proposed by Kaden et al. [48], uses a different re-
sponse function for diffusion signal filtering. However, they are in the early
stages of development and no overall solution to the named issues or a detailed
evaluation exists. For this reason, QBI was considered more advantageous than
SD due to SD’s sensitivity to false positive detection as well as QBI’s flexibility
in terms of a priori assumptions.

Choosing an adequate SH model order and weighting faction is an important
issue for the presented analytical QBI approach. Studies have shown that a
regularization term weighting of λ = 0.006 and a SH order of l = 4 provides
sufficient results. More precisely, this order is high enough to classify multiple
fiber populations in a voxel [20, 31] and low enough to avoid overmodeling
perturbations due to noise in the input diffusion MRI signal [22]. Summarizing,
QBI provides a good balance between acquisition requirements, computation
time, and a-priori assumptions [22, 116]. It was chosen for ODF reconstruction
and implemented as a MeVisLab image processing module according to [22].

Figure 3.13 shows results for ODF reconstruction illustrated via glyph render-
ing. ODFs are visualized using a GPU raycasting approach for spherical func-
tions, as proposed by Peeters et. al [75]. Large glyph magnitudes reflect high
probabilities for molecular movement in the direction of interest. In Figure 3.14
ODF renderings of voxels comprising various neuronal pathways crossing are
displayed.

3.6.3 Acquisition and reconstruction aspects of HARDI

HARDI models complex intra-voxel diffusion profiles such as fiber crossings,
kissings or fannings. However, results strongly rely on acquisition and re-
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Figure 3.13: Directional color coded GPU glyph rendering: ODFs are normalized and
the radius of a glyph highlights the local degree of diffusion in the specific
direction.

construction parameters. As a result, a careful definition of the parameters is
needed in order to provide a reliable modeling. In the following, acquisition
and sampling aspects of HARDI are explained and discussed.

Acquisition parameters

For HARDI acquisitions, parameters such as the b-value, the number of gradi-
ents, the signal to noise ratio (SNR), and the spatial resolution of the dataset
are important. In addition, isotropic voxel sizes are preferred for subsequent
data processing such as tractography. Therefore, the decision of best imaging
parameters is challenging. A trade-off between best parameter settings and ac-
quisition time exists: b-values can be enhanced in order to obtain a more ac-
curate mapping of the diffusion process since higher b-values result in a wider
sampling of the q-space. However, a trade-off is reported between high b-values
and the SNR: As explained earlier, the b-value is proportional to the square of
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Figure 3.14: Glyph representations for challenging diffusion profiles in the centrum
semiovale: Red parts belong to the CC, green parts to the SLF, and blue
parts partly to the CC and partly to the the CST.

the product of the diffusion gradient strength, |q|, and the diffusion time in-
terval, ∆. As a result, increasing the b-value in order to enhance the angular
resolution of the PDF is realized by increasing either the gradient strength or
the diffusion time interval. A shorter ∆ results in a more isotropic diffusion
profile since the water molecules have less time to travel far from the center.
Contrary, a larger ∆ leads to an increased angular resolution which means a
sharper diffusion PDF in cases where the underlying diffusion profile is not
isotropic. For isotropic diffusion processes, adapting ∆ has no impact on the
resolution of the PDF since the movement is stationary and does not change
over time. However, increasing the b-value by a larger ∆ also results in a lower
SNR since more molecules displace in a larger diffusion time interval, provok-
ing additional noise. Therefore, a feasible option for increasing the b-value is to
increase the gradient strength |q|, which results in a higher SNR and allows the
capture of complicated diffusion profiles such as crossings at low angles [84].



3.6 Crossing neuronal pathways 57

However, the maximum possible gradient strength is subject to the MRI scan-
ner.

The application of more diffusion gradients than in DTI is crucial for HARDI,
especially for modeling crossings at low curvature. A lower gradient resolution
leads to high angular errors. However, since ∆ strongly influences the acqui-
sition time, an optimal solution has to be found for this trade-off. In fact, the
most optimal choice depends on the intra-voxel configuration under consider-
ation. Various diffusion profiles require different settings for a most accurate
PDF. For example, a reconstruction of fibers in the centrum semiovale requires a
higher number of applied gradients than those running in the center of the CC
which can be mapped by DTI as well. However, in [85] it was reported that
after a certain number of applied gradients, the information does not improve
significantly. Since the number of gradients is crucial in terms of the acquisition
time, the lowest number of gradients is desirable. In addition, the application
of many gradients leads to longer acquisition time, which is often not even re-
alistic for research purposes.

After data acquisition, the definition of the appropriate order of the spherical
harmonics basis function for analytical QBI is challenging. The adequate model
order depends on the underlying diffusion profile in question. For example,
according to Prčkovska [84], fiber crossings at high angles, such as 90◦ require
a lower order, l = 4, than crossings at low angles, 60◦ which are best modeled
with higher SH orders such as l = 6. However, a high SH order can result in
modeling noise when a high b-value such as 4000s/mm2 is used as well.

Prčkovska et al. [84,85] presented a first study for optimal acquisition schemes
for HARDI. The authors acquired diffusion scans with varying HARDI param-
eters and evaluated them as well as the reconstruction order with respect to
intra-voxel fiber configurations. In the centrum semiovale of a human brain, neu-
ronal fiber crossings in the range between 60◦ and 90◦ are observed within one
voxel. More precisely, crossings of 90◦ are observed in the centrum semiovale:
The crossing of the corona radiata (CR) and the CC is detected with a b-value
of 1000, 24 applied gradients and a SH model order of 4. However, fibers be-
longing to the SLF require a higher b-value. Summarizing the parameter study
in brief, for reconstructing pathways in the centrum semiovale, a b-value of 2000,
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which does not provoke too much noise, and number of gradients in the range
of [48;72] is advised if a SNR of 20 is achieved. This setting meets a clinically
feasible acquisition time of 2 to 11 minutes. The suggested model order for QBI
is 4 or 6, depending on the diffusion profile of interest. However, the authors
did not perform a whole brain scan, but only acquired slices mapping the re-
gion in question. Despite this fact, the represented study makes a step forward
in implementing HARDI in a clinical environment and therefore, is considered
as a huge contribution to diffusion imaging.

Sampling a sphere

Both, gradient determination for diffusion data acquisition as well as ODF eval-
uation require uniformly distributed points on a sphere. Techniques to compute
these points are introduced in the following.

Since the principal diffusion direction within a voxel is previously unknown,
a set of gradients is applied along which the distribution of water molecules is
measured. These directions and the according signal are used in turn to deter-
mine the ODF. The applied gradient directions should be uniformly distributed
in three-dimensional space and sample a sphere with high angular resolution in
order to appropriately measure diffusion. However, a trade-off between sam-
pling accuracy and acquisition time exists, as described in the previous section.
In order to define diffusion directions of interest a certain number of points
n have to be placed uniformly on a sphere. The electrostatic repulsion algo-
rithm [46] is one approach to accomplishing this task and can be used for an
arbitrary number of points. Imagine the n points to be distributed are equally-
charged electrons. The electrons repel each other on the surface of the sphere
with a inverse-square force until a convergence criterion is reached.

A further approach to defining point configurations in 3D is a geometric sub-
division of an icosahedron, a platonic solid with twenty faces approximating a
sphere. This approach does not need a convergence criterion. Instead, the tes-
sellation order is the parameter defining the amount of points, used to sample
the sphere. This approach is only possible for certain point numbers: An icosa-
hedron tessellation of order 1 results in 12, order 2 in 42, order 3 in 162, and of
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order 4 in 642 points on a sphere. Figure 3.15 shows two different samplings on
a sphere, resulting from icosahedron tessellation.

(a) (b)

Figure 3.15: Points sampling a sphere with different resolutions: Sampling points are
displayed on a unit sphere’s surface. A lower angular resolution is ob-
tained by 60 points (3.15a), whereas a higher sampling is obtained by 162
points (3.15b).

The in the following presented approaches use different tessellation orders
for ODF evaluation.

3.7 Diffusion datasets

The previous sections provided background information for diffusion acquisi-
tion as well as reconstruction methods. Furthermore, the trade-off between clin-
ically feasible acquisition times and diffusion profile accuracy was discussed.
As a result, HARDI requires carefully estimated acquisition parameters such as
the b-value and the number of gradients as well as reconstruction parameters. In
terms of human brain HARDI datasets, acquisitions are currently based on vol-
untary subjects since scanning times of more than 15 minutes are not clinically
feasible. For this reason, HARDI hardware phantoms pose a real contribution.
The following sections present details of diffusion datasets in general, as well as
parameter details of the datasets available for reconstruction and visualization
approaches in this thesis.
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3.7.1 Diffusion data

Compared to simple T1 or T2-weighted MRI, an additional gradient scheme is
applied in diffusion imaging to record molecular movement. The resulting sig-
nal describes the diffusion probability for a certain direction. Therefore, the out-
put of a diffusion weighted imaging sequence is not just one scalar but a scalar
for each diffusion direction. More precisely, a scalar is obtained for each applied
diffusion direction of interest for each voxel. As a result, a diffusion weighted
volume has the following extent: resolutionX × resolutionY × #slices × #diffusion
gradients. In addition to the diffusion weighted sequence, an anatomical vol-
ume, the baseline image which is commonly a T2-weighted MRI sequence, is
acquired.

3.7.2 Phantom data

Phantom data comprise several benefits: First, they are independent from ac-
quisition aspects, such as timing and movement. Second, they provide ground
truth for method evaluation since fiber pathways are known. Therefore, an
evaluation of diffusion reconstruction models, classifiers or tractography ap-
proaches is feasible. On the other hand, by making phantom data available for
a larger community, evaluation of diffusion approaches amongst different re-
search groups is possible. For this reason, hardware phantoms are considered
as vital material for diffusion visualizations.

In this thesis, a HARDI hardware phantom was used which imitates a coronal
human brain slice [30,79,81]. It comprises intra-voxel fiber configurations which
are commonly considered as challenging: Fiber crossings, low angle crossings,
fannings, kissings as well as pathways with high curvature. The phantom was
originally provided by the Laboratoire de Neuroimagerie Assistée par Ordina-
teur (LNAO, France) for the Fiber Cup, a tractography contest at the MICCAI
conference in 2009. This contest was created and designed for the evaluation
of existing and novel tractography algorithms. The presented HARDI phantom
poses a state of the art diffusion dataset which is beneficial in terms of evaluat-
ing and rating own diffusion reconstruction as well as visualization approaches.
Furthermore, a direct comparison of own approaches with MICCAI tractogra-
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phy contest results is feasible. The according fiber ground truth is shown in
Figure 3.16, in combination with the b0 image. The data was acquired with

Figure 3.16: MICCAI Fiber Cup hardware phantom: The dataset imitates a coronal hu-
man brain slice and comprises challenging intra-voxel fiber configurations
such as fiber crossings, kissings, and fannings.

two repetitions and 64 image encoding gradients, uniformly distributed over
a sphere. For the presented work, the two repetitions were averaged for fur-
ther processing. The dataset size was 64 × 64 voxels with a uniform voxel size
of 3mm. Of the different diffusion sensitizations provided, the dataset with a
b-value 2000s/mm2 was used since higher b-values can easily lead to overmod-
elings.

3.7.3 Human brain data

A whole human brain HARDI scan was examined besides the previously intro-
duced phantom dataset. The dataset is by the courtesy of Poupon et al. [80].
The authors built up a HARDI database for neuroscientists, aiming to examine
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the anatomo-functional connectivity of the human brain. It comprises 60 slices
with a resolution of 128 × 128 and a voxel size of 1.875 × 1.875 × 2mm, which
is considered as isotropic. HARDI data was acquired with a uniform gradient
direction scheme with 200 directions and a b-value of 3000s/mm2. In addition,
a baseline image, a T2-weighted MRI sequence, was provided.



Part II

Diffusion profile classification





4 HARDI-based diffusion characteristics

4.1 Overview

The previous chapter introduced the unique ability diffusion imaging provides
for infering the neuronal network from local molecular diffusion. Fiber tracts
can be reconstructed since diffusion is characteristic in regions with oriented
structures. This chapter starts with scientific questions regarding diffusion clas-
sification in Section 4.2 and a literature review on diffusion classifiers in Sec-
tion 4.3 before explaining the details of ODF evaluation in Section 4.4. Subse-
quently, two approaches developed to divide diffusion profiles are introduced
and discussed. The first approach is a global method called morphological fiber
classifier (MFC), published in [101] and discussed in Section 4.5. The second ap-
proach is named isotropic single multiple diffusion classification index (ISMI).
ISMI is a local, ODF-based anisotropy measure which was published in [95]
is introduced in Section 4.6. The chapter closes with a discussion on diffusion
indices in Section 4.7.

4.2 Introduction

HARDI methods are more advantageous than the well-known DTI model be-
cause they are able to describe more than one fiber orientation within a voxel.
Hence, the differentiation between challenging intra-voxel fiber configurations
such as fiber crossings, kissings or fannings and single fiber configurations is
feasible. However, HARDI approaches result in one spherical PDF for each
voxel which is difficult to interpret, especially if one is not familiar with this
kind of data. Questions arose regarding which benefits the detailed diffusion
information provides and how it can be simplified.
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The following questions are of interest regarding the diffusion PDF:

• What is the meaning of the function?

• How can a spherical function be simplified to provide a significant yet
simple understandable contribution?

• How is the function used for tractography and visualizations?

• What is the contribution of the detailed diffusion information to neurosur-
gical questions and fundamental neuroscience?

Anisotropy indices aim to reduce the information of the diffusion probabil-
ity function to a meaningful scalar representation. This scalar classifies the
underlying diffusion and thereby the neuronal fiber configuration for a single
voxel. The following three classes exist: isotropic diffusion profiles, character-
izing gray matter regions, and anisotropic distributions which represent white
matter regions. White matter voxels are further classified as containing single
or multiple fiber distributions. Indices are used in tractography approaches
to determine the probability of certain directions as well as to answer clinical
questions such as the integrity of certain neuronal pathways.

In the case of multiple diffusion orientations within one voxel, more sophisti-
cated propagation techniques are required in order to reconstruct the underly-
ing fiber courses. ODF evaluation, with respect to local and global tract charac-
teristics, is essential since integration errors lead to a false fiber representation.
Information about the underlying fiber distribution assist in improving fiber
propagation: Approaches benefit from a previously calculated voxel classifica-
tion which divides diffusion profiles into single or multiple fiber populations:
tracking directions are determined with consideration of the underlying fiber
distribution.

In terms of neurosurgical procedures, knowledge about brain tissue is re-
quired in many cases. For example, the differentiation into gray and white
matter is vital for neurosurgical planning: The surgeon has to define an access
path for the intervention and both white and gray matter include structures at
risk. In addition, the degree of white matter integrity within one voxel is crucial
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in questions regarding tumor infiltration or stroke. The accurate classification
of a diffusion profile is of great interest. However, the differentiation between
multiple fiber orientations and isotropic diffusion is still a challenging task and
object of current research.

The first approach, the MFC, consists of a dilation and erosion pipeline. Based
on a white matter mask, the idea of MFC is to morphologically eliminate voxels
where only clusters remain. These clusters represent an estimation of regions
containing multiple fiber populations. On the other hand, ISMI is an index
which successfully differentiates isotropic diffusion and single and multiple
fiber populations. This classifier evaluates the spherical probability function
resulting from QBI. Results of both classifiers are compared to the well-known
general fractional anisotropy (GFA) index using a fiber phantom comprised of
challenging diffusion profiles. Results are visualized directly on the fibers rep-
resented by streamtubes using a heat color map.

4.3 Related work

In the following, a short literature study is presented which aims to provide
an overview of existing diffusion classifiers. In general, diffusion classification
indices are categorized into DTI- or HARDI-based.

The fractional anisotropy (FA) [6] index is well-known in DTI. It describes the
degree of linearity of a diffusion distribution and is defined as follows:

FA =

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ21 + λ22 + λ23
, (4.1)

where λ are the tensor eigenvalues and λ̂ is the trace of the diffusion tensor.

As HARDI emerged, research started to concentrate on indices which are able
to evaluate the more complex diffusion probability function and distinguish
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intra-voxel diffusion profiles. The GFA index, as introduced by Tuch [117], is
the adaption of the FA index to HARDI,

GFA =
std(Ψ)

rms(Ψ)
=

√√√√√√√
n

n∑
i=1

(Ψ (ui)− 〈Ψ〉)2

(n− 1)
n∑
i=1

Ψ (ui)
2
. (4.2)

Here, Ψ(u) is the ODF value for a diffusion direction of interest u with u = (θ, φ)

and with θ ∈ [0, π] , φ ∈ [0, 2π]. The mean ODF value is indicated by 〈Ψ〉 and
n is the number of samplings on a sphere used to evaluate the ODF. The GFA
is computed using SH coefficients as well [84] which is computationally more
efficient,

GFA =

√√√√√√1− c00
2

lmax∑
l=0

l∑
m=−l

cml
2

, (4.3)

for SH model order l and phase m. A well-defined and rotationally invariant
version of the GFA was defined by Landgraf et al. [56]. Frank et al. [31] intro-
duced the fractional multifiber index (FMI). The goal of FMI is to define the
best describing model order, l, of a diffusion PDF. The authors applied SH ba-
sis functions to map the diffusion signal. In order to determine the degree of
complexity they propose to analyze SH coefficients,

FMI =

lmax∑
l=4

l∑
m=−l

|cml |
2

∑
l=2

l∑
m=−l

|cml |
2

. (4.4)
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Chen et al. [20] and Descoteaux et al. [21] both proposed a similar diffusion
index which is also based on SH coefficients. The three HARDI indices are
defined by

R0 =
|c0|

lmax∑
l=0

l∑
m=−l

|cml |
, R2 =

lmax∑
l=2

l∑
m=−l

|cml |

lmax∑
l=0

l∑
m=−l

|cml |
, andRmulti =

lmax∑
l=4

l∑
m=−l

|cml |

lmax∑
l=0

l∑
m=−l

|cml |
. (4.5)

In the following, the index will be referenced by R0, R2, Rmulti. The authors
aim to directly distinguish intra-voxel fiber distributions based on SH coeffi-
cients: The underlying diffusion profile is considered to be isotropic if R0 is
large. However, if R2 is large, a single fiber distribution is present and a large
Rmulti-value indicates multiple diffusion directions.

4.4 ODF evaluation

In order to characterize voxels as containing isotropic, single or multiple fiber
populations, the respective diffusion profile has first to be calculated. Q-ball
reconstruction based on SHs is used in this thesis and was explained in detail
in Section 3.6.2. The applied regularization parameter for the Laplace-Beltrami
smoothing matrix is λ = 0.006 and the SH order for signal modeling is l = 4.
In a first reconstruction step, SH coefficients for corresponding basis functions
have to be determined in order to approximate the measured diffusion signal.
Subsequently, ODF evaluation is performed by solving Equation 3.12 for arbi-
trary diffusion directions of interest. The applied tessellation order was 3 which
results in 162 points which are uniformly distributed across a sphere.

4.5 MFC: A morphological fiber classification approach

In the following, the morphological approach for intra-voxel diffusion pattern
classification is explained in detail.
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4.5.1 Morphological computation pipeline

The MFC approach uses global heuristics to differentiate HARDI-based diffu-
sion profiles. The main idea of MFC is to morphologically eliminate voxels from
a white matter mask where only clusters remain. These clusters represent white
matter nodes, which are considered as an estimation of multiple fiber popula-
tions. To accomplish this task, a white matter mask is generated in the first step.
This mask separates isotropic voxels from voxels with single fiber population.
As a result, a white matter, gray matter differentiation is obtained.

For our experiments, thresholded mask images were calculated based on FMI,
R0, R2, Rmulti, GFA, and the standard deviation (sDEV) of the diffusion ODF.
The respective thresholds were chosen carefully to find a proper balance be-
tween gaps in the mask and false positives. The white matter mask features
gaps due to the thresholding procedure. For this reason, the second step is
to close these gaps by applying a morphological closing using different kernel
sizes. Closing consists of a morphological dilation (2 × 2 × 2) followed by ero-
sion (4 × 4 × 4). The erosion is performed with a larger kernel size since our
goal is to eliminate voxels. The kernel reduces the previously added white mat-
ter voxels of the dilation step. As a result, white matter regions become thinner.
In the third step, the white matter is further thinned out so that only clusters
remain. These clusters represent tract junctions which are considered to com-
prise complex diffusion profiles. Therefore, a morphological opening with a
kernel size of 3 × 3 × 3 is applied. In the fourth step, a median filtered mask
image is combined with the previously obtained cluster image to form the final
result. Voxels marked in both images are characterized as containing multiple
fiber populations whereas voxels marked only in the mask image contain sin-
gle fiber distributions. This step is necessary due to the dilation in the third
step: Some clusters may be enlarged beyond the white matter mask during di-
lation. For this reason, voxels marked only in the cluster image represent false
positives and are ignored.
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Summarizing, the presented single steps of the MFC pipeline are as follows:

1. Generation of a white matter mask image, separating white and gray mat-
ter voxels

2. Morphological closing of the white matter mask with a larger kernel size
for erosion than for dilation

3. Morphological opening of the image, resulting from the previous step

4. Logic combination of the result with a median filtered mask image

The resulting image differentiates gray matter and white matter. Further fiber
clusters represent complex intra-voxel diffusion profiles.

4.5.2 Results

In the following, MFC results are introduced and discussed. In subsequent fig-
ures, gray indicates single and white multiple intra-voxel fiber configurations.
Black regions include no fiber population and are considered as gray matter.

Recently proposed diffusion indices for HARDI, as introduced in Section 4.3,
were implemented in order to define an appropriate white matter mask, as well
as evaluate the MFC. Results are displayed in Figure 4.1. In case of indices
which already differentiate single and multiple fiber distributions, classification
results are shown for comparison in the left column of Figure 4.1. Previously
defined color encoding is used for mask image visualization as well. How-
ever, in order to define the white matter mask for MFC computation, voxels
containing single as well as multiple diffusion distributions are used. Thresh-
olds for white matter mask generation are determined with the aim of finding
a proper balance between gaps in the mask and false positives. They are in-
dicated in Table 4.1. A high diffusion anisotropy degree is indicated by a
high GFA-value. For this reason, a single threshold was used to determine the
white matter mask, which is shown in Figure 4.1a. GFA mask image results
feature gaps in crossings at low angles as well as in fanning regions. As fol-
lows, these areas are missing in the MFC result as well, which is displayed in
Figure 4.1b. FMI relates the weighting of higher order SH coefficients to those
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Classifier Threshold

GFA 0.245
FMI lower: 0.0025, upper: 0.25
R0, R2, Rmulti R0 = 0.877, R2 = 0.5, Rmulti = 0.6
sDEV 2.7

Table 4.1: Parameters for calculating the white matter mask for each classificator.

describing isotropic diffusion. To identify the white matter mask and simulta-
neously indicate the classification power of FMI, we apply two thresholds. The
lower threshold identifies white matter in general, a high degree of anisotropy.
The higher threshold distinguishes between single fiber population and more
complex diffusion distributions. As one can see in Figure 4.1c FMI is not able
to classify intra-voxel diffusion without postprocessing. A similar threshold-
ing technique to FMI was applied to the R0, R2, Rmulti white matter mask result.
The individual values of R0, R2, and Rmulti are scalars, describing the scaled in-
fluence of SH coefficients for the respective model order 0,2, and 4. Therefore,
thresholds for each scalar were applied to define the diffusion profile compart-
ment of each voxel. The result is similar to the FMI output and illustrated in
Figure 4.1e. Summarizing both classifiers, FMI and R0, R2, Rmulti, a separation
of white and gray matter is noisy. In addition, both fail to detect multiple fiber
populations per voxel without preprocessing. Their respective MFC’s output,
as displayed in Figure 4.1d and Figure 4.1f, does not perform better than the
GFA index.

The best separation of white and gray matter was obtained from the stan-
dard deviation approach, as shown in Figure 4.2a. Further, the corresponding
MFC detects all multiple fiber areas with no false positives as indicated in Fig-
ure 4.2b. Proposed results of the MFC pipeline for the hardware phantom are
illustrated in Figure 4.3 including the fiber ground truth in Figure 4.3a and the
classification result in Figure 4.3b.

For further evaluation, MFC was applied in the region of the centrum semio-
vale, in which a known crossing of the CC, CST, and the SLF exist. Figure 4.4
displays MFC results, using the sDEV mask image for white, gray matter sep-
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aration. Experiments lead to the result that proper thresholds for white matter
mask definition are crucial for the success of the MFC algorithm. Further, a me-
dian filtering of the mask image before or instead of step two in order to close
gaps and eliminate false positives seems to be reasonable if one examines the
classification results using the GFA index for white matter identification. How-
ever, this pipeline leads to poorer classification results since the resulting white
matter mask differs too greatly from the original.
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(a) Mask GFA (b) Result GFA

(c) Mask FMI (d) Result FMI

(e) Mask R0, R2, Rmulti (f) Result R0, R2, Rmulti

Figure 4.1: MFC results of state of the art anisotropy classifiers: Each column represents
a diffusion classifier and the according MFC result: Black represents no fiber,
gray single fiber, and white multiple fiber populations.
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(a) Mask sDEV (b) Result sDEV

Figure 4.2: MFC result for the standard deviation approach: The white matter mask
features a good differentiation between gray and white matter voxels (4.2a)
and the MFC is able to identify all challenging fiber configurations (4.2b).

(a) Ground truth (b) MFC from sDEV

Figure 4.3: MFC classification result of the hardware phantom: The hardware phantom
ground truth (4.3a) and the proposed MFC classification result (4.3b). Clas-
sification of single and multiple intra-voxel diffusion distributions: Multiple
fiber populations are shown as white voxels, whereas gray voxels represent
single fiber populations.
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(a)

(b)

Figure 4.4: MFC classification result of the centrum semiovale: Directional color coding
of a coronal diffusion imaging slice of the human brain (4.4a). MFC results
show classification performance in determining crossings of callosal fibers
with the SLF and the CST (4.4b).
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4.6 ISMI: An ODF-based diffusion profile classifier

ISMI is a local diffusion index using HARDI and is introduced subsequently.

4.6.1 Diffusion classification

ISMI computation is illustrated schematically in Figure 4.5 and includes two

Figure 4.5: Computation pipeline for white matter classification using a phantom
dataset: ISMI computations are divided into a white/gray matter classifi-
cation (upper part) and a single/multiple classification (lower part). Both
results are combined to form the final classification.

major steps: First, the classification of white and gray matter and second, the
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classification into single or multiple fiber populations. For the first step, a fiber
mask identifying all voxels including white matter is defined. Both single and
multiple fiber distributions belong to the same classification group. To differen-
tiate between white and gray matter, the scaled sum of the min-max normalized
ODF is calculated: The ratio between the spherical function and a sphere, de-
fined by the maximal radius of the local ODF, is computed.

The white matter mask is defined by

1−

n∑
i=1

Ψ (ui)

n ·maxRad
, (4.6)

where n is the number of samples on a sphere resulting from the icosahedron
tessellation and Ψ (u) is the local ODF with diffusion directions of interest u =

(θ, φ) with θ ∈ [0, π] , φ ∈ [0, 2π]. The maximum radius of the ODF is indicated
by maxRad. The next step aims to differentiate between single and multiple
intra-voxel fiber distributions and is only considered for voxels already clas-
sified as belonging to white matter. To identify multiple diffusion directions,
the number of local maxima of the min-max normalized ODF above a certain
threshold is determined. For the phantom dataset, a value of 0.5 was chosen
and for the human brain 0.6. However, instantaneous visual feedback within
the ISMI computation pipeline facilitates intuitive parameter tuning. In a last
step, both classification outputs are combined to form the diffusion index ISMI.
As a result, ISMI differentiates between isotropic, single, and multiple fiber con-
figurations, as shown in Figure 4.5.

4.6.2 Visualization

Diffusion indices are commonly displayed using bar charts or by assigning val-
ues to specific tracts [43, 52]. However, a visualization with respect to certain
pathways is advantageous. Therefore, fiber visualization approaches are ap-
plied using ISMI exemplarily.
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Colormap

A heat colormap was used in order to indicate the three different compartments:
isotropic, single, and multiple intra-voxel diffusion. For further visualization,
isotropic diffusion profiles are displayed in white, single fiber distributions in
yellow, and more complex fiber configurations in red.

Fiber tracts

Texture mapping was applied to GPU-generated streamtubes, as discussed in
greater detail in Section 6, in order to visualize the index with an anatomical
and clinical meaning. The presented streamtubes are computed using a shader-
based pipeline: View vector oriented triangle strips are generated in the geom-
etry shader and colored tube-like in the fragment shader. More precisely, the
distance of a fragment from the tube’s centerline is transferred from the geom-
etry shader to the fragment shader and used to fade the fragment’s color to
black. Hence, a tube-like appearance is achieved without the computational
complexity of real tubes. The ISMI classification volume is provided through
a 3D texture and the fragment shader performs a texture lookup as well as a
subsequent color mapping.

Fiber pathways resulting from the distance-based HARDI tractography algo-
rithm, as discussed in detail in Section 5, were used for tract generation. The
deterministic approach is based on the local ODF and includes an evaluation
of diffusion distributions in the seed voxel as well as an evaluation of distances
to white matter boundaries. In the proposed algorithm, curvature thresholds,
local anisotropy information, and the position of the current tract within the
bundle are used to determine the direction for the next step in each voxel using
the ODF.

4.6.3 Results

Results of the ISMI were compared to the well-known GFA diffusion index.
Fibers of the Fiber Cup phantom dataset were computed in order to identify
challenging regions and evaluate the proposed method. Figure 4.6a shows the
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result using the GFA anisotropy index. Yellow indicates a high GFA-value and

(a) (b)

Figure 4.6: Visualization of anisotropy index results: GFA does not clearly differentiate
between multiple fiber populations and isotropic regions (4.6a). Classifica-
tion results of ISMI, however, lead to accurate discriminations (4.6b).

hence high anisotropy, whereas red reveals isotropic regions with a low GFA-
value. Using this index, regions with complex intra-voxel diffusion profiles
lead to a low anisotropy value. Considering regions where trajectories leak into
gray matter, as one can see in Figure 4.6a in the left of the crossing at the bot-
tom, leakings are not differentiated from crossings. As a consequence, GFA
is unable to distinguish between regions with isotropic diffusion (gray matter)
and multiple diffusion orientations (white matter). On the other hand, the ISMI
classification results of the same fiber representation is shown in Figure 4.6. The
presented index successfully classifies into the three intra-voxel configurations:
isotropic diffusion (white), single fiber population (yellow), and multiple fiber
population (red). In crossing and fanning areas ISMI has a high value, indicat-
ing multiple fiber configurations, whereas the leaking of the trajectory leads to
a low value. Comparing both results, one can detect false-positives, identified
by GFA in regions comprising gray matter or high curvature. Contrary, ISMI is
able to differentiate between isotropic diffusion and multiple fiber populations.
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A similar coloring was applied to provide a comparison between ISMI and
MFC: Black indicates no fiber; gray, a single fiber; and white, a multiple fiber
population. ISMI results in an output in the range of [0,1], as displayed in Fig-
ure 4.7a. This classification was thresholded in order to obtain a distinct separa-
tion. The applied thresholds were 0.024, to define white matter in general, and
0.432, to further separate the white matter into single an multiple fiber popula-
tions. Results are shown in Figure 4.7b. One can observe that the classification
result is noisier than the MFC result. This is caused by the fact, that the MFC
is a morphological approach, featuring global structures. Contrarily, ISMI con-
siders the ODF of each voxel independently and is as a result, more susceptible
to noise. However, ISMI performs better than the state of the art classifiers pre-
viously introduced. Both ISMI as well as MFC have their advantages which are
discussed in the following.

(a) (b)

Figure 4.7: ISMI classification result for the hardware phantom: ISMI in the range from
[0,1] (4.7a). Distinct voxel classification is achieved by thresholding (4.7b).

Figure 4.8 shows fibers belonging to the CC and running in the centrum semio-
vale. The anatomical volume is visualized for spatial orientation. In Figure 4.8,
red fiber parts indicate voxels with multiple ODF magnitudes and hence, vox-
els which are crossed by further pathways. In both, the right and the left of the
illustrated fibers, these sections belong to the centrum semiovale. Whereas, the
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Figure 4.8: ISMI classification results for human brain pathways: ISMI successfully
classifies callosal fibers running in the centrum semiovale.

red parts in the center of the CC reveal regions where the cingulum and the CC
meet. The cingulum is a pathway that runs along the top of the CC and in the
opposite direction.

In order to illustrate the classification power in terms of isotropic diffusion,
Figure 4.9 shows parts of the CC that have been reconstructed with a tractog-
raphy approach which only takes the maximum value of the ODF as a tracking
direction. Several issues can be observed from the results. First, the simple al-
gorithm is not able to reconstruct challenging fiber configurations properly: in
this case the fanning of the CC. Second, a seed region within gray matter was
placed to indicate false positives, as can be seen below the center of the CC.
Fibers in this region are displayed white. One can estimate that fibers running
inferiorly are also white which indicates isotropic diffusion. These parts of the
reconstructed neuronal pathways run into gray matter areas or show a very low
anisotropy. The results correspond with knowledge about diffusion imaging in
fibers close to the head’s surface.



4.7 Discussion 83

Figure 4.9: ISMI classification results for human brain pathways: ISMI successfully de-
fines regions with isotropic diffusion.

4.7 Discussion

Two indices for diffusion profile classification using HARDI were proposed in
this chapter. Results have shown that both, MFC and ISMI, successfully differ-
entiate isotropic and anisotropic diffusion. Furthermore, they perform better in
terms of discriminating diffusion in the two compartments single and multiple
fiber orientation than known classifiers.

MFC is a global approach, using the morphology of white matter bundles to
estimate regions of interest: regions where multiple maxima are most likely.
The approach utilizes a previously defined white matter mask on which the
classification power strongly depends. Phantom data led to promising results.
In terms of human brain data, the kernel size of the morphological operations
may have to be adjusted depending on the fiber thickness in question as well as
the underlying voxel size.
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On the other hand, ISMI is a local classifier which only takes the diffusion
probability function, the ODF, of a single voxel into account. It uses a threshold-
ing pipeline in order to classify each voxel into one of the stated compartments.
Contrary to known classifiers, such as the GFA, ISMI additionally provides the
ability to control the output in terms of the multiple fiber configurations in ques-
tion. By adjusting the threshold for the number of ODF maxima within the ISMI
pipeline, the user influences the result with direct visual feedback. In addition,
a subsequent fiber integrity examination for single fiber distributions is feasi-
ble: using a colormap which only considers the index range of single diffusion
profiles enables an estimation focused on the degree of integrity.

Evaluations with state of the art diffusion classifiers prove the classification
power of MFC as well as ISMI. If one compares both classifiers, ISMI is related
to the diffusion profile and is more detailed. However, it leads to more overall
noise since the compartment is independently defined for each voxel without
considering neighboring voxels. On the other hand, while the MFC is not sen-
sitive to local noise, it is not as precise as the ISMI for an individual voxel. As a
result, the most appropriate index depends on the question to be answered.

In future, it will be interesting to observe the diffusion constitutions of neigh-
boring voxels in order to infer the current diffusion profile. For example, whether
adjacent voxels support a local crossing or fanning configuration influences the
probability of certain ODF directions.

Diffusion indices aim to reduce the probability diffusion function in order
to obtain a meaningful representation. However, without an appropriate vi-
sualization their interpretation as well as exploration is time consuming and
cumbersome. Both indices discussed in this chapter, form the basis for several
subsequent visualizations which are introduced in the remaining parts of this
thesis.

In addition, diffusion classifiers support fiber reconstructions in terms of prop-
agation decisions. For example, if a single fiber distribution is present, a simple
integration step in the direction of the maximum ODF radius is sufficient. How-
ever, if multiple diffusion directions are present and no trajectory splitting is al-
lowed, more advanced heuristics are needed to define the direction for the next
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step. Using knowledge of intra-voxel fiber constellations will be used in the fol-
lowing for decision making concerning propagation direction for tractography.

An interesting aspect is to examine the presented diffusion indices in order to
answer the question of tumor infiltration location for neurosurgical planning.
Using DTI, it is not possible to distinguish between voxels containing complex
fiber distributions, such as crossings, and voxels containing no white matter at
all. In addition, it is reported that tumor tissue interferes with local diffusion
of water molecules or, put more precisely, causes isotropic diffusion. Therefore,
the next challenge is to estimate whether the presented diffusion indices are
able to differentiate complex fiber distributions, isotropic diffusion, and diffu-
sion profiles resulting from tumor infiltration. Preoperative knowledge about
tract integrity poses a real benefit for neurosurgical planning: The surgeon is
able to determine the resection extent with respect to infiltrated white matter.
However, the presented indices require HARDI acquisitions in order to assure
reliable ODF evaluation. The recruiting of tumor patients for HARDI acquisi-
tions is challenging due to the long acquisition time and not yet evaluated MRI
parameters. For this reason, no evaluation could be performed with tumor pa-
tients.
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Neuronal pathway reconstruction





5 Tractography

5.1 Overview

HARDI techniques enable a more precise approximation of the underlying dif-
fusion process. However, advanced fiber reconstruction techniques are required
in order to evaluate the contribution of HARDI to neuroscience. The knowledge
of previously introduced diffusion indices is beneficial to reconstruct challeng-
ing neuronal pathways. To begin this chapter, issues of how HARDI affects neu-
ronal pathway reconstructions are presented in Section 5.2, followed by a sur-
vey on tractography approaches in Section 5.3. The developed HARDI-based
fiber reconstruction approach, published in [100], is presented in Section 5.4,
the results in Section 5.5, and a discussion of the results in Section 5.6.

5.2 Introduction

Major commisural fiber pathways of human white matter include the CC and
the anterior commissures. The latter connect both cerebral hemispheres, as ex-
plained in Section 2.4. It is not possible to reconstruct all white matter fibers
using DTI-based tractography algorithms: only the most medial commisural
projections, fibers running from the center near the middle line of the brain, are
detectable. Connections fanning into the hemispheres, the anterior commissure
fibers, can not be reconstructed using DTI [45]. Despite these limitations, DTI-
based tractography is commonly used in clinical environments. This is due to its
fast acquisition and reconstruction time. As a result, vital clinical examinations
currently consider incomplete neuronal pathways and erroneous fiber courses.
This is where advanced diffusion techniques make a contribution: HARDI ac-
quisitions followed by a subsequent innovative tractography algorithm, pro-
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vide more reliable visualizations. The following scientific questions guide the
design of a HARDI tractography approach:

• How can HARDI-based indices contribute to tractography approaches?

• How can integration errors due to noise in the ODF be minimized?

• How can global information, such fiber constellations, be integrated in a
tractography approach?

• Is it possible to detect challenging fiber pathways, such as the commissural
fibers, with greater detail?

Due to the Gaussian model of DTI techniques it is not possible to resolve
more than one diffusion direction properly. In voxels containing multiple fiber
orientations this leads to low anisotropy values. In this case, conventional DTI
tractography algorithms either stop or reconstruct false pathways. This is the
reason why researchers as well as clinicians are skeptical about tractography re-
sults using DTI and the uncertainty of the principal diffusion direction became
a big issue. Tractography techniques benefit from the detailed information pro-
vided by the ODF. However, multiple fiber populations in one voxel lead to
more than one maximum and hence require more sophisticated approaches.
Using algorithms designed for one diffusion direction, similar to DTI-based
approaches, would waste the additional information. Several challenging re-
gions in the human brain require the higher order reconstruction scheme. One
of these complex human brain networks is the centrum semiovale, where three
main neuronal pathways cross. Furthermore, the fanning of the CC constitutes
a challenging configuration for tractography approaches.

The initial direction in the presented tractography approach is estimated with
respect to white matter boundaries. Distance calculations aim to incorporate
global knowledge about the fiber course. They are applied since streamline ap-
proaches easily suffer from integration errors. In addition, information of pre-
viously introduced classifiers, a differentiation between voxels containing sin-
gle or multiple fiber orientations, is used to guide tractography in challenging
pathway configurations. Contrary to other HARDI-based approaches, the pre-
sented fiber reconstruction does not split in regions with multiple ODF maxima.
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Instead, the most appropriate propagation direction for the current tract is de-
termined. This leads to fiber tracts which are directly assigned to the provided
seeds without the reconstruction of unwanted tracts. The approach features a
restoration of propagation paths to prevent the leaking from white matter. In
addition, a propagation estimation with respect to initial white matter borders
is integrated in order to ensure tractography within specific bundles. There-
fore, trajectories are computed, taking the seed points’ placement within white
matter tracts into account.

5.3 Related work

One of the earliest visualization techniques of diffusion data was the three-
dimensional reconstruction of white matter fibers using tractography algorithms.
Deterministic tractography approaches use streamline algorithms and begin
with DTI data [5, 68, 131]. Trajectories are reconstructed by following the prin-
cipal diffusion direction (PDD) from a starting point through the volume. In
DTI cases, the eigenvector with the highest eigenvalue is considered to be the
PDD. Further methods were introduced using the entire diffusion tensor to
deflect a fiber path. They are called tensorline tracking or tensor deflection
(TEND) [57, 126].

Fiber tracking approaches using HARDI data are advantageous over DTI-
based approaches in regions where multiple intra-voxel populations exist. The
Fiber Cup [2], which was held within the scope of the MICCAI conference in
2009, targeted the field of tractography methods for diffusion imaging. The
contest demonstrated that complex white matter configurations are still chal-
lenging for common tracking algorithms. A streamline method for DSI was
presented by Wedeen et al. [124]. ODF directions which point to a local max-
imum and form the least curvature with the incoming direction were applied
for fiber tracking in this simple approach. A method using CSD and local dif-
fusion maxima was introduced by Jeurissen et al. [42] and placed 2nd at the
Fiber Cup 2009. The sharp ODFs which result from the CSD approach, lead
to successfully reconstructed fibers. However, a voxel determining the decon-
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volution kernel representing the diffusion of a single fiber population had to
be manually selected. The fiber assignment by continuous tracking (FACT)
algorithm [68] was adapted to HARDI data by Chao et al. [18] to become the
multiple FACT (MFACT) method. Originally, FACT used DTI data and a contin-
uous tracking along the vector field, formed by the eigenvectors of each voxel.
The entry to the next voxel is defined by the local eigenvector. In the case of
HARDI data, every direction indicated by a local diffusion maximum above a
user defined threshold and below a curvature threshold is followed through the
volume. Apparently, tractography results strongly depend on the accurateness
of the input, in this case the reconstructed ODF. The mentioned approaches are
very simple and lead to sufficient results caused by a sharpened diffusion sig-
nal. However, reconstruction issues, as discussed in Section 3.6.2, argue against
these methods. A flow-based algorithm using QBI was introduced by Camp-
bell et al. [17]. The authors proposed a speed function for DTI, HARDI or a
hybrid approach. Flow-based approaches are considered as global tracking ap-
proaches in which DTI eigenvectors or ODF maxima form a vector field for sur-
face evolution. A speed function is used to further control the propagation. De-
spite the fact that global approaches usually perform well, their application to
everyday examinations is challenging since they enlarge the computation time
to an extent which is not clinically feasible. A further global tract reconstruc-
tion approach, proposed by Reisert et al. [89, 90], won first place in the Fiber
Cup. The presented local energy minimization algorithm achieved good results
by positioning particles comprising a position, orientation, and an internal en-
ergy. Furthermore the method applied external energies to match the overall
fiber courses. Despite the low computation time mentioned by the authors, the
timings of global approaches are much higher compared to deterministic ap-
proaches. Descoteaux et al. [23] implemented a simple approach for QBI based
on their previously introduced HARDI reconstruction. The authors suggested a
streamline splitting in regions with multiple ODF maxima. Despite the fact that
generating new streamlines is intuitive yet simple to implement, the meaning
of the additional streamlines is not clear: If a single seed point is provided by a
clinician, a specific fiber course is in question. Further streamlines are mislead-
ing and cause additional visual clutter. More recently, Goh [34] introduced a
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variation of deterministic methods and won the 4th place at the 2009 Fiber Cup.
Instead of sharpening the ODF with SD, the reconstruction was performed with
consideration of the solid angle [3]. The solid angle method takes the quadric
growth of the volume element for each ODF sampling direction and its distance
to the origin into account. The ODF is sharpened since tracking directions are
altered with respect to local ODF maxima and the incoming direction. This ap-
proach makes a first step towards ODF evaluation. Savadjiev et al. [104] applied
a voxel labeling to tractography. The authors were able to distinguish between
single fiber distributions as well as fanning and crossing configurations using
a 3D curve inference method. Tractography approaches using this information
lead to great success.

5.4 Distance-based deterministic tractography

In the following, a novel tract reconstruction algorithm based on distance cal-
culations between the borders of fiber bundles is proposed. The algorithm re-
quires a list of seed voxels as input; as output, it provides a continuous list of
coordinates resulting from bidirectional fiber tracking starting at each individ-
ual seed point. The basic idea of this algorithm is to follow pathways while
maintaining the distance ratio to white matter borders which is present at the
seed point. Ideally, this method results in reconstructed pathways which are
parallel to fiber borders. In complex fiber structures which are voxels with mul-
tiple fiber populations, the result obtained is the trajectory which best matches
the current course of the fiber bundle. This tract is determined by additionally
taking into account the average curvature angle between the PDD in the last
processed voxels. The tracking procedure is stopped when the fiber trajectory
proceeds through an area of isotropic diffusion. Furthermore, propagation is
aborted when the reconstruction procedure returns a state which indicates an
invalid position. This occurs when the tracking leaves the dataset or the fiber
curvature angle is above the specified threshold. Figure 5.1 provides a general
overview of the algorithm. The individual steps of the developed fiber tractog-
raphy algorithm are described in the following sections.
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Figure 5.1: Tractography algorithm overview: Individual steps of the proposed dis-
tance based fiber tracking approach are illustrated.

5.4.1 Voxel classification

Voxel classification provides vital information about intra-voxel diffusion pro-
files. Index information is used in the proposed tractography method in order
to identify white and gray matter as well as apply a more advanced propaga-
tion estimation in cases of complex diffusion distributions. In this case, the MFC
approach, explained in Section 4.5, was utilized since it provides a good global
approximation of white and gray matter as well as single and multiple intra-
voxel fiber configurations. Furthermore, it does not incorporate as much noise
as the ISMI, proposed in Section 4.6.
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5.4.2 Determining initial configurations

The first step in propagation is the definition of an initial tracking direction and
initial distances to fiber borders. Ideally, tracking starts parallel to fiber borders.
As this is rarely the case when using the PDD as the starting direction, another
strategy is applied to find the initial tracking direction in the seed voxels: First,
only directions which belong to a local ODF maximum are considered as candi-
date directions for tract propagation. In the next step, distances to fiber borders
are calculated for the obtained directions along with their averages: Orthogo-
nal vectors with equal angular separation to one another are computed for each
candidate direction, as illustrated in Figure 5.2. Along each of these orthogonal

Figure 5.2: Distance vector setup: The black arrow represents the tracking direction v.
At each step, the distance to the fiber borders is measured along the coplanar
vectors which are orthogonal to v.

vectors, the distance to the fiber border is calculated. The fiber border is reached
when:

1. A gray matter voxel is entered or

2. the angle between v and the PDD of a voxel crossed by one of the distance
vectors is greater than a specified maximum curvature for single fiber pop-
ulation.

The second condition accounts for areas comprising several fiber bundles and
allows for almost constant fiber widths, also in regions with complicated white
matter structures. Figure 5.3 illustrates examples for distance calculations in
different voxels. The direction with the smallest maximum value, as displayed
in Figure 5.4, is considered as most parallel to the fiber borders and is thus
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Figure 5.3: Conceptual illustration of the distance calculation: White matter voxels are
shown in green with their individual PDDs. Exemplary distance calcula-
tions are shown for voxels marked white. The distance calculation for both
white voxels on the left stops at the fiber borders when reaching gray matter
voxels. The calculation for the two right voxels also stops when reaching
a voxel with a PDD above a specified angle to the current direction. The
resulting distances are indicated by the cyan arrows. Example fiber trajecto-
ries are shown in blue and red.

used as the initial direction for fiber tract reconstruction. The fiber trajectory is
advanced one step along this direction using Euler integration.

5.4.3 Selecting directions

In the following step, possible directions to continue the reconstruction need to
be found at the new position. At this point, two different strategies are applied
depending on the type of diffusion present in the current voxel. The current
direction and all ODF directions assigned to a local ODF maximum are consid-
ered in white matter voxels. Each of these directions is tested and added to a
list of candidate directions if the two following conditions are met:

1. One step in this direction leads to a position still inside the dataset and

2. the angle between the current direction and the tested direction is below a
threshold.

Different angular thresholds are used for single and multiple fiber populations,
respectively. The fiber trajectory can enter voxels with isotropic diffusion at po-
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Figure 5.4: Calculation of the initial tracking direction for the voxel indicated by the
white box: Green illustrates white matter. The three vectors pointing to the
top identify candidate directions for tract reconstruction; their lengths rep-
resent the respective ODF value. Instead of choosing the vector with the
highest ODF value (blue) the black vector is used as an initial tracking direc-
tion. This is due to the fact that it leads to the smallest maximum distance
value which is computed from the length of its corresponding orthogonal
vectors.

sitions close to the border or in white matter mask gaps. In these cases the aim
is to return the trajectory to white matter voxels. For this purpose, direction
vectors are generated which form an angle of 45 degrees with the current di-
rection. Subsequently, it is tested whether one step in the current direction or
along one of the 45 degree vectors leads to white matter. Every direction vector
reaching white matter after one step is added to the list of candidate directions.
The test is performed again with double then quadruple step sizes in the case
no sufficient vector is determined. Finally, tract reconstruction is aborted if no
propagation direction is found.

5.4.4 Assessing directions

Of all the candidate directions, one needs to be selected to continue the fiber
trajectory. To accomplish this task, distances for every direction are calculated,
as described in Section 5.4.2. Subsequently, the resulting distances are grouped
into pairs of opposite distance vectors and sorted according to the sum of the
pairs. One needs to know which two distance vectors correspond to each other
in order to compare the distances at the new position to the initial distances.
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Unfortunately, there is no way to do so as it would imply assigning descrip-
tors like up, down, left, and right to arbitrary vectors in 3D space. However,
assuming that the fiber width does not change much along the fiber, the pairs
of the initial and current distances are sorted. In the sorted list, two adjacent
values, di and di+1 with di ≤ di+1 and even i, indicate distance values for two
opposite vectors. It is assumed that the distance pairs at the same position in
both lists correspond to each other. The deviation, D, from the initial distances
is calculated for each candidate fiber direction w, as

D(w) =

√√√√ k∑
j=0

((
δ2j

δ2j + δ2j+1

)
−
(

d2j
d2j + d2j+1

))2

, (5.1)

where δ is the initial distance determined in the seed voxel and d is the distance
found in the current voxel. The sum is calculated over distance pairs j, where
k = numDistV ec/2 − 1. The direction vector w, with the smallest value D is
considered to best match the initial distances.

In voxels with multiple fiber populations, the direction vector best resembling
the initial distances might not be the optimal choice to continue fiber reconstruc-
tion, as illustrated in Figure 5.5. This is the case when the seed point was located
significantly closer to one fiber border than the other. Such a trajectory follows
the closer fiber border and, consequently, is not able to propagate through a
fiber crossing region. In order to handle this case correctly, the distance to the

Figure 5.5: Propagation through crossing areas: The red streamline is not able to prop-
agate through the crossing area as it follows the direction with optimal dis-
tance values. In contrast to this, the blue streamline follows the most plau-
sible fiber tract, ignoring the optimal distance direction.



5.5 Results 99

next gray matter voxel from the current position along each of the candidate
directions is calculated. The direction is maintained if this distance is at least
twice the step size otherwise removed.

In the next step, the angle between the current direction and each remaining
direction is calculated and compared to the curvature hint angle. The curvature
hint angle is computed as the average angle between two consecutive PDDs of
the respective tract. The direction which best matches the curvature hint angle is
chosen. Finally, the obtained direction is interpolated with the current direction
using a weighting factor and the result is used for streamline propagation.

5.4.5 Visualization

Streamlines start from either the center of a seed voxel or nine uniformly dis-
tributed coordinates in a voxel. The resulting trajectory of each bidirectionally
tracked fiber is interpolated using a b-spline approach to obtain a smooth curve.
Fiber pathways are visualized using either illuminated streamlines or stream-
tubes. Streamtubes are composed of view-dependent and color coded quads
and are presented in greater detail in Section 6.

5.5 Results

In the following, the results of the distance-based tractography approach are
presented using the previously introduced phantom and human brain diffusion
dataset.

5.5.1 Phantom data

The first evaluation of the proposed algorithm was performed on a phantom
dataset which comprises most challenging fiber configurations such as cross-
ing, kissing, and fanning. Streamlines were reconstructed using one seed point
in the voxel’s center. The results are shown in Figure 5.6b. Parameters were
carefully evaluated, performing the best overall reconstruction results. Most
of the reconstructed fiber trajectories matched the provided ground truth, as
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Figure 5.6: Tractography phantom results: Ground truth of the phantom dataset (5.6a)
and tractography results with the proposed algorithm (5.6b). Green regions
indicate single fiber and blue regions multiple fiber configurations.

illustrated in Figure 5.6a. Crossings at different angles were reconstructed cor-
rectly as well as the fiber branching area and fiber courses with high curvature.
However, the fiber kissing configuration in the upper part of the phantom could
not be reconstructed correctly. This type of white matter structure is similar to
fiber crossings at a low angle. Unlike within crossing areas, it is not possible to
limit the range of possible directions to a small angular value and propagate the
trajectory in one of the remaining directions: The fiber has to bend constantly
inside multiple fiber areas in regions with kissing configurations. On the other
hand, the required parameter setting would not be able to resolve fiber crossings
properly, instead it would follow a wrong fiber bundle. The conflict of bending
and straight propagation makes fiber kissing regions most challenging.

The scores for the reconstructed fiber pathways were calculated using the
evaluation application provided at the Fiber Cup website. This application
computes the L2 metric in order to compare a reconstructed fiber with the
ground truth fiber pathway. It was used to evaluate submissions for the Fiber
Cup, as well as enable future tractography evaluation using the same phantom
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data. Our presented approach would have achieved the third place in the total
ranking at the Fiber Cup contest in 2009.

5.5.2 Human brain data

Figure 5.7c shows the tracking results of the CC and the MFC output with su-
perimposed ODF glyph representation. An anatomical reference is displayed
in Figure 5.7a and the color coded PDD in Figure 5.7b. Seed points were placed
at the center of the CC. Observations prove that the fanning of the CC and the
commissural fibers are successfully reconstructed. The applied standard devia-

(a) (b) (c)

Figure 5.7: Results of the distance-based tractography approach for the centrum semio-
vale: Illustration of the region under consideration in a coronal slice (5.7a),
image adapted from Grey’s Anatomy [36], and a directional color coding of
the same region (5.7b). Tractography results of callosal fibers are shown in
combination with white matter labeling (single fiber distributions are repre-
sented in green and multiple distributions in blue) and superimposed ODF
glyphs (5.7c).

tion threshold for the MFC approach was 115.
An algorithm using the maximum diffusion direction per voxel and Euler

integration was implemented for comparison, results are shown in Figure 5.8.
One can observe that this approach is unable to properly reconstruct the com-
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misural projections of the CC. This inability results from the competing diffu-
sion directions of the ODF.

Figure 5.8: Results of the simple tractography approach for the centrum semiovale: Com-
missural fibers of the CC are not sufficiently reconstructed.

In addition, the proposed method was evaluated in the region of the centrum
semiovale, where known crossings of the CC, the CST, and the SLF exist, as illus-
trated in Figure 5.9. In Figure 5.10 the tractography of the CST is highlighted
in blue, the CC in red, and the SLF in green. The crossing of commissural
fibers of the CC through the CST is observed. Results were discussed infor-
mally with our clinical partners who judged them as consistent with anatom-
ical knowledge. The known callosal fannings were reconstructed successfully
with the proposed algorithm. Performance evaluation was accomplished on a
Core2 Duo, 3.16 GHz with 4 GB RAM and a NVIDIA GeForce GTX 285 graphics
card. A region of interest covering the centrum semiovale in both hemispheres in
the human brain dataset was chosen with a size of 48 × 44 × 38 voxels. ODF
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Figure 5.9: Tracking results of fibers belonging to the CC in the centrum semiovale: An
anatomical volume is indluded for spatial background information. The fan-
ning of callosal fibers into both hemispheres is successfully resolved.

computation took four minutes, anisotropy criteria calculation one minute, and
tractography an average of one second for each streamline.

5.6 Discussion

In this chapter, a novel deterministic tractography method for HARDI data
was proposed. The presented approach considers multiple intra-voxel diffu-
sion maxima for propagation. Furthermore, an evaluation of the initial tracking
direction, and information about white matter boundaries as well as a recovery
approach which guides tracking back to white matter are incorporated. Con-
trary to initial methods, using HARDI data and multiple diffusion directions,
the trajectory does not split in voxels with more than one ODF maximum. In-
stead, the spherical probability function is evaluated and the most appropriate
direction for the next step is determined based on local and global features. An
evaluation of ODF maxima based on global tract characteristics such as curva-
ture is reasonable since ODFs are often blurred. Furthermore, depending on
the angular sampling, interpolation errors result in false tract reconstruction.
Propagation vector evaluation is advantageous over propagation splitting since
specific fiber tracts directly assigned to provided seed points are desired in clin-
ical questions.

The presented approach aims to keep trajectories in certain white matter path-
ways by maintaining the ratio within fiber bundles and return to white matter
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Figure 5.10: Crossing results of the CC, the SLF, and the CST in the centrum semiovale:
The CC is shown in red, the CST in blue, and the SLF in green. The crossing
of commissural fibers is successfully reconstructed.

in isotropic regions. This does not always reflect the intra-voxel fiber population
but instead approximates global tract progression. However, based on the fact
that the ODF reflects an approximation of intra-voxel fiber orientations, trac-
tography results only provide an estimation of certain neuronal pathways and
have to be considered as bundles. Therefore, a supplementary fiber clustering
is reasonable and justifies our method.

The approach was evaluated using a phantom and a human brain dataset
in order to prove its reconstruction power in challenging regions. The results
showed that information about intra-voxel diffusion distributions support tract
reconstruction when multiple intra-voxel diffusion profiles are present. First,
knowledge about white matter regions is vital. The presented approach keeps
the trajectory within the white matter mask by adjusting propagation directions
in a way that the directions which most probably lead to white matter voxels
are chosen. Second, propagation is successfully guided through fiber crossings
using MFC results: the identification of a underlying complex fiber distribution.
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In this case, propagation considers the global properties of the current tract, the
curvature.

In addition, the approach performs an evaluation of ODF maxima according
to certain trajectory characteristics such as average tract direction. This is ben-
eficial since the propagation is more robust to local noise or weak ODF angular
resolution. Furthermore, integration errors are minimized. Thereby, assump-
tions about the tract course are incorporated however affirmed by the results.

Summarizing, this chapter showed that adjusting tract reconstruction meth-
ods to consider HARDI data as well as preprocessing data using HARDI classi-
fiers has great potential. The results of advanced tract reconstructions are ben-
eficial for fundamental neuroscience to identify small tracts or more intricate
white matter networks. In the case of neurosurgical planning, HARDI tractog-
raphy provides a real benefit since more complex diffusion profiles are obtained
and the tractography results are more precise. Additionally, white matter infil-
trations could be distinguished from simple displacements. However, HARDI
acquisitions with tumor patients require further investigation in terms of MRI
parameter settings as well as reconstruction algorithms.

Since the morphological approach for voxel classification only differentiates
single from multiple fiber populations, it is interesting to include more ad-
vanced methods to estimate the true intra-voxel fiber configuration and thereby
distinguish fiber crossings, kissings, and fannings. Global fiber configurations
can contribute to identify local fiber distributions. For instance, using a local
fiber geometry for voxel classification [104]. Probabilistic tractography methods
incorporate the uncertainty of the diffusion orientation. Example algorithms us-
ing HARDI include the application of the residual bootstrap [9] and a Bayesian
approach [8]. Additionally, tractography is recently performed using a particle-
based approach [23, 76]. An evaluation of heuristics using a probabilistic or
stochastic approach has potential to resolve the missing fiber constellations.
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Part IV

Diffusion data visualization





6 Advanced fiber rendering

6.1 Overview

As introduced in the previous chapter, diffusion imaging enables the exami-
nation of the brain’s white matter network in vivo and thereby poses a huge
contribution to neuroscience. Diffusion indices are able to characterize informa-
tion about the intrinsic fiber integrity as well as intra-voxel fiber constellations.
Furthermore, fiber reconstruction techniques provide the unique possibility of
identifying the course and spatial position of neuronal pathways. Thus, the
next issue for diffusion imaging is the combination of this information within
one visual representation. In the following, guiding scientific questions for line
visualization are presented in Section 6.2, literature related to line visualization
in Section 6.3, and enhanced line rendering approaches for diffusion data based
on the publication in [93] in Section 6.4. Section 6.5 presents the results and
Section 6.6 the discussion of the approaches.

6.2 Introduction

In both cases, DTI as well as HARDI, tractography approaches result in a large
amount of lines approximating the white matter network. Conventional tract
visualizations often appear visually cluttered and are neither intuitive nor easy
to interpret. Considering HARDI-based tractography results, visualizations are
even more complex than DTI-based results since several neuronal pathways
can run within one voxel. Therefore, the challenge is to generate intuitive, task-
oriented line visualizations facilitating a spatial as well as functional interpreta-
tion of the data.
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The scientific questions guiding diffusion line visualizations are:

• What are interesting features for lines representing neuronal pathways?

• How can HARDI-based diffusion information be visualized?

• How can the visual clutter be reduced?

• How can the spatial understanding of line sets be enhanced?

The presented approaches are considered as a constitutive step to techniques
presented in previous chapters: Subsequent to the definition of HARDI-specific
characteristics and tract reconstruction, line visualizations are the first and most
common visualization of diffusion MRI data. However, due to the overwhelm-
ing amount of lines present in a large seeding region or a major fiber tract, line
representations suffer from visual cluttering and low spatial understanding.

The introduced visualization approaches combine existing renderings and fo-
cus on enhancing spatial depth perception of HARDI-based fiber reconstruc-
tions. Illustrative rendering methods, such as depth-dependent halos and am-
bient occlusion, were combined with the visualization of crucial tract informa-
tion such as the direction and integrity of fiber representations. For more details
concerning renderings, the reader is referred to the original publications.

6.3 Related work

Line rendering techniques, such as streamlines and streamtubes, originate from
flow visualization [32, 78, 127]. A huge amount of lines is observed in most of
the cases for both flow as well as fiber visualization. For this reason, repre-
sentations are cluttered and understanding the spatial arrangement of lines is
difficult. Several approaches arose aiming at providing more intuitive repre-
sentations. For example, the perception of tubes is advantageous over simple
line representations due to their 3D geometry. However, conventional tube ge-
ometry rendering is computationally expensive. Merhof et al. [64] proposed a
method using triangle strips and point sprites for white matter tract visualiza-
tion. The approach facilitates a fast rendering while keeping the advantages
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of the 3D geometry. Later, a GPU-based hyperstreamline approach was intro-
duced by Reina et al. [88]. The authors proposed a technique in which they
generate the tube geometry directly on the GPU and in addition, minimize the
data transfer between the CPU and the GPU. However, the method is only ad-
vantageous for large datasets. Petrovic et al. [77] presented GPU-based tuboid
rendering including a level-of-detail (LoD) management. The method addition-
ally includes a text labeling approach which assigns the name of the specific
tract to each streamtube.

Illustrative rendering techniques aim to emphasize important features while
de-emphasizing less important ones. This leads to images that are more com-
prehensible and more recognizable. In medical visualizations, illustrative ren-
dering approaches are motivated by anatomical drawings and often include
silhouettes, hatching, and shading [83]. Recently, illustrative rendering ap-
proaches for fibers were proposed to enhance the structural features of the
data. An illustrative rendering approach for line data was proposed by Ev-
erts et al. [29]. The authors introduced a technique which focuses on tight
line bundles and abstracting less organized line configurations by using depth-
dependent halos. The approach features a visual clustering of fiber pathways
comprising similar orientations and therefore, visually emphasizes fiber bun-
dles. A further illustrative rendering method for diffusion data was presented
by Otten et al. [74]. The proposed method visually generates fiber bundles.
Hint lines, silhouettes, and contours are used to simultaneously reduce visual
cluttering and focus on dominant morphological properties. These approaches
emphasize fiber bundles and are advantageous over common fiber visualiza-
tions, however, do not include any information about local diffusion profiles.

Diffusion indices, such as the previously presented MFC or ISMI, provide
essential information about local degree of integrity or intra-voxel fiber config-
urations. Initially, these indices are presented as bar plots, related to the cross
section of a fiber bundle, as proposed by Klein et al. [52]. Jianu et al. [43] pre-
sented an interactive tract visualization approach comprising linked 2D rep-
resentation: A lower dimensional, color coded visualization was proposed in
order to facilitate fiber exploration. Visualizing tract information in separate 2D
representation is precise, however not intuitively linked to 3D representations:
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Mentally assigning these values to the tract geometry is challenging. For this
reason, a direct coloring of lines representing neuronal pathways is advanta-
geous. Brecheisen et al. [14] introduced a parameter sensitive visualization for
fiber tracts. The authors applied colormaps to the 3D fiber representations to in-
dicate the influence of FA and curvature thresholds in tractography approaches.

The approach presented in the following discusses and includes recent line
rendering approaches and adds vital color information in terms of tract course
and integrity directly to the fiber geometry. Additionally, an ambient occlusion
approach is integrated to further enhance depth perception.

6.4 Enhanced HARDI-based line visualization

Effective line rendering forms the basis for the advanced fiber visualization ap-
proach, presented in the following. In order to enhance spatial depth percep-
tion, a color mapping scheme is used for index visualization as well as halo
rendering and ambient occlusion. The individual steps are introduced subse-
quently.

6.4.1 Line rendering

Fiber reconstruction was performed using the distance-based tractography ap-
proach for HARDI introduced in Chapter 5. A similar rendering method for
generating GPU-based view oriented triangle strips since the one presented by
Otten et al. [74] is applied to form the fiber representing geometry. Lines are
rendered using the GL_LINE_STRIP_ADJACENCY_EXT primitive after path-
way reconstruction. Subsequently, a shader pipeline is designed to form and
texture the view vector oriented triangle strip.

Access to neighboring primitives is provided within the geometry shader by
using the above mentioned adjacency primitive. Information about the neigh-
bors of each vertex is used in combination with the view vector to generate ori-
ented triangle strips, as shown in Figure 6.1. In Code Example 6.1, pseudocode
for tube generation in the geometry shader is illustrated.
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Code Example 6.1: Pseudocode for streamtube generation: View-vector oriented tri-
angle strips are computed from a line primitive in the geometry
shader.

tangent = primitivePos[2] - primitivePos[1]

tangent = normalize(ModelViewMatrix * tangent)

viewVec = viewPosition - primitivePos[1]

shiftingVec = normalize(cross(viewVec, tangent))

color = WHITE

newPosition = primitivePos[1] + width * shiftingVec

newPosition = ModelViewProjectionMatrix * newPosition

EmitVertex

color = BLACK

newPosition = primitivePos[1] - width * shiftingVec

newPosition = ModelViewProjectionMatrix * newPosition

EmitVertex

tangent = primitivePos[3] - primitivePos[2]

tangent = normalize(ModelViewMatrix * tangent)

viewVec = viewPosition - primitivePos[2]

shiftingVec = normalize(cross(viewVec, tangent))

color = WHITE

newPosition = primitivePos[2] + width * shiftingVec

newPosition = ModelViewProjectionMatrix * newPosition

EmitVertex

color = BLACK

newPosition = primitivePos[2] - width * shiftingVec

newPosition = ModelViewProjectionMatrix * newPosition

EmitVertex

Once the triangle strips are generated, the fragment shader is responsible for
imitating tubes by color adjustment: Fragments with a certain distance from
the centerline of the triangle strip fade to black. This is realized by assigning
black and white to the generated vertices in the geometry shader as illustrated
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Figure 6.1: Tube-like triangle strip setup utilizing adjacency information in the geom-
etry shader: Individual shader passes are indicated by orange and blue re-
spectively. The shifting vector, used to compute vertices for triangle con-
struction, results from the cross product of the view-vector and the tangent
at vertex 1 and 2.

in Code Example 6.1. Therefore, white indicates an upper vertex and black a
bottom vertex. Together with the width of a tube, this distance information is
used in the fragment shader in order to determine the fragment color: whether
the current fragment should be displayed in black or according to a colormap.
A closeup of resulting line visualization with applied illumination is displayed
in Figure 6.2.

Figure 6.2: Tube-like rendering: Result of view-vector oriented triangle strips with ap-
plied directional color coding and lighting for a single fiber.

6.4.2 Colormapping

Directional color codings assign the tangent of a point on the line to a certain
color space, such as RBG. This color coding provides spatial information about
the fiber course and is well known amongst clinicians. However, fiber integrity
indices are of great interest in neuroscientific examinations as well. For this rea-
son, the ODF-based voxel classification index ISMI, which was introduced pre-
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viously in Chapter 4.6, was utilized for coloring as well. Using ISMI, the ODF of
each voxel is analyzed and categorized into the following three compartments:
isotropic diffusion profiles as well as multiple and singular fiber populations.
The following visualizations use a heat map in which black indicates isotropic
diffusion, red multiple fiber and yellow single fiber populations.

6.4.3 Halo rendering

The generated geometry can additionally be used to illustrate line surround-
ing halos. The following presents visual enhancements based on the work by
Everts et al. [29].

Similar to the streamtube imitation, the color of the line representing geom-
etry is modified in order to generate line surrounding halos: Fragments with
a certain distance to the fiber centerline are colored white and the remaining
parts are displayed according the the enabled colormap. Figure 6.5 displays the
result for halo rendering and directional coloring.

On the one hand, halos hide visual clutter; however, on the other hand, the
understanding of areas with a high fiber-density degree becomes more difficult
because the halos of fibers located more in the foreground hide those very close
or almost parallel to them. Therefore, Everts et al. suggested a halo depth shift.
In the approach presented here, a linear function which displaces halo frag-
ments along the view vector, was used. As a result, halo fragments comprise
different depth values according to the distance to the fiber centerline. As fol-
lows, adjacent fiber occlusion is minimized and fiber-dense areas are displayed
more recognizable due to reduced halo visibility.

Additionally, the authors propose to draw more distant fibers with a smaller
line width to support depth perception. This depth cueing approach conveys
the idea in which fibers closer to the viewport are thicker than those far away.
A summary of the introduced fiber rendering results in following steps:

1. Halo generation based on view-vector oriented triangle strips

2. Halo depth shift along the view-vector

3. Halo depth cueing
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6.4.4 Ambient occlusion

In addition to previously mentioned visual enhancements, shadows are an im-
portant aspect in depicting depth. One way of incorporating shadowing in ren-
derings that is independent from the geometry’s complexity is through the use
of Screen-Space Ambient Occlusion (SSAO), first introduced by Mittring [67]. By
sampling the depth buffer in the fragment shader with a kernel in the neighbor-
hood of any given fragment, the number of neighboring fragments which are
closer to the viewpoint than the currently examined fragment is determined.
This number is used in turn to darken the current fragment’s color, based on
the assumption that fragments with a higher number of potentially occluding
fragments are darker.

6.5 Results

An illustration of lines showing fibers of the CC is displayed in Figure 6.3. The
tube rendering approach is used in combination with a directional color cod-
ing. Figure 6.4 displays the same tube visualization method but with applied

Figure 6.3: Directional color coded streamtubes: Fibers belonging to the CC and the
cingulum are illustrated.
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tract integrity color encoding. Yellow highlighted regions comprise single fiber
populations, red multiple fiber populations, and black isotropic diffusion. Con-
sidering the region of the centrum semiovale, the crossing regions of the CST and
the CC is estimated, as indicated in red.

Figure 6.4: ISMI color encoding: Streamtube rendering of callosal line representations
with applied tract integrity color coding.

An illustration of the introduced halo visualization with directional color cod-
ing is shown in Figure 6.5. Depth cueing provides hints about the spatial depth
of fibers, in this case blue fibers are further away than red fibers. A halo depth
shift is performed in the right image in order to emphasize fiber-dense areas.

Figure 6.6 displays the streamtubes in combination with enabled SSAO. Oc-
cluded lines appear darker in the bottom illustration.

6.6 Discussion

Advanced rendering approaches combining effective tube visualization, halo
generation, colormapping, and SSAO was introduced in this section. The pre-
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Figure 6.5: Halo rendering and depth shifting: Halos surrounding line renderings (left)
and halos being displaced according to their distance from the line center
(right).

sented visualization approaches for tractography results feature both: enhanced
line rendering and the visualization of diffusion characteristics. Fiber visual-
ization, realized by view-vector oriented triangle strips, is computationally of
low cost compared to conventional tube rendering. However, the benefit of
streamtubes is retained: a better spatial understanding of the geometry. The
presented illustrative methods provide improved spatial depth perception as
well as dense line identification. Furthermore, redundant information is ob-
scured by means of halos and depth shift.

The encoding of vital tract information, such as direction and integrity, allows
for fast feature examination. Furthermore, it results in a more comprehensible
and significant visualization for neuroscientific examinations. In addition, dif-
fusion indices, such as the ISMI, is considered as an uncertainty visualization
for tractography: Challenging tract configurations, such as fiber crossings, are
identified. Thereby, an evaluation of the tractography power, similar to the ap-
proach presented in [14], is achieved in an intuitive manner: For example, if
line coloring proposes a crossing region but the estimated fibers do not cross,
reconstruction results comprise higher uncertainty. Further challenging con-
figurations include fannings, leakings into gray matter or fiber courses with
high curvature. The phantom tractography results presented in Section 4.6, Fig-
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Figure 6.6: Ambient occlusion applied to streamtube rendering: Tube rendering with-
out SSAO (top) and with applied SSAO (bottom).

ure 4.7a, applied the here introduced fiber coloring and revealed a false fiber
reconstruction: a leaking into gray matter in the vicinity of the crossing.

The application of enhanced illumination algorithms, such as Phong or am-
bient occlusion, is challenging for medical visualization. Shading results in a
change of color, which leads to difficulties if a colormap is applied: In the case
presented, ISMI coloring includes white and black in the colormap. However
when Phong illumination is applied, highlights also appear in white. This can
be easily confused with diffusion characteristic encodings. The same accounts
for ambient occlusion in which parts of the background are darkened. There-
fore, shading approaches have to consider these aspects when used in combi-
nation with colormaps. In the following sections, these issues will be discussed
as well as evaluated in greater detail for bundle illustrations.

The proposed enhanced visualization of tracts is beneficial in many neurosci-
entific as well as neurosurgical questions: In cases of multimodal visualizations
for neurosurgical planning, the spatial understanding of fiber bundles is vital
for risk-structure evaluation and access path definition. In addition, the pro-
posed visualizations provide significant visual feedback about tract configura-
tions, which is advantageous in all neuro-examinations to detect small or weak
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neuronal pathways. As a conclusion, an adequate index visualization, which
is related to the local fiber course, is beneficial for both tract examination and
evaluation.

Despite the here introduced fiber visualization enhancements, the spatial un-
derstanding of single lines can be still challenging. This is especially the case
if intricate pathways are under consideration. In the following, bundle visual-
izations are proposed as a further method for diffusion visualization: In fiber
bundle approaches, a neuronal pathway approximating geometry is computed
on the basis of single fiber streamlines. Thus, the visualization is directly as-
signed to a certain anatomical pathway by a clinician.



7 Intra-bundle visualization

7.1 Overview

In the previous section, a visualization of lines resulting from HARDI tractog-
raphy approaches was introduced. This visualization is based on tractography
techniques which use the local ODF to estimate trajectories and are best known
representations of diffusion data. However, clinicians are often interested in
the spatial position and shape of whole bundles as well as the border of certain
neuronal pathways. This Section starts with a discussion of scientific questions
regarding bundle visualization in Section 7.2 and a literature review on diffu-
sion visualization in Section 7.3. In the following, the developed intra-bundle
raycasting and slicing approaches for diffusion visualization are presented in
Section 7.4, the results in Section 7.5, and a discussion in Section 7.6. Parts of
the presented approach were published in [94] and a user study evaluating the
understanding of visual enhancements in [96].

7.2 Introduction

The generation of hulls approximating reconstructed fibers is beneficial in neu-
rosurgical planning, for example, to determine the risk of an intervention [62,
72, 120]. Hulls are motivated by the fact that the computed streamlines only
approximate the diffusion process within a voxel; the hulls in turn approximate
the reconstructed fibers. Conventionally, these hulls are monochromatic and do
not include information about the underlying diffusion profile. However, this
information is essential in neurological examinations and preoperative plan-
ning and is in the following combined with hull visualization to improve tract-
related examinations.
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The following clinical and scientific questions are interesting in terms of bun-
dle visualization:

• How can bundles be computed using diffusion MRI data?

• How can integrity information and intrinsic fiber configurations be visu-
alized on bundle surfaces?

• Can visual enhancements increase spatial perception?

• What are the potential clinical applications of bundle visualizations?

In order to answer these questions, visual exploration approaches based on
HARDI reconstructions, combining both bundle morphology and intra-voxel
fiber characteristics are proposed and discussed in this section.

The fiber encompassing geometry is defined using a hull generation approach.
Subsequently, the centerline for this geometry is computed by means of a 3D
skeletonization approach. A raycasting-based visualization of intra-bundle dif-
fusion properties is developed using an evaluation of bundle characteristics on
a ray from a vertex to the closest bundle centerline point. The information
within a bundle is visualized on the geometry’s surface using colormaps. Fur-
thermore, Centerline Slicing is introduced as a visual exploration method for dif-
fusion characteristics using a plane which is orthogonal to the centerline. The
slicing reveals the bundle shape as well as diffusion characteristics for the cur-
rent cross-section of the bundle. In addition, visual enhancements including
Phong illumination, ambient occlusion, and silhouettes are integrated and can
be activated by the user to facilitate depth perception. A user study was per-
formed in the course of a research study at the Neuroscience Unit, Institute of
Biomedicine/Physiology, University of Helsinki to evaluate the visualizations
in terms of general understanding, spatial perception, and neuroscientific ap-
plications.

With the proposed techniques, the view does not suffer from cluttering and
information about the global bundle’s orientation, shape, integrity, and intra-
voxel orientations is provided for the user.
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7.3 Related work

Several visualization techniques for diffusion data emerged in the last decade.
Approaches include tractography methods which reconstruct and visualize neu-
ronal pathways along with anatomical data as well as methods that aim to dis-
play local diffusion profiles and thereby revealing information about tract in-
tegrity and local fiber distribution. Additionally, methods that aim to combine
both types of information, such as the approach presented here, were intro-
duced.

Tractography techniques provide essential information about the location and
orientation of neuronal pathways; however they do not conventionally include
any indication about local tract properties such as integrity or fiber configura-
tion. For this reason, a further visualization strategy for diffusion data exists,
directly displaying the intra-voxel diffusion pattern using a geometry repre-
sentation known as glyphs. A glyph-based visualization of the local diffusion
tensor was presented by Kindlmann [49]. He used ellipsoids, cuboids and su-
perquadrics to represent the local shape of the diffusion tensor. In terms of
HARDI, an enhanced ODF glyph rendering was proposed by Peeters et al. [75].
These approaches are beneficial in terms of analyzing local diffusion profiles
precisely. However, the understanding of the global tract configuration is lost.
Therefore, a constitutive approach called Glyph Packing was introduced by Kindl-
mann and Westin [50]. This approach arranges the superquadric glyphs in a
way that local diffusion profiles are visualized but the continuous structures,
the fiber courses, simultaneously become apparent. Chen et al. [125] intro-
duced the Merging Ellipsoids. A glyph-based method, dealing with problem of
combining local and global diffusion information. In the presented approach,
the authors interactively blend neighboring glyph representations into each
other. These approaches were introduced in order to combine local diffusion
profiles with continuous structures. Resulting visualizations combine local ten-
sor shapes with connectivity information. Although glyphs provide a direct
representation of the tensor data, their interpretation is challenging. For this
reason, an integration into a clinical environment is unreasonable. As a re-
sult, visualizations based on line rendering and include additionally informa-
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tion on the local diffusion pattern arose. Zhang et al. [130] used streamtubes
and streamsurfaces to visualize the local diffusion profiles of DTI. The authors
visualized linear diffusion tensor profiles using a tubular geometry whose ori-
entation corresponds with the direction of the principal eigenvector of the diffu-
sion tensor. In addition, the cross-section of a streamtube represents the ellipsis
formed by the two remaining eigenvectors of the tensor at the position in the
volume dataset. Planar diffusion profiles are represented using surfaces de-
fined by the two eigenvectors with highest eigenvalues. Both representations
are combined within one 3D visualization. A similar approach was introduced
by Vilanova et al. [119]. These approaches suffer the following two problems:
visual cluttering and unclear streamsurface meaning due to the lack of planar
diffusion profiles in the brain.

A further approach, which is more suitable for clinical application, is the vi-
sualization of fiber encompassing hulls. A fiber cluster visualization technique
was introduced by Chen et al. [19]: Following a hierarchical clustering step, the
fiber hull is generated and visualized in combination with either the individual
fibers or a principal fiber that approximates the bundle course. Similar to the
approach presented by Wenger et al. [128], this visualization includes volume
data and aims to combine spatial information about the fiber course and volu-
metric anisotropy information. However, no anisotropy information is directly
assigned to single tracts using the proposed methods, which makes a detailed
tract examination difficult. A method for the statistical mapping of white mat-
ter tracts was presented by Yushkevich et al. [129]. The authors use a paramet-
ric geometric model to represent the course of major neuronal pathways and
compute statistics such as the ADC using the geometric representation. This
method is only applicable in terms of simple, thin structures; however, the true
fiber course of the CC comprises a more complex shape due to the fanning into
the whole hemisphere. Klein et al. [52] presented an approach for DTI charac-
teristic quantification of fiber bundles. The proposed method uses a resampled
fiber bundle and computes an average principal fiber from the bundle. After-
wards, orthogonal planes are generated and used to compute FA values on the
cross-section of the bundle. This approach is beneficial since the quantification
of DTI characteristics is possible for arbitrarily oriented fiber bundles and en-
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ables a tract-specific examination of diffusion properties. However, the simple
approach presented for centerline reconstruction is not sufficient for complex
bundle configurations.

A first step towards visualizing integrity information on bundle surfaces and
slicing planes was made by Goldau et al. [35]. In their approach, the FA value
is either visualized along fiber bundles using a color-coded slice or directly on
the bundle boundary. For bundle colormapping, the authors compute a single
FA value from samples on a slice orthogonal to an average fiber’s tangent. Sub-
sequently they interpolate the obtained mean values of two neighboring planes
to assign a characteristic to a specific vertex. This comprises many averaging
steps and hence, the resulting index value is less representative in case of more
complex fiber bundles. The approach developed in the course of this thesis,
computes a ray for each individual vertex, resulting in a more precise repre-
sentation of diffusion characteristics. In addition, the focus is on examining
HARDI fiber bundles and characteristics and the introduced methods feature a
more accurate centerline and apply advanced visualizations. A user study was
performed to evaluate the understanding of the visualizations and the benefit
for neuroscientists.

7.4 Intra-bundle HARDI raycasting

The HARDI raycasting approach presented in the following utilizes trajectories
that were computed using the distance-based tractography approach presented
in Part 5 as well as the ISMI diffusion classifier introduced in Chapter 4.6.

7.4.1 Hull generation

The applied hull generation algorithm extends the approach proposed by Mer-
hof et al. [62]. The method is divided into the following four consecutive steps:
volume rasterization, volume filtering, surface extraction, and surface filter-
ing. The first step, volume rasterization, computes a binary fiber volume out
of the reconstructed fiber set. It contains unwanted edges and is subsequently
smoothed with a 3D Gauss filter. This volume serves as the basis for the com-
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puting of the isosurface. Surface extraction is commonly performed using a
Marching Cubes algorithm [59]. As in the proposed approach, a scale-dependent
Laplace filter is applied for surface smoothing. The method includes a weight-
ing term that defines the translation vector for point displacement according to
the geometric center of neighboring edges. The filter multiplies the computed
displacement vector by the sum of the length of all neighboring edges E and is
defined as follows:

p′ = p+
λ

E

n−1∑
i=0

(qi − p)
‖qi − p‖

, with E =
n−1∑
i=0

‖qi − p‖, (7.1)

where p is the original mesh point, p′ is the displaced point, n is the number
of considered neighbors, and λ is a weighting factor. The amount of iterations
and the weighting factor are adjustable; therefore, the degree of smoothing is
observed by the user.

The proposed algorithm was extended in terms of surface filtering by includ-
ing a reference volume which controls the adjustment of the geometric hull via
the underlying fiber volume. In particular, the reference volume acts as a bor-
der for adjusting the mesh points and should not be infiltrated during point
displacement. If the applied scale-dependent Laplace filter for surface smooth-
ing leads to a position infiltrating the reference volume, the weight factor is
reduced. This is done for a certain number of steps, until either a position out-
side the reference volume is obtained or the maximal number of iterations is
reached. In the latter case, the original point is returned. In this approach a
rasterized fiber volume was used as a reference image, however, others, such as
FA volumes, are feasible as well.

7.4.2 Centerline extraction

Several approaches for centerline reconstruction of fiber bundles exist in the
literature [19, 52]. These approaches are based on a principal fiber computation
representing one centerline for a whole bundle. However, they require similarly
oriented and distributed fibers within the bundle to lead to sufficient results. In
cases of complex fiber configurations, resulting from HARDI tractography, a
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principle fiber does not appropriately characterize a bundle. Figure 7.1 illus-
trates the problem in terms of fanning fiber tracts.

(a) (b)

Figure 7.1: Centerline computation: Schematic illustration of a principle fiber (7.1a) and
a skeleton (7.1b) representation for a fanning fiber bundle.

For this reason, a skeletonization approach is applied using the fiber bundle
morphology. In this approach, a distance transform is applied to control the
successive erosion of border voxels. The user influences the output by adjusting
the threshold defining the binary bundle hull. Thus, shape properties are either
enhanced or reduced which affects the course and complexity of the centerline.

7.4.3 Visualization approaches

The following section develops intra-bundle raycasting-based visualizations and
a centerline slicing approach using the aforementioned precomputation results,
the fiber tract encompassing hull, the centerline, and the diffusion characteris-
tics. Figure 7.2 both shows the processing pipeline and provides an overview of
the methods developed. For an enhanced three-dimensional understanding of
the bundle shape, a silhouette rendering approach is applied, as well as Phong
shading and ambient occlusion. Silhouette rendering is performed by analyzing
variances of neighboring normals in a deferred shading approach as introduced
by Saito et al. [102]. Additionally, a Screen-Space Ambient Occlusion (SSAO) ap-
proach was implemented, first introduced by Mittring [67]. SSAO samples the
depth buffer in the neighborhood of each fragment. The number of fragments
closer to the viewport than the current one is used to darken the current frag-
ment’s color. However, combining colormaps with enhanced rendering tech-
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Figure 7.2: Computation pipeline for HARDI-characteristic visualization: Preprocess-
ing steps are shown in the left and the developed intra-bundle visualizations
in the right part of the image.

niques to facilitate depth perception alters color appearance and can lead to
false interpretations. Therefore, the user can interactively switch the rendering
techniques on and off and thereby combine various illustration techniques or
explore the bundle without any visual enhancements. In addition, an evalua-
tion of the introduced rendering techniques was performed in the course of a
user study and are discussed in Section 7.5.2. In the following intra-bundle vi-
sualization, two different colormaps are used to emphasize the different mean-
ing of each index. The first one characterizes the intra-bundle fiber configura-
tion, where red indicates single, yellow multiple fiber configurations and green
isotropic diffusion. The second colormap, encoding the variance, highlights re-
gions with high variance in cyan and regions with low variance in blue.

Intra-bundle raycasting

The first method uses a novel intra-bundle raycasting approach with the hull
geometry as input and realized though a GPU shader pipeline. The centerline
of the fiber tract is encoded in a 2D texture and transferred to the GPU as well
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as a 3D texture comprising the diffusion characteristics in this case the voxel
classification volume. The vertex shader computes the texture coordinates for
characteristic evaluation as well as the nearest point of the centerline. Further,
a ray is traced from the current hull’s vertex to the obtained centerline point,
as illustrated in Figure 7.3, this ray is used for diffusion characteristic evalu-

Figure 7.3: Ray computation: The vertex shader computes the ray from the current ver-
tex to the nearest centerline point.

ation. Several visualization strategies for intra-bundle raycasting were devel-
oped, motivated by volume rendering, and designed to aid clinicians in an-
alyzing diffusion characteristics of neuronal bundles. In the following, these
strategies are explained.

Diffusion Averaging. For Diffusion Averaging, samples along the ray from the
vertex to the nearest centerline point are computed using a certain step length
and resulting in n distinct positions. These samples are used to evaluate the
diffusion characteristics and compute the mean value of all the obtained val-
ues. The final fragment color is determined through colormapping and thereby
reflects the mean diffusion value from a vertex to the centerline.

Min/Max Diffusion. The Min/Max Diffusion mode is motivated by the Maxi-
mum Intensity Projection (MIP) method, a transfer function, projecting the max-
imum value along a ray to the image plane. Transferring the idea to the ap-
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proach presented results in computing the minimum and maximum character-
istic value along the ray and the use of this value for colormapping. Within this
visualization, a single characteristic value is displayed.

Diffusion Slider. With the Diffusion Slider, the user interactively examines dif-
fusion characteristics along the ray. In this case, no averaging of diffusion values
takes place. Instead, the ray is defined by the vertex position, and the center-
line point is normalized and sampled at discrete points. The resulting single
diffusion values are visualized directly on the bundle’s surface. As a result, vi-
sualizations of diffusion characteristics from the hull to the bundle’s centerline
are feasible.

Diffusion Variance. Using the Diffusion Variance mode, both the homogeneities
and the inhomogeneities of the bundle are highlighted. The variance of ISMI
values is computed along the traced ray and a colormapping is applied to dis-
play the results on the bundle’s surface.

Centerline slicing

In addition to the approaches presented in the previous section, a second vi-
sualization method of intra-bundle diffusion characteristics was implemented,
the Centerline Slicing. This approach uses the same precomputations: the geo-
metric hull, the centerline, and the diffusion characteristic volume. A plane or-
thogonal to the tangent of a user specified point on the centerline is generated
and utilized for visualizing the color-coded index through texture mapping. To
define the coordinate, the user first selects a point by clicking the mouse on a
rendering of the centerline, as illustrated in Figure 7.4. Next, a shader pipeline
uses the precomputed centerline rendered by using the GL_LINES primitive as
an input and generating the plane as the output. The coordinates of the user-
defined point are transferred to the shaders via uniforms. The geometry shader
is designed to generate a plane if the first coordinates of the current primitive
are within an interval around the selected centerline point. The tangent of this
centerline segment acts as the normal for the plane and is computed by subtract-
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Figure 7.4: User interaction for plane generation: In order to define the point on the
centerline, the user has to click the mouse on the centerline.

ing both of the primitive’s coordinates. No distinct centerline tangent, which is
used to generate the plane, exist in bifurcations. In this case, the view-vector
is used as the plane normal. Thus, the user interactively examine the diffusion
pattern while moving the camera, and the plane origin remains unchanged. To
enhance the spatial understanding of the bundle, parts of the plane not lying
within the bundle are rendered transparent. As a result, the plane not only ex-
hibits information about the diffusivity, but also reveals the shape of the cross-
section of the bundle for arbitrarily oriented centerlines.

7.4.4 Clinical study design

Expert evaluation of the presented approach was performed at the Neuroscience
Unit, Institute of Biomedicine/Physiology, University of Helsinki and at the
BioMag Laboratory at the Helsinki University Central Hospital. Seven stu-
dents, researchers, and medical doctors in the field of neuroscience participated
and rated the approaches with respect to usability in neuroscience and visual
understanding. The evaluation was designed to answer the following major
questions:
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• Whether the approaches provide a better understanding and insight into
the data,

• if the introduced perception enhancements facilitate depth impression, and
how they affect the understanding of the visualizations as well as

• in which neuroscientific and neurosurgical questions the approaches can
be beneficial.

The approaches were presented and evaluated in two stages. At first, all intra-
bundle visualizations, as proposed in Section 7.4.3, were introduced to the au-
dience in the form of a presentation. The second part was performed using two
different questionnaires. Experts discussed and rated the presented approaches
in terms of understanding and usefulness and suggested a field of application.
In the following part, experts evaluated the bundle shape perception: Percep-
tion enhancements are accompanied by changes in color and for this reason
potentially affect bundle diffusion interpretation. Thus, a trade-off between
depth perception and adequate colormap illustration exists, and the decision
for the best visualization is challenging. For this reason, illustrations featur-
ing single and combined Phong illumination as well as silhouettes and ambient
occlusion were presented. Experts rated the clarity and improvements of the
visualizations considering spatial depth perception as well as the interpretation
of bundle colors. Figure 7.5 presents individual stages of the user study.

7.5 Results

In this section, results of the visualization method as well as the user study are
presented and discussed.

7.5.1 Visualization methods

The aim of the presented approach is to enhance visualizations in terms of chal-
lenging fiber configurations, reconstructed using HARDI techniques. The focus
is on fibers belonging to the CC and running in the centrum semiovale. In the
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1. Presentation of the developed intra-bundle visualizations
2. Questionnaire I: understanding and potential applications

- personal data (position and field of research)
- identification of the most significant approach
- understanding and usefulness
- potential clinical applications

3. Informal discussion of potential findings revealed by the visualizations
4. Questionnaire II: rating of individual visual enhancements

- understanding
- depth impression
- differences in color interpretation

Figure 7.5: Individual stages of the user study.

following, tracts are displayed without anatomical volume rendering in order
to focus on hull visualization. Figure 7.6 displays the Diffusion Averaging, Max
Diffusion, Min Diffusion, and Diffusion Variance visualization on the hull.

The result of the Diffusion Slider is shown in Figure 7.7 for the hull and center-
line together with results of the Centerline Slicing approach in the center of the
CC and in a region with more complex fiber distributions. The hull is visualized
as slightly transparent in combination with the bundle centerline and silhouette
as well as the plane orthogonal to a chosen centerline point. Figure 7.8 displays
a combination of the implemented depth enhancements, silhouettes, Phong il-
lumination, and ambient occlusion.

All presented visualizations achieve interactive frame rates. Performance
evaluation was accomplished on a Core2 Duo, 3.16 GHz with 4 GB RAM and a
NVIDIA GeForce GTX 285 graphics card. The following average frames per sec-
ond (fps) were achieved for the reconstructed fibers of the CC. The raycasting-
based approach features 11fps when performing a 360◦ rotation of the bundle.
Ambient occlusion and silhouette visualization reduce the average fps to 6. The
Centerline Slicing mode achieved 22fps on average.

Using the presented visualization approaches arbitrary neuronal pathway
morphologies are displayed with significant diffusion encoding color values.
However, the method is highly dependent on the bundle’s centerline approx-
imating the course of the current tract. For complex morphologies, a detailed
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(a) (b)

(c) (d)

Figure 7.6: Colormapping of values along the ray: In the results for the Diffusion Av-
eraging visualization, the CC appears yellow (multiple fiber distributions)
where the SLF and the CST cross (7.6a). Using the Max Diffusion mode, yel-
low parts also reveal multiple diffusion directions (7.6b). On the other hand,
when using the Min Diffusion visualization, regions with highest integrity
appear red (7.6c). The Diffusion Variance color encoding highlights regions
with high variance in cyan and regions with low variance in blue (7.6d).
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(a) (b)

(c) (d)

Figure 7.7: Colormapping of values along the ray: Values on the hull (7.7a) and the
centerline (7.7b) using the Diffusion Slider; parts of the hull leaking into gray
matter appear in green (isotropic diffusion); high single fiber configuration
is obtained in the center of the CC; and Centerline Slicing within regions of
complex diffusion profiles in the CC (7.7c, 7.7d).

skeleton is crucial to reliable diffusion information since the ray is determined
by the closest centerline point; however, a detailed centerline reduces perfor-
mance since more points have to be considered for raycasting. In the current ap-
proach, the reference centerline point is computed for each ray for each frame.
However, this can be precomputed on the CPU and the reference centerline
point can be stored as an attribute variable for each vertex. In addition, the
amount of diffusion information which is mapped through the ray to a bundle
vertex, depends on the centerline’s curvature and is not uniformly distributed.
Furthermore, in terms of large bundles or a less representative centerline, the
Diffusion Averaging visualization might not be representative since all values on
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(a) (b)

Figure 7.8: Visualizations for spatial depth enhancements. Both images feature the Min
Diffusion mode and include silhouette rendering and either Phong illumina-
tion (7.8a) or ambient occlusion (7.8b).

the ray are taken into consideration. This accounts for inhomogeneous bundles
as well since if the variance of diffusion values along the ray is too high a mean
value can lead to false interpretation. In these cases a preliminary examination
of the bundle using the Diffusion Variance mode and a subsequent adjustment
of the centerline enhances the visualization. Also, an examination using the
Diffusion Slider is more adequate.

7.5.2 User study

In the following, a discussion of the approaches is presented along with an in-
troduction of the user study results in terms of general understanding, visual-
ization enhancements, and applications to neuroscience.

Visualization methods. The Diffusion Averaging approach was one of the fa-
vorite visualizations with experts. They stated that it provides a good first
impression about the underlying diffusion and that it is a straightforward vi-
sualization.

The Min/Max Diffusion modes are helpful in terms of identifying regions of
multiple fiber populations and linear diffusion profiles. In the presented dif-
fusion characteristic scheme an applied minimum diffusion raycasting mode
reveals areas with the highest single fiber population. Reconsidering Figure 7.6
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and the Minimum Diffusion visualization: Regions appearing red (the center of
the CC) include no isotropic diffusion since the isotropic diffusion has a lower
index value than the single fiber distribution. Hence, red areas in this visu-
alization mode are considered as the most directional fiber pathways. On the
other hand, regarding the Max Diffusion visualization, yellow marked regions
comprise no single fiber distributions since the maximum value is visualized
and single fiber distributions comprise a higher index value than multiple fiber
distributions.

The evaluation of diffusion values at the centerline of a bundle using the Dif-
fusion Slider mode is of special interest since the centerline is considered as the
skeleton, representing a whole tract. Therefore, diffusion values of the center-
line are especially helpful in tract-based examinations.

Visualizations of diffusion characteristics on the hull are considered as an
uncertainty visualization since green parts indicate isotropic diffusion; hence,
these parts of the reconstructed bundle do not belong to a neuronal pathway
– the bundle leaks into gray matter. Additionally, the hull representation in
Figure 7.7 exhibits a very interesting fact: The hull grows into the cingulum
bundles, two white matter tracts running above the CC, indicated by the two
red parts on top of the center.

Results of the Diffusion Variance visualization correspond with the findings of
the Min/Max Diffusion mode: Similar values in both of the Min/Max Diffusion
visualizations are identified in the center of the CC as well as in the right upper
part of the bundle. These regions appear in purple and indicate low variance.
Considering the fanning regions of the CC, deviating values are observed in the
min/max visualizations in terms of multiple and isotropic diffusion, these re-
gions are highlighted in blue and cyan in the variance diffusion mode. Regions
where the bundle leaks into gray matter comprise the largest variance values
within the voxel classification values and are marked in cyan.

In the Centerline Slicing mode, a more detailed examination of the diffusion
profiles is provided. This is beneficial for regions with high variance and forms
a subsequent step. Additionally, this visualization can be integrated in the op-
eration microscope during surgery in terms of an overlay to indicate preopera-
tively computed diffusion characteristics directly on the brain.
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The findings within the visualizations correspond with the medical knowl-
edge of the CC: The center of the CC is the area with the highest integrity and
the highest directionality. However, the region of the centrum semiovale com-
prises more difficult fiber distribution profiles, such as crossings of the CST and
the CC.These configurations are revealed through the presented visualizations.

Visual enhancements. When choosing between single Phong illumination, am-
bient occlusion, silhouettes, and visualization with no depth enhancement, am-
bient occlusion was considered to feature the best depth impression. Moreover,
when adding silhouettes to the visualizations, all participants agreed that the
combination of ambient occlusion and silhouettes as displayed in Figure 7.8
is the best depth encoding visualization. Single silhouette enhancement was
rated second. Participants recognized the changes in terms of color appearance
caused by ambient occlusion and Phong illumination and; however rated the
influence for Phong as having a greater impact on color interpretation than am-
bient occlusion. In addition, they judged depth encoding as a crucial feature
for bundle visualization. However, it could not be significantly determined
whether spatial depth perception or accurate colormap visualization is more
important to experts. For this reason, it was decided to enable or disable sin-
gle visualization enhancements manually. In general, Phong illumination was
reported to be very confusing and led to severe changes in terms of color ap-
pearance, and resulting misinterpretations considering tract integrity and diffu-
sion distributions were observed. Summarizing, the most favorite visualization
is ambient occlusion in combination with silhouettes. However, it should be
switched off for color interpretation.

Applications to neuroscience. Experts think that the provided visualizations are
of great interest in their field of research and are beneficial to answering spe-
cific neuroscientific questions. The Diffusion Averaging, Min/Max Diffusion, and
Diffusion Variance modes are of specific interest. The Diffusion Averaging mode
provides a good first overview while the Min/Max Diffusion and the Diffusion
Variance visualizations highlight regions of interest, such as areas with multi-
ple maxima or potential abnormalities which influence the local diffusivity. In
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terms of applications to neuroscience, they mentioned amongst others: Neu-
rosurgical planning, such as lesion detection and analysis, as well as disorder
monitoring, for example in stroke patients. Furthermore, an integration of the
approach into a TMS system is feasible: Visualizing diffusion characteristics of
neuronal pathways originating from certain regions activated by TMS, can pro-
vide information about brain connectivity and integrity. This is of major interest
in fundamental neuroscience. In addition, using this information, further TMS
regions can be defined and evaluated for activation or blocking.

7.6 Discussion

Contrary to the previous section which concentrated on advanced line render-
ing, this section discussed enhanced fiber bundle visualizations. Fiber bundles
are advantageous over single line representations since the visualization fo-
cuses on the boundary as well as the shape of a tract, which is more significant
for clinical purposes than single streamlines. Furthermore, if the visualization
is based on HARDI tractography, more complex configurations, such as callosal
fibers to lateral areas of the hemisphere, can be detected. This causes a more
cluttered 3D representation and hinders interpretation. Today, it is possible
to describe intra-voxel diffusion patterns using HARDI classifiers. However,
an effective, user-friendly and problem-specific visualization had been missing.
An intuitive visual exploration of diffusion characteristics in combination with
tract morphology is of great interest in fundamental neuroscience and in many
clinical applications. The presented intra-bundle visualization approaches take
a step towards such a combination. Experts deemed the approaches useful and
as providing a better understanding as well as interpretation of diffusion data
as well as suggested potential applications. The illustration of intra-bundle
HARDI characteristics was considered as an important contribution to diffusion
visualization and providing vital insight. However, the user study showed, that
visual enhancements, such as Phong shading or ambient occlusion do not ben-
efit all clinical questions. In addition, clinicians and neuroscientists are not yet
used to 3D visualizations and can easily misinterpret illustrations. For example,
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if the neurosurgical aim is data exploration in terms of either white matter path-
way location, the identification of fiber dense areas or their relation to further
anatomical structures, then visual enhancements can provide a vital benefit in
terms of spatial understanding. However, in terms of detailed fiber integrity
examination and if colormaps are involved, highlights can easily lead to mis-
interpretations and are disadvantageous. As a result, visual enhancement in-
tegration has to be considered carefully and only applied if appropriate to the
task.

The remaining issue in white matter fiber visualization is to solve the problem
of visual cluttering caused by the intricate nature of the white matter network.
If only single fiber tracts or major neuronal pathways are being examined, 3D
visualization is easy to understand. However, if more complex fiber configura-
tions are under consideration and more fiber tracts are interwoven, visualiza-
tions are no longer intuitive and evaluation becomes challenging. Representing
pathways as bundles is a first step to reducing this visual clutter. However,
more advanced exploration techniques are required to enable a detailed exami-
nation. The following section is built on the discussion of enhanced fiber render-
ing and bundle visualization and addresses the issue of intricate fiber pathway
visualizations using focus and context visualizations.
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8.1 Overview

The previous sections introduced two visualization approaches for diffusion
data based on streamline fiber reconstructions. The first is designed to enhance
line representations by applying depth encodings and illustrative rendering
techniques. The second method aims to visualize fiber hulls computed from
streamlines in combination with intra-bundle diffusion characteristics. It is mo-
tivated by the conclusion that hull visualizations are more intuitive as well as
of more clinical use than single fiber representations. However, due to the com-
plex nature of HARDI-based fiber bundles, exploration becomes challenging if
more than one bundle is under consideration. In the beginning of this section,
the guiding questions in terms of bundle visualization regarding single as well
as interacting fibersets are presented in Section 8.2 followed by a review on fo-
cus and context visualizations in Section 8.3. The developed visualizations are
presented in Section 8.4 followed by results in Section 8.6 and a discussion in
Section 8.6. The presented approach was published in [99].

8.2 Introduction

HARDI-based tractography approaches result in more complex line represen-
tations than DTI-based due to the detailed diffusion profile, the ODF. Individ-
ual line interpretation is cumbersome and benefit from advanced visualization
techniques: A combined approach including lines as well as hulls, is beneficial
in order to estimate bundle shape determining fibers and reveal bundle char-
acteristics on demand. Resulting visualizations feature both knowledge about
intrinsic fiber configurations as well as the global bundle shape. However, de-
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signing an approach including inner fibers as well as encompassing hulls is
a challenging task. Focus and context rendering approaches target this issue
by applying various rendering styles to different objects. Thereby, a combined
visualization is feasible. Scientific questions, guiding focus and context visual-
izations for single fiber bundles are:

• How can line renderings and bundle visualizations be intuitively and mean-
ingfully combined?

• Which are the important features of fibers within a bundle?

• How can fiber features be visualized?

Furthermore, due to HARDI’s ability to model complex subvoxel diffusion pro-
files, fiber pathways may be seen to overlap or interweave. If such configura-
tions are visualized using bundle techniques single fiber pathways cannot be
easily differentiated. In fact, this issue does not occur when using DTI-based
reconstructions since streamlines do not interfere with each other as they do in
HARDI. The following questions must be posed in order to visualize multiple
potentially intersecting bundles:

• How can multiple fiber bundles be visualized intuitively?

• How can pathways be distinguished?

• How can complex areas be highlighted?

Focus and context rendering approaches usually apply different rendering
styles for each object group. According to Preim et al. [82] objects are catego-
rized into the following classes: focus objects, which are objects of interest; near
focus objects, which are objects facilitating functional interrelations; context ob-
jects, which are all remaining objects; and container objects, where one object
contains all of the others. In the case demonstrated, focus objects are fiber path-
way representing lines. The context object is the hull, representing a neuronal
bundle, and the container object is the brain surface.

In the following, the BundleExplorer is introduced as a focus and context ap-
proach for complex diffusion configurations with minimal user interaction. It
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is build on previously introduced diffusion reconstructions and visualizations:
The tractography approach was proposed in Section 5, fiber visualization in Sec-
tion 6, and bundle computation in Section 7. Inner-bundle fiber visualizations
are integrated to reveal trajectories within their global context. Intersecting-
bundle visualizations are proposed in order to extract spatial features and en-
able an intuitive exploration of crossing fiber pathways. Spatial and functional
bundle features are encoded in illustrative fiber renderings to enhance diffu-
sion data exploration. A GPU-based framework for cutaway rendering is pro-
posed to facilitate a fast focus and context rendering of white matter pathways
and their encompassing hulls. Resulting visualizations feature both knowledge
about intrinsic fiber configurations as well as the global bundle shape.

8.3 Related work

Related work on the presented visualization issue targets focus and context vi-
sualizations to provide an embedded presentation. In addition, illustrative ren-
dering methods are important to enable a discrimination of focus and context
objects. Scientific work related to our approaches is reviewed in the following.

A focus and context rendering approach for preoperative neurosurgical plan-
ning was proposed by Beyer et al. [10]. The authors introduced a multimodal,
high-quality volume visualization approach including cut-out techniques to vi-
sualize deep-seated brain structures. A skull peeling approach is applied by
generating a view-dependent depth mask. Therefore, visualizations of the sur-
gical approach and especially inner brain structures of interest are feasible. Bruck-
ner et al. [15] introduced a context-preserving volume rendering approach in
which a transfer function is used to evaluate parameters such as shading in-
tensity, gradient magnitude, and distance to the eye point as well as previ-
ously accumulated opacity, in order to determine less important regions and
adjust their opacity. Wang et al. [122] introduced the Magic Volume Lens as a
GPU-based focus and context framework for volume data visualization. The
proposed approach is based on direct volume rendering and incorporates sev-
eral lens shapes as well as transition regions between focus and context ob-
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jects. The here presented methods are strongly influenced by an approach called
ClearView, as presented by Krüger et al. [54, 55]. ClearView comprises a GPU vi-
sualization framework for texture-based raycasting. The goal is to focus on par-
ticular areas, while providing vital context information. The authors propose
several approaches to automatically define focus areas and cut-outs based on
local volume information. Features, such as the curvature or the distance to the
viewpoint or a marker, are extracted and define the importance of objects or re-
gions. The introduced approaches were initially designed for volume data but
have been adjusted for geometry data. A level of sparseness approach, called
importance driven volume rendering, was proposed by Viola et al. [121]. The
introduced method aims at emphasizing important structures covered by less
important regions by defining a level of sparseness to each structure. By means
of compositing, more important structures are visible through less important
ones.

Illustrative rendering and emphasis techniques as well as focus and context
visualizations have been further investigated for medical datasets for example
by Tietjen et al. [111]. The authors presented an illustrative hybrid rendering ap-
proach for medical datasets including a combination of volume, surface, and sil-
houette rendering. Tietjen et al. showed that the implementation of silhouettes
to indicate the context object is appropriate for surgical planning and facilitates
spacial perception. Ropinski et al. [92] used volumetric lenses to define cut-out
regions within volumetric datasets in order to achieve efficient data exploration
for medical diagnosis. The introduced lenses define regions in which render-
ing styles change, such as from volume rendering to silhouettes. A GPU-based
multimodal visualization framework for neurosurgical planning was proposed
by Diepenbrock et al. [25]. The authors integrated fiber rendering in a multi-
volume raycaster and encoded uncertainty through less saturated line render-
ings. Gasteiger et al. [33] introduced a focus and context approach, the FlowLens,
for hemodynamic attribute visualization in cerebral aneurysms where illustra-
tive streamlines provide insight into the blood flow within the aneurysm.
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8.4 The BundleExplorer

In the following section, the BundleExplorer is introduced as a focus and context
rendering technique for fibers in combination with their encompassing hulls.
The applied color codings for fiber rendering are proposed in the beginning
of this section. In addition two interesting fiber-bundle conditions have to be
distinguished: inner-bundle aspects and intersecting-bundle aspects. Inner-
bundle visualizations consider fibers within their encompassing hull whereas
intersecting-bundle visualizations are designed to highlight the relation of two
crossing neuronal pathways.

8.4.1 Fiber color codings

Besides the conventional directional color encoding and the previously intro-
duced functional colormapping using the ISMI, a further colormapping is in-
cluded in the BundleExplorer: Spatial information of fibers within their encom-
passing hull is revealed due to distance information. The idea is to color the
streamtubes according to their distance to the fiber hull. Distances are com-
puted either to the encompassing hull or a certain geometry, such as a second
fiber bundle. The fragment shader is used to visually encode the interpolated
fiber distance information. The colormap indicates fiber parts in the vicinity
of the hull in red and far away regions in white. Figure 8.1 shows the intro-
duced color codings for inner bundle visualization in combination with a view-
dependent bundle cutaway.

8.4.2 Inner-bundle visualizations

Inner-bundle visualizations facilitate fiber exploration while providing an un-
derstanding of the global bundle shape. Cutaway techniques aim to facilitate
insight into an object by clipping parts of the context object or adjusting its
transparency. Here, this results in clipping parts of the hull geometry in order
to reveal underlying fiber structures. Three different cutaway approaches were
developed, including an either automatic or user-based definition of clipping



146 8 Focus and context visualizations

Figure 8.1: Visualization of fiber color codings: The fiber encompassing hull and view-
dependent cutaway renderings reveal inner-bundle fibers. Applied fiber
colormappings from left to right: Directional color coding, anisotropy color
coding (yellow represents high and red low anisotropy) and distance to hull
color coding (red indicates fibers in the vicinity of the hull).

regions. The marker-dependent technique applies a user-defined point of in-
terest and is view-independent. Contrarily, view-dependent approaches adapt
due to camera movement. Important spatial as well as functional fiber features
are visualized using the proposed color encodings.

Marker-dependent cutaway

A 3D coordinate determines the center for marker-dependent circular clipping.
The user defines a point on the hull’s surface through a mouse click on the bun-
dle representation as indicated in Figure 8.2 in the bottom left part. This point
defines the origin of the circular hull clipping and the radius of the clipping
is adjustable through a slider. This information is transferred by uniform vari-
ables to the deferred shading pipeline stage in order to compute the binary 3D
masking texture. Figure 8.2 shows a visualization of the resulting marker-based
cutaway.

View-dependent cutaway

A further approach computes the cutaway based on the current view. In partic-
ular, the circular clipping origin is defined by the viewport center. The user can
adjust the radius and radial smoothness of the cutout with immediate feedback.
Results of the approach are illustrated in Figure 8.3.
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Figure 8.2: Marker-dependent cutaway visualization: The user places the marker coor-
dinate (bottom left) and adjusts its radius which results in a circular cutout
(top right).

The second view-dependent cutaway technique computes hull transparency
with respect to the surface orientation. The idea is to enable a see-through for
viewer-facing surfaces while providing context information. The dot product
by the vertex normal and the view vector is used to estimate surface orienta-
tion. A user-defined threshold, implemented as a slider, is used to adjust hull
transparency with respect to face orientation. Therefore, hull clipping results
in a smooth opacity increase from regions facing the viewer to regions turn-
ing away from the viewer. Figure 8.4 displays a result of the approach for two
different thresholds.

8.4.3 Intersecting-bundle visualizations

HARDI provides detailed information about the spatial relation of neuronal
bundles. Two visualization strategies revealing bundle crossing characteristics
were implemented. The basis for intersecting-bundle visualization approaches
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Figure 8.3: View-dependent cutaway visualization with respect to the viewport center:
Hull cutout with applied radial smoothness with a small (left) and a large
(right) radius.

Figure 8.4: View-dependent cutaway visualization with respect to the view vector: Dif-
ferent thresholds are applied to facilitate a view of either the underlying
fibers (left) or the hull (right).

is formed by two fibersets: The first bundle is represented using streamtubes
and the second using a fiber encompassing hull.

Intersection marking

Color encodings and transparency adjustments to the hull’s surface are used
in order to highlight bundle overlapping areas. To accomplish this task, the
fiber encompassing hull as well as the fiber geometry is rasterized in a first step
to define overlapping regions. Afterwards, their intersections are transfered
to the GPU via a 3D texture. Fragment colors as well as the transparency are
adjusted using the fragment shader. Bundle overlapping regions are displayed
as transparent in combination with an outline of the crossing area. Figure 8.5
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shows results of the proposed intersecting markings for fibers running in the
centrum semiovale.

Figure 8.5: Intersection marking visualization: Individual bundles are displayed as
streamtubes or fiber encompassing hulls. Intersections are transparent and
overlapping boundaries displayed in light blue. Applied directional color
coding for callosal fibers (left) and distance encoding of fibers of the pyra-
midal tract (right) are displayed.

Plane exploration

The plane exploration mode applies a 3D cutting plane for hull clipping. Arbi-
trarily cross-sectional cutouts can be defined by the user. A simple 3D interac-
tion mode is provided in which the mouse is used to define plane rotation and
translation. Bundle parts are divided by the clipping plane as either exterior or
interior. According to this they are displayed as either transparent or opaque.
The silhouette of the cross-section is displayed in yellow to provide additional
spatial information. Figure 8.6 shows the focus and context visualization using
the introduced cutting plane.

8.4.4 Workflow and implementation

Figure 8.7 shows an overview of the computation and interaction pipeline. First,
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Figure 8.6: Plane exploration visualization: Bundle clipping is defined by an adjustable
plane. The outline of the cross-section is displayed in yellow.

fibers are reconstructed based on a user defined seeding region. Afterwards re-
spective hulls are computed. Fibers are first rendered using a line strip primi-
tive. The subsequent shader pipeline is responsible for generating view-oriented
triangle strips. The distance of fiber points to a geometry is computed in the
next step for subsequent colormapping. The required geometry is either the
corresponding hull of the first or the second bundle or any other geometry. Dis-
tances are computed on the CPU before fiber rendering using the winged edges
meshes (WEM) representation for hulls. The distance to each WEM node is de-
termined for each fiber point. Attribute variables are used to assign the shortest
distance to the respective vertex of the line primitive. This information is acces-
sible in subsequent pipeline stages.

The proposed visualizations are realized using a deferred shading approach.
Two 2D parameter textures are computed: The first stores the geometry nor-
mals and the second combines necessary scalar information for further visual-
izations. The fragment depth is stored in the red channel, the marker-defined
visibility of the hull is encoded in the green channel, and a flag for hull iden-
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Figure 8.7: The BundleExplorer pipeline: Preprocessing steps are shown in the upper
part and visualization approaches in the lower part of the illustration.

tification is stored in the blue channel. Additional texture inputs for subse-
quent compositing are offscreen renderings of the fibers and the hull. Prede-
fined shader pipelines built upon these textures and compute the final cutaway
views in an upcoming rendering pass.

Since visualizations are implemented as screen-space approaches, special care
has to be taken for cutaway techniques. Here, cutaway renderings aim to re-
veal fibers as well as hull backfaces. The fragment shader has no information
about the scene behind the cutouts. To deal with this correctly, hull backfaces
are rendered in the course of the deferred shading approach and make use of
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the according depth buffer in the compositing stage. In combination with fiber
depth information depth values are compared in order to determine whether
the current fragment belongs to the hull or a fiber. The left part of Figure 8.4
shows correct hull backface and fiber rendering.

8.5 Results

In the following, results of the proposed algorithms are presented and dis-
cussed. Performance evaluation was accomplished on a Core2 Duo, 3.16 GHz
with 4 GB RAM and a NVIDIA GeForce GTX 285 graphics card.

Inner-bundle visualizations provide information about underlying fiber fea-
tures such as directionality, tightness, anisotropy or distance to the encompass-
ing hull. Applying color encodings to inner-bundle fibers reveals this spatial
and functional information. Figure 8.1 shows inner-bundle visualizations in
combination with a view-dependent cutaway. In the rightmost part, one can
clearly identify fiber compartments close to the hull (red). This information is
not obtained by simple directional color coding but is important for determin-
ing bundle forming fibers. If parts of the hull are subject to clipping the vicinity
of fibers to the hull is estimated through distance color coding. The uncertainty
of fiber tracts is a well-known issue in diffusion visualization. The presented
inner-bundle characteristics visualizations provide essential information about
the reconstruction reliability such as the degree of anisotropy in a certain bun-
dle part. Examination of challenging regions, such as fiber crossings, is feasible
through cutaway renderings. In the case of falsely detected fibers, regardless of
whether they are of less certainty or belong to a different bundle, they can be
removed from the bundle and hulls be recomputed. For a 1024 × 1024 screen
resolution, intra-bundle visualizations are carried out at approximately 80fps.

Intersecting-bundle visualizations are beneficial for bundle crossing exami-
nation. The proposed intersection marking approach highlights bundle over-
lappings which facilitates spatial understanding. Bundle subsets are displayed
as transparent within the plane exploration mode. Thereby, insight into regions
of interest, such as interwoven bundles, is provided. Distance encodings are
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also interesting in intersecting-bundle visualizations. Here, they are applied to
reveal the spatial relation between two reconstructed neuronal pathways. Fig-
ure 8.8 shows two different views for two intersecting bundles with applied dis-
tance fiber coloring: The distance between the fiber and the hull in the right part
is observed. However, in the left image the distance is only accessible through
color coding. Since the distance assigned to each fiber vertex can be computed

Figure 8.8: Distance visualization of two intersecting fiber bundles: Distance encoding
reveals fiber parts far away from the bundle (left), which is proved by scene
rotation (right).

from any provided geometry, further scenarios are feasible. For example tumor
boundaries are very interesting since spatial relations of neuronal pathways to
a lesion are crucial in preoperative planning. Intersecting-bundle visualizations
run at approximately 110fps.

8.6 Discussion

Advanced focus and context rendering approaches for complex fiber distribu-
tions were presented in this section. They are applicable to diffusion data visu-
alization in general, but specifically focus on problems related to HARDI. The
main challenge for HARDI-based fiber visualizations is to consider the visual
clutter caused by the intricate nature of neuronal pathways. Conflicting inter-
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ests in terms of diffusion visualizations exist. Hulls are beneficial in order to
hide unnecessary line complexity. However, lines are preferred in some cases
since they reveal areas of dense fibers as well as local fiber features. Further-
more, crossing fiber areas can be identified through line representations. In the
presented approach both techniques are combined in a user-friendly and intu-
itive visualization framework and as a result, advance towards complex diffu-
sion data examination.

The introduced BundleExplorer framework include different cutaway techniques.
Further approaches are feasible, such as a feature-based technique: Considering
anisotropy classifiers, cutout regions of the hull can be identified through inter-
esting intra-bundle regions such as low anisotropy or crossing fiber pathways.
The proposed GPU framework facilitates an easy integration of focus and con-
text rendering approaches. Additional visual enhancements can be integrated
in order to further facilitate spatial understanding of line configurations. For
example, an illustrative rendering technique for dense fibers was introduced
by Everts et al. [29]. The authors applied depth-dependent halos to emphasize
dense line data. The integration of this approach enhances line interpretation
in terms of large fiber bundles. The presented method can further benefit from
bundle feature visualization through texture mapping. Eichelbaum et al. [26]
proposed a line integral convolution (LIC) motivated texture visualization for
neuronal bundle surfaces which provides tensor analysis. Chapter 7 presented
an intra-bundle raycasting approach which colors the tract surface according to
inner diffusion characteristics.



Part V

Clinical application





9 Multimodal visualization for
neurosurgical planning

9.1 Overview

Previous chapters proposed methods in order to classify, reconstruct, and vi-
sualize diffusion data. In fact, diffusion data visualization has gained strong
interest in preoperative neurosurgical planning because the location and course
of neuronal pathways is crucial to avoiding postoperative damages. However,
it is still not considered as an examination routine in all clinical environments.
For this reason, the following part is dedicated not only to discussing diffu-
sion imaging’s contributions to neurosurgical planning but also considering the
contributions of visualization techniques in general. A motivation as well as
scientific questions are provided in Section 9.2 followed by a literature study in
Section 9.3 and an introduction to the multimodal data in Section 9.4. The de-
veloped multimodal visualization approaches are presented in Section 9.5 and
methods for access path definition, visualization and evaluation in Section 9.6.
A workflow is introduced in Section 9.7 and the results in Section 9.7.4. This
part closes with a discussion of the developed methods in Section 9.8.

9.2 Introduction

In the living brain, vital structures include functional areas as well as the fiber
bundles connecting these areas. If pathologies, for example a tumor, are present
and derogate essential functions, neurosurgical treatment is needed. Neuro-
surgery is tailored to patient specific anatomy and pathology. Hence, the most
adequate access path to a lesion is defined within an individual preoperative
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planning phase. This is mandatory with respect to deep-seated structures or
lesions close to essential white matter tracts, such as in the CST or related func-
tional activation zones; it is crucial to minimize the damage of these structures
at risk.

The visualization of patient-specific anatomical, functional, and pathologi-
cal structures enhances the treatment planning of surgical interventions. As a
result, multiple modalities have to be acquired. In neurosurgery, major acqui-
sitions include fMRI, to define activation areas; DTI, to reconstruct neuronal
pathways; and T1-weighted and T2-weighted MRI sequences, for anatomical
information. Multimodal approaches combine these datasets into one visual
representation. The embedding of brain properties in their anatomical context
offers vital insights into preoperative imaging. Computer graphics techniques
such as visual enhancements, annotations, and access path visualizations sup-
port the surgeon in identifying risk structures and therefore improve the plan-
ning phase. In surgical planning applications, interaction, in terms of visualiza-
tion adjustments, is beneficial. However, one has to keep in mind that it forms
an additional task for the surgeon.

A visualization approach, combining several modalities with an intuitive plan-
ning unit is a challenging task. The main questions in terms of neurosurgical
planning are:

• How can the multimodal data be visualized in order to facilitate both an
exploration and three-dimensional perception?

• How can risk structures as well as their spatial and functional relations be
revealed?

• How can an effective interaction for neurosurgical intervention planning
be realized, including access path definition, visualization, and evalua-
tion?

The developed volume clipping approach called Cavity Slicing provides an in-
tuitive exploration method for multimodal data. Potential adjustments to slic-
ing include changes in either the cutting geometry or the position, which are
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either view-dependent or view-independent. As a result, structures are visu-
alized within the surrounding tissue. Considering the slicing geometry as the
access path and adjusting the cutting depth towards the tumor enables an in-
tuitive examination of the structures along the path. Fiber filtering is used to
define meaningful fiber subsets: Neuronal pathways associated with specific
activation areas or the tumor, or fibers crossing the access path, are extracted.
The visualization and evaluation of access paths is enhanced in order to provide
a better understanding of attributes such as length and spatial arrangement.
Computer graphics techniques are applied to encode the structure’s distance to
the path. The evaluation of different access paths against each other is simpli-
fied since an iteration through defined paths is possible with adaptive distance
encodings. In the last part, a workflow for intervention planning using the in-
troduced methods, is provided.

The IEEE Visualization Contest 2010 [1] targeted multimodal visualization for
preoperative neurosurgical planning and was the inspiration for the presented
work. The presented planning tool and multimodal visualization approaches
were published in [97] and [98].

9.3 Related work

Preoperative planning in neurosurgery is an active field of research [12, 91, 107,
108]. In multimodal visualizations, one powerful way to highlight inner struc-
tures are cutting techniques. Beyer et al. [10] introduce a planning application
including a multi-volume raycasting approach which applies a view-dependent
skull peeling that removes parts of the volume obscuring structures of interest.
Clipping tools define a cut-out geometry and represent a common technique to
extract inner structures [47,60]. The identification of fiber pathways connecting
functional areas is crucial in neurosurgical planning. Talos et al. [110] exam-
ined the combination of DTI and fMRI data and thereby correlated fiber tracts
to cortical areas. Several approaches for a combined visualization exist [41, 53].
Fiber selection methods [11, 12, 61] result in a fiber subset that cross a specific
region. The winning entry of the visualization contest [24] introduced a surgery
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planning tool including an exploration and an in-detail inspection step similar
to the steps presented in this work. In the exploration section, the surgeon ex-
amines the multimodal data in a 3D, contextualized view and define an initial
access path. The authors introduced a so called tumor map, which reveals the
distances of risk structures to the tumor. In the second part the chosen access
path and the related structures is examined in greater detail. Another honor-
able mention submission of the IEEE Visualization Contest 2010 [13] presented
a planning approach including distance measurements between the tumor and
structures at risk as well as focus and context rendering approaches to facilitate
orientation.

9.4 Neurosurgical datasets

Different acquisition schemes represent different structures of interest in neu-
rosurgical planning. Neuro-visualizations have to combine these datasets to
provide meaningful representations. In this approach, datasets provided by the
IEEE Visualization Contest 2010 [1] were used. The first case contains MRI data
of a patient with an intra-cerebral metastasis and case 2 a glioma, which is much
more challenging with respect to the neurosurgical situation.

Conventionally, the first step in multimodal visualization is the registration
of the various datasets to achieve a spatial alignment. However, image regis-
tration was not the focus of this research. All of the data sets had previously
been linearly co-registered to the T1 reference dataset by the contest initiators.
Thus, the presented approaches assume preregistered data. All of the data were
acquired on a Siemens 3T Verio MR scanner and are courtesy of Prof. B. Terwey,
Klinikum Mitte, Bremen, Germany. The available sequences contain anatomical
images as well as functional and structural images which are discussed in the
following.

9.4.1 Anatomical data

T1- and T2-weighted as well as fluid attenuated inversion recovery (FLAIR) vol-
umes are considered as anatomical volume data since they display the anatomic
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properties of the brain in great detail. The resolution of the T1 volume is 1mm3.
In addition to the T1-weighted data, a contrast enhanced sequence was avail-
able. Both, enhanced and non-enhanced data, have been corrected for MR in-
tensity inhomogeneities and are of the size 512 × 512 × 176. Furthermore, a
brain- and tumor mask is provided on the T1-images as a segmentation result.
FLAIR is popular in brain imaging to suppress cerebrospinal fluid (CSF) effects
in images. FLAIR sequences supplement conventional MRI images in terms of
diagnosing intracranial tumors [115]. It usually provides better definition be-
tween the perifocal edema and the tumor than T2-weighted sequences. FLAIR
volume, as provided by the IEEE contest, was utilized comprising a resolution
of 0.45mm2 × 6.0mm and size 432 × 512 × 42.

9.4.2 Functional data

Functional data was acquired by fMRI, which is able to identify cortical areas
associated with a given task, such as finger-movement, verb-generation or lan-
guage processing. It plays a major role in identifying patient-specific vital func-
tional areas. In this case, finger tapping was the performed task. The sequence
starts with ten volumes associated with activation followed by ten at rest. Five
cycles were performed to obtain all in all 100 volumes. The fMRI data with
a resolution of 3.0mm2 × 3.3mm were motion-corrected and analyzed using
a general linear model. An additional statistical parametric map (t-map) of
64 × 64 × 64 was provided in the data containing the evaluation of the fMRI
data.

9.4.3 Diffusion data

DTI volumes are 128 × 128 × 72 × 62 in size and consist of one b0 image fol-
lowed by 30 diffusion gradient images were used and the number of excitations
(NEX) counts two. The b-value was 1000.
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9.5 Multimodal visualization

In order to implement a neurosurgical planning tool, the first step is to answer
the question of how the multivalued data can be combined efficiently. Com-
puter graphic techniques such as focus and context renderings or cut-out tech-
niques are a good possibility and are introduced subsequently.

9.5.1 Data preprocessing and arrangement

In the following, each of the individual data is presented and the preprocessing
and rendering explained.

Vessel and edema

The following section explains the consecutive steps for vessel extraction. The
basis forms the T1-weighted dataset, where the vascular structures are enhanced
by a contrast agent. This dataset is subtracted from the T1 image without con-
trast enhancement, similar to digital subtraction angiography (DSA). As a re-
sult, the vascular structures are highlighted. To exclude neck vessels and focus
on larger vessels located at the cortex, the subtracted image is masked with the
enlarged brainmask. For further improvement the vesselness filter proposed by
Sato et al. [103] is applied. The filter calculates a multi-scale vesselness measure
as a function of the Hessian matrix. Each voxel in the output volume indicates
how similar the local structure is to a tube. The actual segmentation is per-
formed by a region growing algorithm. Table 9.1 gives an overview of the steps
for vessel segmentation and the computation time.

Preprocessing step Timings in seconds

T1 contrast enhanced subtraction 2
Brainmask dilation 103
Vesselness filter 22
Region growing 1

Table 9.1: Data preprocessing: Steps and timings for vessel segmentation.
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The perifocal edema has been extracted from the FLAIR volume using a re-
gion growing algorithm.

Neuronal pathways

Diffusion imaging is able to extract white matter pathways using tractography
techniques, as discussed in Part III. HARDI is considered to be more precise
than DTI; however, at this time not clinically feasible due to its long acquisi-
tion and reconstruction time. In the presented case, only DTI sequences were
available. For the reconstruction of neuronal pathways a tractography imple-
mentation of the algorithm, proposed by Lazar et al. [57] was used. A whole
brain fiber reconstruction was performed in which all voxels above a specified
FA value are considered as seed regions.

Cortex and tumor

A segmentation of the cortex and tumor boundary is provided in the contest
data. The segmented cortex information was used to mask out the brain from
the T1-weighted image. The respective transfer function was adjusted to high-
light the gyri and sulci of the cortex.

Data arrangement

The acquired and segmented data was arranged in two groups: volumes (T1-
and T2-weighted MRI, activation areas, and cortex) and surfaces (fibers, tu-
mor, core activation areas, vessels, and edema). The volume data (T1- and
T2-weighted MRI, and cortex) is considered as anatomical information and the
surfaces (fibers, activation areas, and vessel) as potential risk structures. The
anatomical data is clipped using a slicing volume, whereas enabled surfaces are
never cut away.

9.5.2 Visualization of anatomical and functional structures

Volume visualizations are performed using a direct volume rendering MeVis-
Lab module, called Giga Voxel Renderer (GVR) [58]. All isosurfaces are gener-
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ated with a Marching Cubes [59] based approach and internally represented as
winged edge meshes. Vessels are red, the tumor purple, and the edema dis-
played in pale lilac.

Activation areas

A visualization of activation areas is possible through volume as well as iso-
surface rendering. Isosurfaces, which reflect motor activity, are generated by
applying a threshold to the given t-map. This threshold defines the core acti-
vation areas (yellow) and is adjustable by the expert. Volume rendering of the
t-map shows the extended activation zones. For this reason, color appearance
and extent depend on the selected transfer function and are defined in the color
range from yellow, which indicate core activation areas, to red. This is consid-
ered as an uncertainty visualization for fMRI since the differentiation between
core activation (isosurface) and less intensive activation (volume rendering) is
provided. Furthermore, it is possible to mark the most relevant activation zones
(isosurfaces) for intervention planning. The following measurements and filter-
ing methods are only performed on the selected parts.

Harming regions, represented by activation zones or neuronal pathways con-
necting these areas, might cause damage in the respective functionality. There-
fore, experts define a safety margin surrounding core activation areas in order to
indicate a region that must not be interfered with during surgery. This margin
is also seen as a visual aid when setting relevant access paths to the tumor.

Neuronal pathways

Fiber filtering defines meaningful subsets out of a complete brain fiber recon-
struction. Subsets are extracted by either the application, depending on the
inquiry or manually by the user. Automatic fibersets include either fibers cross-
ing activation areas, selected subsets, the tumor, the critical region surrounding
the tumor or the access path. Figure 9.1 shows two results of the fiber filtering
approach.

A fiber filtering with respect to the selected path is displayed in Figure 9.5b. In
addition, structures, not defined by MRI, are filtered by a user-defined volume



9.5 Multimodal visualization 165

(a) (b)

Figure 9.1: Risk structure examination: View-independent Cavity Slicing with a large
radius and no smoothness. Tumor, t-map volume and core activation are
rendered. Fiber filtering with fMRI core activation (9.1a) as well as tumor
crossing FA-value color coded fibers (9.1b) are depicted.

of interest (VOI). All selected fiber subsets are displayed at the same time or the
user enables a specific selection. Each of these are adjustable in their respective
color in order to distinguish between different subsets.

Visual clutter is a well-known problem in terms of fiber rendering: Streamline
interpretation quickly become difficult due to missing depth information and
the often overwhelming amount of lines. In addition, individual streamlines
are sometimes of minor interest in neurosurgical planning [73]. It was therefore
decided to hide this complexity using a fiber encompassing hull, illustrated in
Figure 9.4. The hull generation forms a three-dimensional hull around related
fibers and provides a more intuitive spatial perception.

9.5.3 Multimodal visualization

Multimodality is crucial for neurosurgical planning since vital structures of the
brain are represented within different datasets. This data has to be combined in
a single visual representation to provide efficient neuro-visualizations. It is nec-
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essary to fade out regions of less importance in order to enable an insight into
deep-seated structures. This is achieved by either clipping parts of the covering
volume or adjusting its transparency to enable a see-through. Variations of both
are possible within the here presented approach.

Rieder et al. [91] cut out a cavity as a clipping geometry between the point of
interest (POI), the tumor center, and the incision point. This concept was mod-
ified in terms of view vector alignment and the shape of the cut-out geometry
and is hereafter referred to as Cavity Slicing. The clipping is only applied to the
anatomical volume. As a result, enabled risk structures between the POI and
the skull remain visible. To minimize necessary definitions made by the user,
the slicing volume has the following initial settings: The orientation of the clip-
ping geometry is aligned with the view vector which enables an exploration of
structures from each point of view while panning around the head. The user
can freeze the orientation if an appropriate angle revealing structures of inter-
est is found. By moving the camera slightly, an improved depth perception
is achieved: The camera is independent from the clipping orientation and the
shape of the slicing geometry becomes comprehensible. In addition, the sur-
geon is able to define the clipping volume in terms of radius, depth, and radial
smoothness, as displayed in Figure 9.2. Figure 9.3 shows different settings of
Cavity Slicing. The initial depth is defined by the tumor center since deeper
structures are of less importance. The depth of the geometry is adjustable by
the expert for further exploration. A large radius results in a plane-like clip-
ping of the anatomical volume and is beneficial within the exploration stage;
whereas a small radius cuts out a tube shape and restricts the visualization to
structures lying between the tumor center and its projection to the skull. Similar
to the approach presented by Rieder et al., this is considered as an access path
visualization. The smoothness parameter defines the radial gradient of the clip-
ping geometry. It results in a transparency adjustment of the cut-out region of
the anatomical volume. The defined clipping geometry results in a masking
volume, which is applied to the anatomical volume through GVR options.

The opacity modulation is an implementation of the level of sparseness ap-
proach, which was introduced by Viola et al. [121]. The proposed method aims
to emphasize important structures covered by less important regions by defin-
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Figure 9.2: Setup of Cavity Slicing: The geometry is adjustable in radius, depth, and
smoothness.

ing a level of sparseness to each structure. By means of compositing, more im-
portant structures become visible through less important ones. Hence, tuning
the transparency of regions is one way to visualize the level of sparseness. Ad-
justments to the clipping geometry are considered as modifications concerning
the importance of the relevant structure. It is possible to examine structures of
interest in their anatomical context using this technique.

9.5.4 Risk structure evaluation

It is essential to identify structures at risk for the subsequent neurosurgical in-
tervention during a preoperative planning phase. Functional information and
the spatial relation of these structures is vital. It is advantageous to gain more
information about these structures and their relation which are presented in the
following.
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(a) (b) (c)

Figure 9.3: Examples of Cavity Slicing: The Tumor, vessels, tumor crossing fibers, the t-
map volume, and core activations are displayed. View-dependent clipping
without smoothness (9.3a) and view-independent geometry position (9.3b)
are feasible. The gray line in the view-independent clippings represents the
view vector of the frozen clipping.

Distance measurements

The shortest distance from the tumor boundary to a chosen structure at risk,
such as vessels, neuronal pathways or activation areas is vital for neurosurgical
planning. Furthermore, all minimal distances from the access path to risk struc-
tures are calculated. An arrow is displayed in the respective view as a visual
aid. The exact length is displayed below the main window. Moreover, it is pos-
sible to compute the shortest distance to a whole structure or just a subselection.
The selection is defined by the user by marking a region on the structure with a
lasso tool.

Distance enhancements

Two enhanced color codings are provided besides the introduced distance mea-
surements: Color enhancements are mapped on the vessels’ or wrapped white
matter tracts’ surfaces using a shader program. In the first approach, the color
of the structure fades to black, depending on the distance to the chosen access
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path. Parts located close to the access path are fully saturated in the respec-
tive color, hence the attention is focused on essential components. The length
of the color gradient is adjustable by the user. The second approach uses col-
ors to indicate distance steps in millimeters, from red to yellow, as displayed in
Figure 9.4.

Figure 9.4: Visual distance enhancements: Tumor, vessels, and Cavity Slicing of the
anatomical volume in combination with hull rendering of path crossing
fibers with distance to path color coding.

An analog color coding technique has been employed for individual fibers.
They are displayed in colors which encode the distance to the center of the tu-
mor. The color varies from white, close to the lesion, to black, far away.

Fiber tract information

Several fiber tract statistics are displayed in order to provide a detailed fiber
examination. The number, minimum/average/maximum length as well as the
FA-value is shown for a current fiber set. The coloring of fiber sets is adjustable
to represent the FA value, which is encoded in grayscale in order to highlight
the integrity of neuronal pathways. An example is shown in Figure 9.1b. A FA-
value of zero represents low directional information and is encoded in black,
whereas a high FA-value is encoded in white.
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9.6 Intervention planning

The next step in a neurosurgical planning procedure after multimodal visual-
ization is the definition of the actual access path. Here, three steps are essen-
tial: access path definition, visualization, and evaluation. Contributions to each
stage are introduced in the following.

9.6.1 Access path definition

An access path to the lesion is defined by an incision point on the skull and the
center of the tumor. The brainmask is displayed as slightly transparent in order
to define the access path. As a result, the user has an idea of the brain’s surface
in combination with previously defined risk-structures. The incision point for
the intervention is defined on the brainmask by clicking the mouse.

9.6.2 Access path visualization

In conventional planning tools, the path between the lesion and the incision
point is represented by a simple line. Disadvantages of this visualization are
weak depth perception and information loss if the path is hidden by various
structures. However, access path visualization is enhanced in several ways.
Structures lying within an access path present an essential condition for plan-
ning a neurosurgical intervention. Nevertheless, the length is a crucial attribute
of a potential path as well. Besides displaying the length of the chosen path
in millimeters, the line representing the path is mirrored on the head’s surface:
The line is elongated by the distance from the center of the tumor to the incision
point. Both parts are colored in red but differ in saturation to indicate the inci-
sion point. As a result, the user has always an idea of the length and orientation
of the possibly hidden access path. Tubes surrounding the part lying inside the
head are added since the spatial orientation of a line in 3D is ambiguous. The
tube is divided into a number of rings with a custom separation and radius in
order to provide a visual idea of the path length. Figure 9.5 illustrates the path
specific visual enhancements. Additionally, adjustments to the rings are benefi-
cial in terms of identifying and positioning risk-structures. Enlarging the rings
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(a) (b)

Figure 9.5: Path visualization: Tumor and vessel with t-map volume and core activa-
tion rendering. Cavity Slicing applied to the anatomical volume with low
smoothness. Visual enhancements facilitate the understanding of the spatial
position of the path (9.5a) and fiber filtering provides path crossing fibers
(9.5b).

reveals adjacent structures that may not be touched during the intervention,
such as functional areas.

9.6.3 Access path evaluation

The surgeon is able to place markers, which indicate potential access path en-
try points. All path-related visualizations and evaluations, such as distance
colorings, measurements or fiber filterings, are automatically adjusted to the
currently selected path. As follows, the user can easily switch between the de-
fined paths and compare them with each other. Cavity Slicing enables to focus
on structures directly surrounding an access path.

9.7 Workflow for surgery planning

In the following, an analysis workflow for neurosurgical planning using the
presented methods is proposed.
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9.7.1 Exploration stage

The individual patient status is provided in the exploration stage using the 3D
visualization of anatomical and functional structures. In particular, the loca-
tion of the lesion is of major importance and anatomic and functional struc-
tures have to be examined with respect to their spatial relation. Cavity Slic-
ing (view-dependent and view-independent) is especially helpful at this stage
since it reveals structures in their anatomical context. Fiber filtering is bene-
ficial to reveal important fiber subsets: For example, those passing fMRI ac-
tivation areas or the lesion. The exact location of core activation areas through
fMRI is accompanied with uncertainty. Therefore, functional areas are extracted
through volume renderings of the t-map with a user-defined transfer function.
DTI representations incorporate uncertainties regarding the integrity of fibers.
Enabling the FA-based color coding provides insight into fiber integrity; and as
a result, anatomical and functional properties are explored regarding specific
clinical questions.

9.7.2 Surgery planning stage

After an initial exploration of the data, the actual surgery planning takes place:
the definition of possible incision points and thereby access paths. Distance
measurements are applied to further enhance the spatial understanding of the
data, for example the position of risk-structures with respect to the tumor. Po-
tential infiltrations of vital fiber tracts by the lesion are detected through fiber
filtering and color encodings. Labels for the entry point are defined in order to
indicate different access paths.

9.7.3 Evaluation stage

The defined paths are examined in the evaluation stage by switching between
the markers. Adjustments to the path encompassing rings are a visual aid in
evaluating distances of adjacent risk-structures. Distance color encodings on
fiber hulls provide information regarding critical regions during surgery. In-
formation about deep-seated structures along the access path is crucial in neu-
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rosurgery. Therefore, the approach includes adjustments to the radius and the
smoothness of Cavity Slicing for path evaluation. If the user constantly increases
the depth of the clipping geometry while passing risk-structures along the way
to the lesion, an understanding about the actual opening is provided. A new
patient dataset requires individual settings such as transfer function or tractog-
raphy adjustments. For this reason, the program includes the option to define
and save presets: An assistant defines appropriate parameters for further inves-
tigation and treatment planning to be performed by the surgeon. Furthermore,
presets are a very convenient way of dealing with complicated cases where fur-
ther expert reports are needed. As a last step in neurosurgical planning, a pre-
operative Surgical View is presented which provides an impression of the actual
intervention. This is a meaningful contribution in order to finally relate the
planning to the actual intervention. To accomplish this task, the camera view
vector is defined as identical with the final access path. The view is frozen along
this direction and the head is rotated as in the surgery. An example for the Sur-
gical View is displayed in Figure 9.6.

Figure 9.6: Surgical View: Hulls of activation area crossing fibers, access path crossing
fibers, vessels, and the tumor are displayed. Cavity Slicing is applied with a
small radius, little smoothness, and a depth value smaller than the location
of the tumor.

Afterwards, the user adjusts the radius and the smoothness of the Cavity Slic-
ing. By constantly increasing the depth of the clipping geometry, one gets an
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impression how the opening appears while passing risk-structures along the
way to the lesion.

9.7.4 Performance

The stated visualizations run with interactive frame rates. Table 9.7 provides an
overview of the frame rates on a Core2 Duo, 3.16 GHz with 4 GB RAM and an
NVIDIA GeForce GTX 285 graphics card. For evaluation purposes, the render-
ing was rotated by 360 degrees. The viewport size was 512 × 512.

Visualization fps
T1: plane slicing, cortex: view-
dependent Cavity Slicing

15

+ tumor, vessel, tumor cross-
ing fibers

10

+ fMRI(core activation, t-map
volume rendering)

9

+ wrapped tumor crossing
fibers

9

+ smoothed Cavity Slicing 9

Figure 9.7: Frame rates of multimodal visualizations: Volumes with their according ren-
derings and resulting overall frame rates are depicted.

9.8 Discussion

State of the art as well as novel exploration approaches for multimodal visual-
izations in neurosurgical planning were developed and discussed in this chap-
ter. Additionally, interaction methods which aim at supporting the surgeon in
identifying risk structures and defining an appropriate access path to the lesion
were introduced. Parts of the discussed work were presented in the IEEE Vi-
sualization Contest 2010 and was rated second as well as received an Honorable
Mention Submission title. In the course of the contest review, two neurosurgical
experts evaluated the presented prototype in terms of multimodality, quality of
visualization, interaction, and clinical value. Clinicians deemed the tool as be-
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ing very good from a practical and applicable point of view. Data exploration as
well as risk structure identification was rated as having a high practical value as
well as improving current techniques. However, uncertainty visualization for
DTI and fMRI was not considered sufficiently. Cavity Slicing seems to pose a real
contribution to current exploration tools for multimodal datasets. Both view-
dependent as well as view-independent clippings were considered as beneficial
in neurosurgical planning. The overall clinical value and recommendation was
rated as very good.

Computer graphics techniques enable multimodal rendering, enhance the ap-
pearance of the risk structures and encoding essential information for surgery
planning. However, 3D visualizations are still not common in routine clini-
cal examinations and intervention planning: Many surgeons still mentally fuse
the multivalued data in order to obtain a spatial perception of the intervention,
which comprises several issues: First, it requires extensive knowledge in terms
of anatomy and modality as well as several years of training. Second, neglecting
the fact that the data is inherently 3D and the spatial relation of the structures
is crucial, can lead to severe misinterpretations. In many cases 2D projections
are used, including axial, coronal, and sagittal slices resulting from CT or MRI
acquisitions. However, these projections are unable to properly highlight 3D
constellations.

The access path planning stage is, same as the exploration stage, still subject
to mental fusion in some clinical environments. However, a preoperative view
which considers potential access paths as well as related risk structures, reduces
the probability of postoperative damage. In addition, knowledge about poten-
tial surgical approaches is also beneficial for decision making within the OR.
The integration of preprocessed data through a navigation system provides the
linkage between preoperative planning and the actual intervention. Further-
more, overlays within the OR microscope highlight risk structures during the
intervention.

For all these reasons, a holistic 3D-based approach for neurosurgery, includ-
ing multimodal visualization and intuitive interaction with the data for both
preoperative planning as well as during the intervention, poses a real benefit.
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Part VI

Conclusion





10 Summary

Insight into the human neuronal network is essential for fundamental neuro-
science as well as neurosurgical planning. In terms of fundamental neuro-
science, the brain remains an object of research since its functioning has yet to
be completely mapped. A leading question for neuroscientists is which cortical
activation zones are involved in specific tasks. Task-related cortical activity are
measured in MRI-based experiments such as fMRI or TMS. In fMRI-based ex-
periments, activation zones are identified by blood oxygenation. Using TMS,
neuroscientists are able to block or stimulate cortical areas with high preci-
sion by inducing electrical currents. Tasks range from simple finger tapping,
to identifying regions related to processes ranging from movement to complex
financial decision making in order to track the physiological process of decision
making. The combination of diffusion imaging-based fiber reconstructions and
fMRI or TMS provides the ability to corroborate hypotheses concerning task-
involved brain activation: White matter fiber pathways link brain activation
areas and thus form the basis for bidirectional communication.

Lesion localization, risk structure identification, and access path definition
are essential steps in neurosurgical planning procedures: The evaluation of
intervention-related structures is vital in order to determine an access path as
well as a resection extent that causes minimal postoperative damage. Thus,
the identification of major activation zones as well as connecting white matter
paths is crucial since damage to either can result in severe postoperative patient
impairment.

However, a contribution that aim to solve the mentioned neuroscientific and
neurosurgical issues is only put forward if MRI data is sufficiently processed
and visualized by software tools. This work comprises an introduction and mo-
tivation in Part I, followed by the proposed medical visualization approaches
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including intra-voxel diffusion evaluation in Part II, white matter tract recon-
struction in Part III, diffusion data visualization in Part IV, as well as a clinical
application in Part V. In the following, the contribution of each part is summa-
rized.

The presented work begins with a brief introduction on the history of neuro-
science and neuroanatomy. Neuroscientific questions were examined and dis-
cussed to provide background knowledge for the following approaches. Princi-
ples of molecular diffusion, how diffusion is measured and modeled, as well as
possible diffusion distributions are explained in subsequent sections. An impor-
tant issue of this work is to discuss the contribution of HARDI to neuroscience.
For this reason, the challenge provoked by crossing neuronal pathways, as well
as adequate diffusion reconstruction and modeling schemes for these configu-
rations is considered in greater detail. The introduction closes with a HARDI
dataset description.

HARDI-based diffusion profile classification is essential for subsequent pro-
cessing. Two indices were introduced: The first (MFC) is a global classifica-
tion approach which applies a morphological pipeline. The second (ISMI) is
a local method which comprises a local ODF analysis. Both approaches ar-
range diffusion profiles into the classes isotropic diffusion (gray matter) and
anisotropic diffusion (white matter). Furthermore, they proved to successfully
classify white matter distributions into either one or multiple intra-voxel fiber
configurations.

The following part applies the previously developed diffusion index, MFC,
to neuronal fiber reconstruction. The deterministic tractography approach uses
the previously introduced global diffusion classifier in order to facilitate line
propagation in regions with complex fiber configurations. In addition, the ap-
proach performs several ODF evaluation steps in order to determine the most
appropriate propagation direction. Furthermore, local distance configurations,
such as the streamline position within a neuronal bundle, are considered. A
phantom and a human brain dataset were used for evaluation and proved the
reconstruction power in challenging regions such as fiber crossings and fan-
nings.



181

Three-dimensional visualization is an important issue after fiber reconstruc-
tion. The presented methods include an advanced line rendering approach, a
visualization of intra-bundle diffusion characteristics, and an focus and context
approach for intersecting neuronal pathways. The first approach focuses on line
representations: An efficient GPU-based tube rendering approach was realized
in combination with diffusion index color mapping. Furthermore, the depth-
dependent halo rendering, proposed by Everts et al. [29] and a screen space
ambient occlusion technique are included to facilitate spacial understanding.

The subsequently proposed intra-bundle diffusion visualization approach com-
bines hull visualization with diffusion index information. Underlying bundle
anisotropy is mapped on the surface of a fiber encompassing hull by imple-
menting a GPU-based raycasting approach. Local diffusion information reveals
the degree of integrity and facilitates the exploration of intra-voxel fiber con-
stellations. Visual enhancements, such as silhouettes, ambient occlusion, and
Phong illumination, were applied and evaluated in the course of a user study:
The significance as well as the benefit of the approach was proven in the evalu-
ation. In addition, clinical applications in which the approach contributes were
named. Despite the novel insight, the method provide, color maps, and illumi-
nation methods have to be applied with great care since they alter the appear-
ance and can lead to misinterpretations.

HARDI enables a more precise reconstruction of the interwoven neuronal net-
work due to the advanced acquisition and modeling scheme. However, this fact
implies that resulting renderings are more intricate than visualizations result-
ing from DTI, and interpretation is challenging. Therefore, several focus and
context rendering approaches were designed for HARDI fiber visualizations.
The proposed approaches use previously introduced fiber and bundle render-
ings and are divided into inner-bundle and intersecting-bundle visualizations:
Inner-bundle visualizations focus on streamlines within one bundle whereas
intersecting bundle representations highlight fiber crossing areas by applying
cutting techniques. The resulting visualizations emphasize important bundle
features while obscuring visual clutter resulting form interwoven line represen-
tations.
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The last part of this work presents a clinical application of MRI volume vi-
sualizations; namely, neurosurgical planning. A multimodal planning tool fea-
turing a combined MRI volume visualization and access path estimation is pro-
posed. Focus and context renderings are applied to determine risk structures,
such as vessels, white matter pathways or activation areas within their anatom-
ical background. Furthermore, the definition and evaluation of various access
paths is feasible in order to determine the surgical intervention at minimal risk.



11 Outlook

The presented work takes steps towards HARDI data processing, visualization
and discusses its contribution to clinical and neuroscientific questions. In ad-
dition, visualization and interaction strategies for neurosurgical planning are
proposed. However, many challenges and scientific questions remain in terms
of MRI processing and visualization which are introduced in the following and
were partly published in [63].

Acquisition and reconstruction aspects of HARDI. The presented conclusions of
HARDI processing and visualization approaches are essential for future neuro-
examinations. However, the main reason why HARDI has yet to be imple-
mented in everyday clinical examinations is that the acquisition time and the
MRI parameters such as the required angular resolution, gradient strength, and
duration, have yet to be completely defined. Recently several have approaches
appeared that can solve the mentioned problem.

Prčkovska et al. [84, 85] made a first step towards defining appropriate diffu-
sion MRI parameters such as b-value, number of gradients, diffusion strength,
and diffusion time. The authors propose optimal diffusion parameters such as
minimal angular resolutions for HARDI acquisitions for certain fiber crossing
configurations. However, they also mentioned the dependency of acquisition
parameters on various factors for example the crossing angle of neuronal fibers
or the resolution of the image sequence. As a result, an overall solution for
HARDI acquisition parameters is challenging and undefined.

Spherical ridgelets present, similar to SHs, a set of spherical basis functions
to represent the diffusion signal. Using spherical ridgelets for ODF reconstruc-
tion and modeling enables compressed sensing, a sampling technique which
assumes a sparse MRI signal. As follows, the acquisition time for HARDI can be
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reduced and therefore a similar timing to DTI is obtained. This makes HARDI
feasible for clinical implementation.

Global diffusion indices for HARDI. In this work, two diffusion classification
indices were proposed which classify white matter diffusion profiles into single
and multiple intra-voxel fiber populations. However, an interesting issue is the
further classification of multiple diffusion profiles. In particular, the differen-
tiation of fanning, crossing, and kissing distributions. This discrimination has
great potential in diffusion imaging since subsequent tractography algorithms
benefit from it: The propagation direction can be determined according to the
underlying fiber course. As follows, a simple tractography approach is suffi-
cient. However, global approaches are required in order to clearly identify the
intra-voxel fiber distribution: Due to acquisition issues, noise, and modeling
artifacts, HARDI-based postprocessing approaches have to handle ambiguous
local ODFs.

Savadjiev et al. [105] made a first step towards a more precise voxel classifi-
cation using information about the diffusion distribution in the neighborhood
of the current voxel. The authors introduce a curve inference method to recon-
struct fiber courses. Thereby, the differentiation between curving and fanning
fiber courses is feasible.

In the work of Engelhardt [28], different diffusion reconstruction methods as
well as methods defining the fODF are investigated. Based on the resulting dif-
fusion PDFs, anisotropy classifiers are proposed which aim to differentiate the
intra-voxel fiber distribution in greater detail. To accomplish this task, global
diffusion information is incorporated into classification: The ODF maximum of
neighboring voxels is examined for current ODF maximum evaluation.

Advanced tractography methods for HARDI. A contribution of this work is the
development of a deterministic tractography approach using HARDI. Stream-
line approaches reconstruct neuronal pathways individually. Contrary to this
local approach, global fiber tractography considers the whole neuronal network
and is consequently more advantageous than local reconstructions. However,
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their computational complexity and the accompanying long reconstruction time
which is not clinically feasible stands against them.

As a result, efficient implementation of global tractography approaches poses
an interesting contribution to HARDI fiber reconstruction. Reisert et al. [89]
proposed a first global reconstruction method which is applicable in a clinical
environment. The authors demonstrated the reconstruction power of the algo-
rithm using a fiber phantom.

HARDI visualization. HARDI provokes visualization issues that differ from
DTI due to the potentially interwoven fiber tracts. Several approaches towards a
user-friendly examination of the data were proposed in the course of this work.
The introduced methods pose initial approaches to visualizing the detailed in-
formation provided by the ODF but at the same time avoid visual clutter. An
interesting issue is the user interaction with these HARDI visualizations in or-
der to gain more information on demand.

In addition, issues such as the estimation and visualization of uncertainty,
which is a current research topic, is also interesting in terms of HARDI: Changes
in acquisition protocols and reconstructing settings, such as ODF classification
or tractography parameters, can lead to different neuronal pathway results.
Brecheisen et al. [14] proposed an approach to visualize the impact of tractog-
raphy parameters for DTI. Similar approaches can be beneficial for HARDI as
well.

Clinical implementation and evaluation of approaches. This thesis discusses two
state of the art issues in neuro-visualizations: the processing and visualization
of HARDI data and neurosurgical planning. At the current state, both aspects
can not be combined since the acquisition of HARDI datasets for neurosurgi-
cal cases is challenging. However, all presented visualizations discuss potential
clinical applications such as answering the question if white matter is infiltrated
or displaced by a lesion. Therefore, further evaluation of advanced diffusion
imaging and visualization methods is needed in order to contribute to neuro-
surgical planning.
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The implementation of HARDI tractography into a TMS navigation system
has great potential to resolve neuronal connections more accurate. This is of
special interest in fundamental neuroscience where small pathways are involved
in complex tasks.
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