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Abstract
The availability of digital cameras and the possibility to take photos at no cost
lead to an increasing amount of digital photos online and on private computers.
The pure amount of data makes approaches that support users in the adminis-
tration of the photo necessary. As the automatic understanding of photo con-
tent is still an unsolved task, metadata is needed for supporting administrative
tasks like search or photo work such as the generation of photo books. Meta-
information textually describes the depicted scene or consists of information on
how good or interesting a photo is.

In this thesis, an approach for creating meta-information without additional
effort for the user is investigated. Eye tracking data is used to measure the
human visual attention. This attention is analyzed with the objective of infor-
mation creation in the form of metadata. The gaze paths of users working with
photos are recorded, for example, while they are searching for photos or while
they are just viewing photo collections.

Eye tracking hardware is developing fast within the last years. Because of
falling prices for sensor hardware such as cameras and more competition on
the eye tracker market, the prices are falling, and the usability is increasing.
It can be assumed that eye tracking technology can soon be used in everyday
devices such as laptops or mobile phones. The exploitation of data, recorded in
the background while the user is performing daily tasks with photos, has great
potential to generate information without additional effort for the users.

The first part of this work deals with the labeling of image region by means
of gaze data for describing the depicted scenes in detail. Labeling takes place
by assigning object names to specific photo regions. In total, three experiments
were conducted for investigating the quality of these assignments in different
contexts. In the first experiment, users decided whether a given object can be
seen on a photo by pressing a button. In the second study, participants searched
for specific photos in an image search application. In the third experiment, gaze
data was collected from users playing a game with the task to classify photos
regarding given categories. The results of the experiments showed that gaze-
based region labeling outperforms baseline approaches in various contexts. In
the second part, most important photos in a collection of photos are identified
by means of visual attention for the creation of individual photo selections.
Users freely viewed photos of a collection without any specific instruction on
what to fixate, while their gaze paths were recorded. By comparing gaze-based
and baseline photo selections to manually created selections, the worth of eye
tracking data in the identification of important photos is shown. In the analysis
of the data, the characteristics of gaze data has to be considered, for example,
inaccurate and ambiguous data. The aggregation of gaze data, collected from
several users, is one suggested approach for dealing with this kind of data.

The results of the performed experiments show the value of gaze data as
source of information. It allows to benefit from human abilities where algorithms
still have problems to perform satisfyingly.
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Zusammenfassung
Mit der zunehmenden Verbreitung digitaler Kameras nimmt die Anzahl der auf-
genommen Fotos drastisch zu. Fotos werden sowohl für den privaten Gebrauch
aufgenommen und auf eigenen Festplatten gespeichert, als auch im Internet ver-
breitet. Die Verwaltung dieser großen Datenmengen stellt eine Herausforderung
dar, bei der Benutzer zunehmend unterstützt werden müssen. Die automatis-
che Analyse von Bildinhalten anhand von Algorithmen ist ein ungelöstes Prob-
lem und kann kaum die Bedürfnisse menschlicher Nutzer erfüllen. Daher wer-
den häufig Metainformationen genutzt, um z.B. abgebildete Szenen textuell zu
beschreiben oder Bewertungen zu Fotos zu speichern. Im Rahmen dieser Arbeit
wird untersucht, wie diese Metainformationen ohne zusätzlichen Aufwand für
Benutzer generiert werden können. Dazu werden Augenbewegungen von Be-
nutzern mit einem Eyetrackinggerät erfasst und die daraus abgeleitete visuelle
Aufmerksamkeit als Informationsquelle genutzt.

Aufgrund von fallenden Hardwarepreisen bei gleichzeitig zunehmender Kon-
kurrenz sind die Preise für Eyetracker in den letzten Jahren stark gefallen und
ihre Bedienbarkeit wurde vereinfacht. Es wird angenommen, dass die Erfassung
von Blickdaten bald mit alltäglichen Geräten wie Laptops möglich sein wird,
während Benutzer z.B. verschiedenen Beschäftigungen mit digitalen Bildern
nachgehen. Die Auswertung dieser Blickinformationen erlaubt es, Informatio-
nen ohne zusätzlichen Aufwand für den Menschen bereitzustellen.

Im ersten Teil dieser Arbeit wird untersucht, ob durch die Auswertung von
Blickinformationen, Schlagworte Bildregionen zugewiesen werden können, mit
dem Ziel abgebildete Szenen zu beschreiben. Insgesamt wurden drei Experi-
mente durchgeführt um die Qualität der Beschreibungen zu untersuchen. Im
ersten Experiment entschieden Teilnehmer durch das Drücken bestimmter Tas-
ten, ob ein gegebenes Objekt auf einem Foto zu sehen war. In der zweiten Studie
suchten Benutzer mit einer simulierten Bildersuche nach Fotos von bestimmten
Objekten. Im dritten Experiment klassifizierten Benutzer Fotos bezüglich ge-
gebener Objektnamen in einem eyetracking-gesteuerten Spiel. In jedem Exper-
iment wurden die Augenbewegungen aufgezeichnet und die Objektnamen bzw.
Suchbegriffe entsprechenden Bildregionen zugeordnet. Die Ergebnisse zeigen,
dass in den verschiedenen Anwendungen Bildinhalte durch Blickpfadanalysen
sinnvoll beschrieben werden können. Im zweiten Teil wird die Identifizierung
von interessanten Fotos in einer Sammlung von Fotos anhand von Blickbewegun-
gen erforscht, mit dem Ziel, Benutzern individuelle Fotoauswahlen anzubieten,
nachdem sie Fotos in einer Sammlung betrachtet haben. Durch den Vergleich
der unter Einbeziehung der visuellen Aufmerksamkeit automatisch erstellten
Auswahlen mit manuell von den Benutzern erstellten Auswahlen, wird das Po-
tential von Blickinformation in der Erkennung wichtiger Fotos deutlich.

Die Ergebnisse dieser Arbeit zeigen das große und bisher ungenutzte Po-
tential der impliziten Nutzung von Blickdaten. Es kann von menschlichen
Fähigkeiten profitiert werden, besonders dort, wo Algorithmen die menschliche
Wahrnehmung noch lange nicht simulieren können.
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Chapter 1

Introduction

The interaction of users with digital data can provide information about the
data. The viewing behavior can be recorded with an eye tracking device and
analyzed with the goal to gain information on the viewed stimuli. This thesis
deals with the viewing of photos and with the creation of meta-information on
these photos to improve the understanding of the underlying semantics.

In this section, two big challenges in the creation of photo meta-information
are discussed, and the approach for creating them by means of gaze data, sug-
gested in this work, is introduced. Subsequently, the research questions and an
overview of the contributions of this work are given. The outline of this thesis
completes this section.

1.1 Motivation

The amount of digital data is increasing in consequence of technical achievement
in the last decades. One area of growth is digital photography and the spread
of photos on the Web and on hard drives or other personal devices. The first
digital cameras for the mass market were introduced in the 1990s, and until the
mid-2000s, most users switched from analog to digital cameras. Today, even
most mobile phones and tablet PCs have integrated cameras, and a majority of
the digital photos are taken with these devices, as shown by a statistic published
by the photo sharing web portal Flickr. Here, several Apple iPhone devices are
listed as the most popular camera models.1

Digital photography leaded to a huge amount of photos because digital pho-
tos are easy to take and do not cost anything. On newswiretoday.com, an
estimate of 3.5 billion cameras and camera phones in use worldwide and over 1
trillion personal digital photos stored on computers, on mobile devices and on
external web servers was published2. The pure amount of data makes it hard
to keep track of the photos, for example, when searching for a specific photo or
trying to gain an overview of a photo collection.

1http://www.flickr.com/cameras, last visited September 27, 2013
2http://www.newswiretoday.com/news/84943/, last visited December 20, 2013
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(a) Input for Search by image.
Visitors taking photos of the
Mona Lisa with their mobile de-
vices.

(b) The first results of the search results
list for input image (a).

Figure 1.1: Example for Google’s Search by image functionality.

1.1.1 Search for Photos and Labeling of Photos
The search for specific photos is not trivial, and different approaches are avail-
able for online and file system search. Photos that are available online are often
accessed directly by image search engines such as Google Images3 or Yahoo!
Image Search4 or by search functionalities provided by specific photo storage
platforms such as Flickr.5 Photos that are stored in file systems can be man-
aged by on-board functionality such as browsing the folder structure or search
for photos by their file names. Applications supporting the user in these search
tasks on personal computers are available; for example, Google Picasa6 and
iPhoto7 offer additional search functionalities.

The search can be performed based on the pixel information of the photos,
such as color schema or structure. These approaches are called content-based.
For example, the Google Images tool Search by image belongs to this category
of search applications. An example photo has to be uploaded to the web page,
and the Search by image functionality delivers a search results list with photos
that are visually similar to the input photo. In Figure 1.1, an example search
is depicted. Although the photos in the search results list show some similarity
concerning color schema and structure, it is obvious that the visually similar
photos often not show a semantically similar content.

The search for photos that were taken within a certain period or at a concrete
location can be performed based on photo context information, if this informa-
tion is available, for example, as EXIF information attached to the photo. The
approaches based on the context information are called context-based. A search
function, using the capture time of a photo, can be performed, for example, on
Flickr. Geo information are used, for example, by iPhoto, a photo management
tool offered by Apple, where the photos can be displayed on a map. These

3http://images.google.com
4http://de.images.search.yahoo.com
5http://www.flickr.com
6http://picasa.google.com
7https://www.apple.com/mac/iphoto/
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approaches depend on the availability of the context information, which has to
be stored during the photo capturing or added by hand.

Despite the aforementioned possibilities, most users intend to search for
photos based on their semantic content, that is, the depicted scene and objects.
The process of understanding visual scenes is complex. The image, projected
on the retina during the visual perception or on the chip of a digital camera,
is ambiguous because the same image can be built by different objects and
scenes during the projection of the 3-D world on a 2-D representation. The so-
called inverse projection problem has to be solved to derive real-world objects
from depictions [Gol13]. The depicted objects can be only partly depicted,
covered by other objects, or just blurred. In addition, the perspective from
which an object is depicted strongly influenced the photo. The so-called view
point invariance describes the different perspectives of one object depending on
the viewing direction [Gol13], whereby unusual view points can complicate the
identification of an object.

Thus, the complex process of human visual reception and image under-
standing is based on factors such as a high level of abstraction, background
knowledge, and emotions. It is described in more detail in Section 2.1. This
cognitive process solves the aforementioned problems but can hardly be repro-
duced by computer algorithms. The semantic gap [SWS+00] characterizes the
differences between this human image understanding and description with a
high level of abstraction, and the digital image representation that can be per-
formed by algorithms, which mainly uses low-level pixel data and the results of
image processing.

Fully automatic approaches that deal with the understanding of photo con-
tent are far from delivering results that are at the level of human understanding
of visual content [VJ01]. This is why often metadata is used for describing what
is depicted on a photo. Tjondronegoro and Spink [TS08] showed in their survey
that the majority of search engines for multimedia contents such as photos are
still based on keywords. Google image search extracts the keywords from the
information surrounding an image on a web page and other context information
such as the image name. Other applications provide the possibility to manually
add keywords as tags, for example, Flickr and Google Picasa. This manual cre-
ation of tags can be very tedious, especially when considering the huge amount
of photos. The need of high-quality metadata is obvious but the creation is a
challenge.

The search for photos is highly influenced by the semantic gap, as the un-
derstanding of photo contents is needed for supporting users (e.g., in terms of
high-quality tags) but can hardly be delivered fully automatically. This results
in the following:

Challenge 1 The automatic understanding of photo semantics and the creation
of photo descriptions as metadata are challenging tasks for computer algorithms.

1.1.2 Interestingness of Photos
The large amount of personal digital photos makes the management of photo
collections an increasingly challenging task. Users easily take hundreds of photos
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during vacations or personal events such as weddings or birthday parties. Often,
selections of “good” photos have to be created to reduce the amount of photos
stored or shared with others [FKP+02, KSRW06, NF09, RW03]. While users
enjoy certain photo activities such as the creation of collages for special occasions
such as anniversaries or weddings, these tasks are seen as “complex and time
consuming” for normal photo collections [FKP+02]. Algorithms are needed for
support users in the creation of selections.

In the automatic selection of photos from large collections, choosing pho-
tos only based on pixel and context information is often not sufficient. Even
knowledge of the semantic content of photos cannot perform the task of creat-
ing a satisfying subset because more complex and abstract criteria come into
play. The selection process itself can be very individual, and the decision on
which photos should be part of a selection is based on several factors such as
the depicted scene, the quality of the photo, and the depicted persons but also
on factors such as interestingness and personal preferences, which can hardly
be determined by algorithms. The selection criteria can be very diverse, and
even objective evaluations of which photos represent a photo set are difficult.
Figure 1.2 shows two photos of the Taj Mahal; the decision which photo is
“better” can barely be made without context information (e.g., is the depicted
person a family member of the person who should make the decision?) and
the knowledge of personal preferences (e.g., does a person like funny photos?).
Thus, photo selections are very individual and accordingly hard to be created
automatically.

These problems can be summarized in the following statement:

Challenge 2 The automatic identification of photos interesting or important
to users is a challenging task.

Figure 1.2: Two photos of the Taj Mahal — which photo is the better one? The
decision is very individual and depends, for example, on a possible relation to
the depicted girl on the right photo.
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1.1.3 Analysis of User Behavior
Online image repositories are highly frequented. The website flickr.com, an im-
age and video hosting community, has about 13 million users per day.8 The
users search for images, view images, upload images, and tag images. Besides
the analysis of the photo content at pixel level and the context information,
user behavior can be analyzed for benefiting from the intuitive photo under-
standing of humans and for understanding their preferences. A lot of research
has been done in the area of collecting implicit user feedback for improving
retrieval quality in online search. The relevance of web pages is derived from
the browsing behavior of search engine users. Implicit feedback systems have
the benefit that the cost of explicit user ratings or feedback can be removed.
Every user interaction with the system can contribute to an implicit rating.
In the work of Claypool et al. [CLWB01], implicit rating methods for recom-
mender systems were presented. Joachims [JGP+05] and Jung et al. [JHW07]
used click-through data of search engine users as implicit source of information
to determine the importance of search results. Other information such as how
long a document was displayed were investigated, for example, by Agichtein
et al. [ABD06]. Zhang et al. [ZGS+10] identified attention durations, click-
through rates, and mouse movements as implicit feedback measures. Cursor
movements were used in the detection of important and characterizing sen-
tences of an article, which then can be used for improved summarizations by
Lagun et al. [LAGA14]. Yao et al. [YMNL13] presented an approach of video
tagging based on click-through data. From this data, relations between videos
are explored and used for annotating online videos, for example, by assigning
tags from similar videos. Comparing the results, for example, with those from
feature-based similarity measures showed that the approach is promising.

The mentioned approaches cannot consider which contents a user perceives,
for example, on a web page. It is limited to the analysis of performed actions
such as clicking, while the main part of the behavior is unknown, such as the
visual scanning of web pages, the reading of texts, or the viewing of photos.
Knowing more about this kind of user behavior can extend the existing ap-
proaches by learning more about objects such as images from the user behavior.
This information can be gained from analyzing the user’s eye movements. Eye
tracking devices analyze the position of the users’ eyes relative to a monitor
as well as the viewing direction to compute the fixated points on a computer
screen.

Photos on private computers are usually viewed or skimmed at least once.
Most users like the viewing of photos, for remembering an event, or while sharing
experiences with others. Frohlich et al. [FKP+02] showed that the work with
photos has a big emotional payoff for the users. Rodden and Wood [RW03]
showed that photo collections are browsed frequently. However, the frequency
of browsing decreases over time. The viewing of photos usually happens shortly
after the capturing or downloading to a computer. Even in this scenario, in-
formation can be extracted when knowing the viewing behavior. Photos that
obtain more visual attention can be assumed as being more interesting or im-
portant.

8http://websiteworths.com/flickr.com, statistics July 27, 2010
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1.1.4 Eye Tracking Approach for Obtaining Implicit In-
formation from Users

In the past, professional eye tracking devices were expensive and were solely
used in laboratory experiments. But the interest in eye tracking technology is
growing, and the technological progress is impressing. It can be assumed that
eye tracking technology will be wider spread in the near future, for example, in
common devices such as laptops or mobile phones. One reason for this assump-
tion is the rapid development of sensors in IT hardware. Nowadays, eye trackers
can be developed using low-cost hardware, and more and more open-source eye
tracking projects appear. Another reason is that the prices for professional
system are falling, and the hardware becomes easier to use. For more details
on the development of eye tracking hardware, see Section 2.2. Based on this
assumption, the usage of gaze information in the context of everyday task is
reasonable.

The aim of this work is to implicitly gain meta-information about images
from the users’ viewing behavior during the work with photos. While the user
is performing image-related tasks like viewing photos or searching for images,
the gaze data is recorded by an eye tracker in the background. The gaze data
is analyzed to enrich the image meta-information, without any additional ef-
fort from the users. In the experiments, the participants were never told to
consciously control their gaze and to fixate, for example, on specific photos or
specific regions of the photos. Biedert et al. [BBD10] consider that “a high
promising approach is just to observe eye movements of the user during his or
her daily work in front of the computer, to infer user intentions based on eye
movement behavior.” The goal is to benefit from human perception skills for
annotating images and to analyze the eye movement to get to know individual
preferences.

1.1.5 Challenges Faced in the Use of Eye Tracking Tech-
nology

The use of gaze data as source of information involves some limitations and
challenges this work has to deal with.

First of all, today’s eye tracking technology brings some technical limita-
tions, such as a limited freedom of head movements for the users. Professional
devices such as the Tobii X60 eye tracker allow, for example, head movements
in dimensions of 44 × 22 × 30 cm. If the user’s head leaves this area of head
movements, no or only low-quality gaze data can be recoded by the device. This
can be restrictive for some users, depending on their behavior. During the eye
tracking experiments, it can be necessary to bring the sitting position of the
participants to mind. For a small number of users, eye tracking technology has
serious problems and the eyes cannot be clearly detected. This can be caused
by anatomical characteristics (like distinct strabismus) or corrective eyesight
devices such as some contact lenses. These kinds of problems rarely occurred
during the experiments and were not further analyzed because of the low im-
pact. In addition, the quality of gaze data is limited in its accuracy. Modern
devices has an accuracy of 0.5◦, which corresponds to about 5 mm on the screen.
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All aforementioned problems can negatively influence the gaze data quality,
and one has to deal with noisy data. The gained data is not comparable with
mouse data such as clicks or the pressing of buttons on the keyboard, which is
much more exact and controlled. That means, when dealing with gaze data,
inaccurate data has always to be considered.

Furthermore, there are biological and/or psychological factors that compli-
cate the gaze analysis. Humans are, for example, capable to recognize visual
information in the corner of their eyes with the so-called covert attention [Gol13].
Even large objects are usually not scanned completely with the eyes but only
parts of them are fixated and the rest are perceived with the extra-foveal vision.
Thus, parts of, for example, a photo can be perceived even without directly fix-
ating on it. This problem can also occur vice versa; fixations can be on areas
that are not consciously perceived.

When analyzing a human gaze trajectory, it is also not possible to distinguish
between fixations that are part of a scanning process and fixations on an object
of importance. In addition, the level of concentration on the perceived visual
content cannot be measured. Vetegaal [Ver02] said, “Although eye fixations
provide some of the best measures of visual interest, they do not provide a
measure of cognitive interest.” From the information on which area was observed
on a photo, it cannot be derived if the information has been processed and
was perceived. In addition, it is also not clear why an object caught the visual
attention of a human. An area can be fixated because of a given task or because
something else caught the observer’s attention. This can be a familiar, a weird
or a funny object.

The information gained from eye tracking devices can be ambiguous and
inaccurate. The challenge is to examine how suitable the information, gained
from gaze data, is and if it is reliable enough to be used in annotation tasks.

1.2 Research Questions
In the forgoing discussion on problems in the management of digital photos,
two big challenges were identified. In this thesis, the potential of generating
information on photos from gaze data is analyzed for these two challenges pre-
sented above — the generation of labels describing the depicted scene and the
identification of interesting photos. Thus, on the one hand, it is investigated if
the human capacity of identifying objects in photos can be exploited to obtain
information about objects in images. This information is used for the labeling of
image region with the aim to describe the content of photos in more detail. On
the other hand, the capabilities of identifying interesting photos in a collection
of photos for creating an individual photo selection is examined.

As an exploitative approach, the human behavior is recorded in the form of
eye movements and analyzed without additional effort for the users.

Understanding Image Semantics — Region Labeling

Earlier in this section, the importance of labels describing the content of photos
was discussed. These labels can be defined at photo level, assigning tags to
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images as a whole. A more detailed description of photo contents at pixel level
can be worthwhile, for example, for improving image search. Several works
showed that a more detailed description of photo contents by region labeling
can improve the search [KTS01, KY08, YLZ07]. Region labels can also serve
as ground truth data for computer vision algorithms [RTMF08]. Chum and
Zisserman [CZ07] found that regions of interest improve the classification and
localization in object detection. Region labels are also helpful in recognizing
depicted scenes, for example, in photos of indoor scenes [QT09]. The manual
assignment of tags to images can already be tedious [Rod99] but the manual
region labeling is even more burdensome.

In the first part of this thesis (Sections 4 to 7), the human capacity to
intuitively identify objects in photos is exploited with the aim of labeling image
regions. Users’ gaze paths are analyzed to assign tags to regions with the aim
to benefit from this intuitive identification of objects. The potential of this idea
is investigated in three experiments. The examples in Figure 1.3 illustrate the
performance of the human visual perception. Although the photos show a chair
from an unusual perspective (left), only parts of a chair (center), or a designer
chair with an unusual form (right), the identification of these objects is not
difficult to a human observer but can be difficult for computer algorithms.

Figure 1.3: Photos of chairs — Easy to identify for human viewers but can cause
problems for computer vision algorithms because of perspective and cropping,
unusual form of appearance, and depicted scene.

The following research questions concerning region labeling are investigated
in this thesis:

RQ 1 Can information about depicted scenes on photos be gained
from gaze data analysis?

The gaze data shows the visual interest of users. In this work, the question if
the data is precise enough to give evidence on the depicted scene is investigated.

This research question is split up into the following sub question:
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RQ 1.1 Is it possible to identify an object, from a given set of objects, by means
of gaze data from users who had decided if they can see that specific object on a
photo?

RQ 1.2 Can the identification be improved when considering inaccurate data?

RQ 1.3 Does the aggregation of gaze data gained from several users improve
the region identification results?

RQ 1.4 Can objects on photos be identified from gaze analysis when no high-
quality object regions are given?

RQ 1.5 Can the region labeling approach be applied to daily routine tasks such
as online image search, with users searching for photos in a simulated web search
application?

RQ 1.6 Does the approach perform well in a distracting situation?

Identification of Interesting Photos — Creation of Selections

In the second part of this work (Section 8), the gaze-based approach is ap-
plied to the creation of photo selections. Interesting photos from a collection
of photos are selected by means of gaze analysis with the goal to create a rep-
resentative, high-quality selection. Image collections can be used, for instance,
for the automatic creation of photo books [SB11] or for creating presentation
for friends or family. The visual attention on specific photos in a collections is
measured by analyzing the gaze data. This data is interpreted as interest, and
the photos with highest results are assumed to be more interesting to the user
than the photos with lower results. Photo selections are then automatically
created based on the level of interestingness.

The following research questions are investigated in this thesis:

RQ 2 Can important photos in a collection be identified from gaze
analysis, and is this information worthwhile in the creation of indi-
vidual photo selections?

RQ 2.1 Does a gaze-based selection outperform objective selections based on
content and context analysis when comparing the selections with those created
manually by the users?

RQ 2.2 Does the personal interest in a viewed photo set have an impact on the
obtained selection results?

1.3 Contributions
This thesis is an experiment-driven work. In total, four user experiments were
performed to determine the problem of using gaze information in the creation of
photo metadata. Three experiments were conducted in the region labeling part,
one for the photo selection part. An overview of the research questions and the
conducted experiments can be found in Figure 1.4. In total, 141 test execution
of four different experiments were performed with 122 unique volunteers.
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Figure 1.4: Structure of this work structured by the performed experiments.
The sections 2 (Background) and 3 (Related work) provide the basis for all
experiments and sections.

1.3.1 Contributions to Research Question 1: Photo Re-
gion Labeling

Research question RQ 1 and the sub questions RQ 1.1 to RQ 1.6 are dealing
with the problem of describing the content of a photo by assigning tags to
image regions. Three consecutive experiments A to C with in total 100 unique
participants were conducted concerning these questions. The assignment of
labels to image regions was performed by analyzing the gaze paths of users
completing different image tasks. In several steps, it was investigated if the eye
movements provide reliable information for performing these assignments.

The main contribution to the first research question 1 is that it can be shown
that:

C 1 The labeling of image regions is possible by means of gaze data
for describing the photos’ semantics and it outperforms baseline ap-
proaches for region labeling.

More details on the region labeling approach and its potential are given in
the following contributions concerning the more detailed research questions that
led to contribution C 1.
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In the first experiment, Experiment A, gaze data was collected in a con-
trolled experiment. The users had to decide whether they can see a given
object on given photos. First, a tag was presented to the participants. Then a
photo was displayed on the screen in full-screen mode, and he/she had to decide
whether an object described by the given tag could be seen on the photo. The
decision was made by pressing a key on the keyboard. For all photos, high-
quality segmentations in the form of manually marked objects were given. In
this first step in answering RQ 1.1, 13 different eye tracking measures were
investigated for selecting one of the given objects by means of the recorded gaze
data. As a result, it could be shown that 63% of the selected objects were in
fact described by the given tag. The results significantly outperformed three
baseline approaches on performing photo region labeling based on the given
object regions. It can be concluded that

C 1.1 The identification of an object region for a specific tag (from a given set of
manually created object regions) in photos presented in a controlled experiment,
outperforms baseline approaches not using gaze data.

In the gaze analysis performed in Experiment A, two approaches for deal-
ing with the specific characteristics of gaze data were introduced. The region
extension considers the possible inaccuracy of gaze data and assumes that fixa-
tions that are positioned close to a region could have in fact been on this region.
An extension of 13 pixels led to a maximum improvement of 9% compared with
the results without region extension. The region extension was thus applied to
all following analysis. The weighting of small regions was introduced to com-
pensate the fact that it is more likely that a big region is fixated by chance or
during a scanning process than a small region. Thus, the idea is that fixations
on small region should have a higher validity. The results for the weighting
approach were diverse, the weighting can improve the results but it can also
worsen the results. A definition of good parameters for the weighting was dif-
ficult. Consequently, the weighting is not applied to following analysis. The
findings on research question RQ 1.2 are concluded as follows:

C 1.2 The extension of image regions improves the identification of relevant
image regions, while the weighting of small image regions can improve the results
but the identification of good parameters is difficult.

In Experiment A, some participants viewed the same photos and decided
about the same objects. In the analysis, it was investigated if the aggregation of
gaze paths, thus the usage of all fixations from all users in the analysis, improves
the results. It pointed out that the results improved with an increasing number
of aggregated gaze path. The improvement was 109% when comparing the
results for single gaze path analysis with the results for 10 aggregated gaze
paths. Related to research question RQ 1.3, this result shows that:

C 1.3 The aggregation of gaze paths of different users improves the labeling
results compared to single gaze paths.

The contributions described before were published in [WSS12] and [WSS13a].
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In the previous gaze analysis, manually created image regions that described
the depicted objects in the form of polygons were used. In a next step, the
approach was extended by using segments gained from automatic image seg-
mentation obtained from a state-of-the-art segmentation algorithm instead of
the high-quality polygons. The region labeling task was more challenging as
the whole image was segmented and the segmentation was less exact as a conse-
quence of under- and over-segmentation. An additional measure was introduced
in this work. It is not based on a segmented image but uses information ex-
tracted from so-called heat maps, which represent the areas which obtained the
highest visual attention. The data obtained from Experiment A was used in
the analysis. It could be shown that despite the additional severity, the labeling
of image regions was possible with an average precision of 56% at pixel level
over all photos in the data set. The results significantly outperformed base-
line approaches. This work was published in [WSS13b] and answered research
question RQ 1.4 by showing that:
C 1.4 Region labeling is possible without the availability of high-level object
regions.

In the second experiment, Experiment B, participants were asked to search
for photos using a simulated online image search interface. The experiment
application was designed to resemble a common online images search consisting
of a search query page and a search results list. In the analysis of the data,
the denoted search terms were assigned to specific regions in the images of the
search results list. Therefore, the previously introduced measures were used.
It became apparent that the gaze-based measures significantly outperformed
baseline measures. The results were published in [WNS14] and answer research
question RQ 1.5 with contribution:
C 1.5 Region labeling can be performed in image search scenarios by assigning
search terms to image regions by means of gaze analysis.

In the third experiment, Experiment C, it was investigated if the region
labeling approach also performs well in a very different scenario, while the user
is playing a gaze-controlled game. As in the first experiment, the task was
to decide whether a specific object can be seen on a photo. The photos were
classified concerning these object categories by fixating indicated areas on the
gaming screen. An additional rating was performed during this classification.
While in the first studies, the user had no time constraints and the photos were
displayed full screen resp. static in a search results list, the gaze-controlled game
EyeGrab was developed to demand fast decision making from the participants
and to break up the full concentration on the photo viewing. The user was
brought into the immersive situation of a game with distractions from the game
setup, the gaze control, and the emotional pressure of success and failure. It can
be shown that, however, the region labeling can be performed at a precision at
pixel level of 61%, outperforming baseline approaches. The game was presented
in [WNS12]. The results of the region labeling were published in [WSS14a] and
answer research question RQ 1.6:
C 1.6 Region labeling by means of gaze analysis can be performed in the im-
mersive scenario of a gaze-controlled computer game.

12
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1.3.2 Contributions to Research Question 2: Creation of
Photo Selections

The selection of photos based on the analysis of gaze paths of users who viewed
photos in a collection was investigated in Experiment D. During the viewing
of the photos, gaze paths were recorded and subsequently used in the creation of
an individual photo selection. These selections were compared with selections
manually created by the user. In the creation process, gaze data and other mea-
sures obtained from the photo’s content or context information were combined.
This work answered research question RQ 2 and showed that:

C 2 Individual photo selections created based on eye tracking infor-
mation significantly outperforms photo selections not using gaze in-
formation.

This contribution is concluded from finding presented subsequently. The
results were published in [WNS+13] and [WSS14b].

In the creation of photo selections, eye tracking measures, content-based
measures, and context-based measures were combined by means of machine
learning. It turned out that the selections based on all measures and selections
based on eye tracking measures significantly outperformed the baseline selec-
tions, based only on content and context information with an improvement of
up to 22%. Research question RQ 2.1 can thus be answered by contribution:

C 2.1 Photo selections based on gaze data significantly outperformed objective
selections based on content and context analysis alone.

The photo collection used inExperiment C was designed in such a way that
it contained photo sets that were of interest to the participants and photo sets
that were of less interest. The photos of interest showed the participant itself,
its colleagues, or it depicts situation of an event the participant participated
in. The capability of the gaze-based photo selection approach was separately
investigated for these photo sets for answering research question RQ 2.2. The
analysis showed that:

C 2.2 Higher personal interest in the viewed photo sets has a positive influence
on the photo selection results.

1.4 Publications
This thesis provides a number of contributions to the literature about the usage
of gaze data in annotating photos and in the identification of interesting photos.
Parts of this work were presented in the following main publications:

• Tina Walber, Ansgar Scherp, and Steffen Staab. Smart photo selec-
tion: Interpret gaze as personal interest. In Proceedings of the 32Nd An-
nual ACM Conference on Human Factors in Computing Systems, CHI’14,
pages 2065–2074, New York, NY, USA, 2014. ACM.
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• Tina Walber, Chantal Neuhaus, and Ansgar Scherp. Tagging-by-search:
automatic image region labeling using gaze information obtained from
image search. In Proceedings of the 19th international conference on In-
telligent User Interfaces, pages 257–266. ACM, 2014.

• Tina Walber, Ansgar Scherp, and Steffen Staab. Exploitation of gaze data
for photo region labeling in an immersive environment. In MultiMedia
Modeling, pages 424–435. Springer, 2014.

• Tina Walber, Ansgar Scherp, and Steffen Staab. Can you see it? two
novel eye-tracking-based measures for assigning tags to image regions. In
Advances in Multimedia Modeling, pages 36–46. Springer, 2013.

• Tina Walber, C. Neuhaus, Steffen Staab, Ansgar Scherp, and Ramesh
Jain. Creation of individual photo selections: read preferences from the
users’ eyes. In Proceedings of the 21st ACM international conference on
Multimedia, pages 629—632. ACM, 2013.

• Tina Walber, Ansgar Scherp, and Steffen Staab. Benefiting from users’
gaze: selection of image regions from eye tracking information for provided
tags. Multimedia Tools and Applications, pages 1–28, 2013.

• Tina Walber, Ansgar Scherp, and Steffen Staab. Identifying objects in
images from analyzing the users’ gaze movements for provided tags. In
Advances in Multimedia Modeling, pages 138–148. Springer, 2012.

Published Data Sets

The data sets on which the publications [WSS13a] and [WSS14a] are based were
made available on http://west.uni-koblenz.de/Research/DataSets/gaze.
The data sets contain the photos used in the experiment, the labeled ground
truth image regions, as well as the recorded gaze data.

1.5 Outline
An overview of the research questions and conducted experiments were shown
in Figure 1.4. In this overview, also the sections dealing with the indicated
topics are given.

First in this thesis, background information on the human visual perception
process and on eye tracking technology is given in Section 2 (Background), as
far it is needed as foundation for the work. The subsequent Section 3 (Related
Work) presents important research approaches and results.

In the Sections 4 to 8, the performed research is presented. The four Sec-
tions 4 to 7 are related to the region labeling approach (Research Question
RQ 1); Section 8 refers to the Photo Selection Topic (Research QuestionRQ 2).

The chapters are related the four experiments performed in this thesis. Sec-
tions 4 and 5 are based on Experiment A, which was conducted as a strongly
controlled experiment. The analysis was based on manually created regions in
Section 4 and on automatic photo segmentation in Section 5. Sections 6 and 7
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apply the introduced region labeling approach to different usage contexts. Sec-
tion 5 describes the research on performing region tagging in search and tagging
scenarios investigated in Experiment B, while Section 7 describes the usage
in the gaming scenario of Experiment C. In Section 8 the research on photo
selection creation based on Experiment D is presented. Finally, in Section 9,
the results of this work are concluded and future work is outlined.
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Chapter 2

Background on Eye
Tracking and Gaze
Analysis

First, a short introduction into the human visual perception is given. Then the
techniques for measuring and analyzing gaze data are presented. Considering
the focus of this work, this section concentrates on the perception of photos
displayed on a computer screen.

2.1 Human Visual Perception
The visual perception is one of the most important elements of the human
sensory system. It includes the incidence of reflected light on the retina, the
control of the eyes by muscles, and the signal processing in the human brain
with the recognition process that includes knowledge and emotions. The eye is
mainly an input medium; it receives visual information. In the communication
between humans, the eyes can become a source of information, for example,
by fixation on objects for directing the attention of other humans to it or by
expressing emotions.

While the biggest part of the perception process cannot be measured or
predicted as it takes place in the human brain, the movement of the eyes can
be observed. The positions of the eyes and the focused points, for example, on
a computer screen, deliver unique information on the human visual attention,
as the input of the perception process can be derived from it. Only a short
overview on the visual perception can be given in this section; for more details,
see Goldstein’s book Sensation and Perception [Gol13].

2.1.1 The Human Visual System
Light, reflected by the surrounding environment or emitted by a computer
screen, falls on the back of the human eye, which is covered by the retina.
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The retina contains two kinds of light receptors: cones and rods. Rods are
highly light sensitive but they do no deliver color information. Cones are less
light sensitive but highly color sensitive. The receptors are not equally dis-
tributed on the retina. The cones are concentrated in a small center region of
the retina, while the rods build an outer ring. The outer ring corresponds to the
so-called peripheral vision surrounding a center area of high resolution, called
fovea. Parts of an image that are depicted in the center of the retina are thus
perceived with a higher resolution than the parts depicted in the outer areas.

Parameters and dimension in the visual perception are usually given as de-
grees of the visual angle. The center of the visual angle is built by the fovea.
The visual angle A is calculated as follows:

A = 2 arctan O

2D (2.1)

where O is the size of the scene object and D is the distance between the
eye and the object.

The human field of view, thus, the area in which visual information is per-
ceived, has a size of about 180◦. The area of highest acuity, where the image is
depicted on the fovea, is a circular region of about 2◦ [Duc07]. For a distance
of 60 cm between the eye and the monitor, a circular area on the computer
screen with a diameter of about 4 cm can be perceived at highest resolution.
This circle is surrounded by a ring called the para-foveal area, from about 2◦ to
about 5◦. At 5◦, the acuity has decreased to only 50% compared with the foveal
vision. The area in which detailed information can be perceived is limited to
about 30◦, which corresponds to about 30 cm, also given a distance of 60 cm to
the computer screen. Outside this area, mainly movement can be perceived.

In Figure 2.1, the different areas of the visual field are visualized on an
example photo. The depicted areas were calculated for a photo displayed on a
computer screen with 20 cm of height, again for an assumed distance of 60 cm.

Because of the relatively small area of highest resolution, the eyes have to
be moved to scan a complete scene. Each eye is controlled by three pairs of
muscles [HNA+11]. Seven kinds of eye movements occur during the scanning of
a scene [Gol13]. Most of them are not part of the analysis in this work because
they are not part of the controlled perception process. An example for those not
considered movements are microsaccades, which avoid the visual receptors to be
continually simulated by the same input signal and ensure continuously small,
jerk-like movements. Another example are tremors, involuntary and rhythmic
contraction of the muscle, whose function is not clear but could be caused by
imprecise muscle control. The important phases of the eye movements that
are considered in this work are fixations and saccades. These phases take place
independently from the involuntary, small eye movements mentioned previously.
Fixations are periods when the eyes steadily gaze at one point for at least 80-100
milliseconds and in an area of 1 to 2 minutes of arc in amplitude. The normal
dwell time of fixations lies between 200 and 400 ms [GSL+02]. Saccades are
fast movements between these fixations, when the focal area is relocated. The
maximum of the visual information is perceived during the fixations. Thus,
the identification of fixations in gaze trajectories is of big importance, and the
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Figure 2.1: Illustration of the visual field with (fa) foveal area, (pfa) para-foveal
area, and (pa) peripheral area for a photo displayed with a height of 20 cm.

analysis of the fixated points in these periods are mainly used in the analysis of
gaze data.

Scan paths are often visualized by depicting fixations and saccades. Fix-
ations are displayed as circles, with the diameter encoding the duration of a
fixation. The saccades are displayed as lines, linking the fixations. An example
for a visualization can be found in Figure 2.2.

Pupil Size

Besides the information on which point was fixated, the human eye provides
additional insights. Psychological studies have revealed that there are correla-
tions between the pupil behavior and emotional states. For example, the results
of Partala and Surakka [PS03] show that the pupil size is significantly larger
during emotional stimuli than during neutral stimuli. Larger pupil size changes
were recognized when participants viewed emotionally arousing photos, com-
pared with neutral photos, by Bradley at al. [BMEL08]. However, it cannot be
distinguished between pleasant or unpleasant stimuli.

2.1.2 Perception Process and Information Interpretation
The challenge in the visual perception process is to derive a 3-D scene from a
2-D presentation, when a scene is depicted on the retina of the human eye. The
reduction of the dimension comes along with ambiguity — the same image can
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(a) (b) (c)

Figure 2.2: Examples for scan paths recoded with an eye tracking device. Fix-
ations are depicted as circles, the radius encodes the duration of the fixations.
The lines between the fixations are saccades.

be built by different objects and scenes. That makes the conclusive identification
of, for example, 3-D objects in 2-D presentation impossible. The “inverse pro-
jection problem” describes this problem. Effects such as blurry images, partly
depicted objects, or unusual perspectives aggravate the problem.

The automatic understanding of visual contents is a challenging task for
computer algorithms, while humans usually have no problems in perceiving a
scene. For humans, the derivation of semantic information from the pure visual
stimuli is intuitive. This impressing performance of the human brain is caused
by several concepts, investigated in psychological research.

The identification of the gist of a scene can take place within less than a
second, even without identifying objects. This is performed based on global
image features such as “degree of naturalness” (is the depicted scene natural or
artificial?), “degree of expansion,” or “color.” From this information, inferences
on the presented scene can be rapidly drawn. It can be estimated, for example,
where a situation takes place and what are the areas containing information.
Thus, already the very first fixations on a scene are meaningful, as they are not
placed randomly.

In the advanced perception process, the perceived data has to be structured
and interpreted for obtaining information on the depicted scene and objects.
The main perceptual organization strategies in processing the perceived color
information are grouping and segmentation principles. In the grouping step,
the visual information is organized based on organization principles. Exam-
ples are the “principle of similarity,” which describes that similar things are
grouped together or the “principle of good continuation,” which means that
points are assumed as belonging together when they are linked by a straight or
only smoothly curbing line. More principles are known and can be found, for
example, in [Gol13]. In the figure-ground segmentation, the distinction between
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figure and ground takes place. The segmentation follows principles, for example,
specific “properties of figure and ground.” They are automatically considered
and comprise, for example, the occurrence of borders, which separate the fig-
ure from the ground, or unformed material, without a specific shape, which is
characteristic for the ground. “Image-based factors” (e.g., an object is usually
depicted lower in the image than the background) or “subjective factors” (e.g.,
past experiences or instructions) also play a role.

In the more advanced perception of a visual scene, which is mainly the inter-
pretation of the perceived forms and figures, prior knowledge and experiences
are of importance. Besides the aforementioned principles, the human visual
system is adapted to the physical characteristics of our environment. One ex-
ample is the light-from-above assumption, which is grounded on the experience
that usually light falls from above on a scene and the shadows are projected
accordingly. This knowledge serves the orientation in a scene and the percep-
tion of the geometric characteristics. Furthermore, semantics has an influence
on how scenes are perceived, as humans have a learned knowledge on which ob-
jects occur in which scenes. For example, Torralba et al. [TOCH06] showed the
mandatory role of scene context in an experiment with participants searching
for objects in real-world images. Considering all these principles, the difficulties
of algorithms to simulate human perceptions get clearer.

2.1.3 Visual Attention
Because of the small area in which the perceived image is of high resolution,
the eyes have to be moved to perceive a complete scene. Two models build the
basis for understanding how a scene is scanned.

On the one hand, bottom-up models explain eye movements by saliency
in the image itself. Experiments showed that persons who freely view images
tend to fixate salient regions [PIKI05, IK00, IK01]. The bottom-up approach
considers mainly the incoming data and is thus data-driven. The low-level image
features are, for example, brightness, color, or contrasts [PIKI05, IK00, IK01].

On the other hand, top-down models consider the viewing process as
actively controlled attention. Research has shown that eye movements can be
controlled consciously. A very fast visual subsystem delivers a first overview of
the viewed scene, based on gist and coarse layout, as shown by Itti [Itt03] and
described in the previous section. This can be performed within a fraction of a
second. In addition, experience and assumptions on where specific elements are
positioned in a scene are automatically considered. After this first impression
of the gist of scene, the visual attention follows the individual interest. When a
task is given, the interest strongly depends on this task, as shown, for example,
by Yarbus [Yar67] in 1967. In his experiment, the gaze paths of one user viewing
one image with different tasks were compared. The visualized gaze paths can
be found in Figure 2.3. Newer work by Henderson et al. [HBCM07] showed that
users with a strong task can even ignore low-level saliency. Saliency can already
be ignored during the very first fixations, as shown by Einhäuser et al. [ERK08].

For free-viewing situations, when no task is given to the users, Goldstein
summarizes that “we attend to what interests us” [Gol13]. Calvo and Lang
have shown that emotional scenes [CL04] attract attention earlier. In addition,
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the tendency of humans to fixate faces in images is well-known, and even the
identification of parts of the faces from gaze paths can be performed [SBL+09].

Figure 2.3: Yarbus experiment from 1967 — Visualizations of gaze paths show
the strong influence of the given task.

Perception of Objects

Work of Triesch et al. [TBHS03] showed that the perception is a need-based
approach and that desired objects are quickly detected in visual scenes. Ra-
manathan et al. [RKS+10] declared that “visual attention is not subjective but
is directed towards salient objects.” Selective visual attention is the mechanism
by which we can rapidly direct our gaze towards objects of interest in our visual
environment [TG80]. The results of Nutmann and Henderson [NH10] and Foul-
sham and Kingstone [FK13] pointed out that the preferred viewing location for
objects in complex scenes is the center of the object. This finding holds even
for the very first fixations, the so-called landing points on an image.

Scan patterns

The scan paths are also influenced by where an information is expected. In nat-
ural scenes, the sky is expected to be on the top, and a car on a road. Besides
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these expectations, learned patterns for information display can influence gaze
paths in specific situations. One effect is called center bias and it was described
amongst others by Judd et al. [JEDT09] and Zhao and Koch [ZK11]. It de-
scribes an concentration of fixations in the center of an image. The appearance
of such a bias is based on different factors like the experience that photogra-
phers place the most important objects in the center of an image or simply the
straight-ahead position in front of the screen. Also other inherent photographic
bias such as image compositions following the golden section can occur [Fre07].
On web pages, the logo can often be found in the left upper corner and the
navigation on top of the page [BDC10]. The reading direction influences the
scanning of list [Duc07]. In user experiments, a button for navigating through
different pages of an experiment application is expected at a specific position
on the screen when it appeared at that position in the previous experiment
steps [PHG+04].

Covert Attention and Inattentional Blindness

Fixations in gaze paths show the areas of the highest visual perception and they
are an indicator for the users’ attention. However, it cannot be measured if the
perceived visual information is important to the human, why it is important,
or even if the information is indeed perceived and remembered. A well-known
effect is the inattentional blindness [MR98]. It describes the lack of conscious
perception of a scene or specific objects, even though it was fixated. This can
happen when the “thoughts are elsewhere” or one is concentrated on a specific
task, fading down information not important for this task. A well-known work
is the Gorillas Experiment by Simons and Chabris [SC99], where even a gorilla
in a group of persons can be overseen if the concentration lies on the given task
to count the persons.

The opposite effect of the covert attention can also appear. It describes
the effect that parts of a scene are perceived even without directly fixating it.
Although this covert attention can happen, it usually takes place when a whole
scene has to be overseen while the main attention is directed to one point. For
example, in a baseball game, the players have to track the ball but also the
whole scene on the playing field. However, it is unusual not to fixate an object
of interest directly in other situations without this special need of keeping an
overview.

2.2 Eye Tracking Hardware

Eye tracking devices measure the position and the orientation of the eyes in
space and calculate the viewing direction from this data. By calculating the
intersection of this viewing direction ray and an object in the real-world, for
example, a computer monitor, the look-at positions can be determined. The
fixated position is called point of regard (POR) [Duc07]. Additional information
such as the user’s pupil size are usually available as well. Other data such as
blink rates can be extracted from the raw eye monitoring data.
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In this section, a short overview of recent eye tracking hardware is given as
well as an assumption on the future development. Limitations of the systems
and specific characteristics of gaze data are discussed. Finally, the equipment
used in experiments presented in this thesis and its parameters are described.

2.2.1 State of the Art
An eye tracking experiment setup consists of different components that are
usually an eye tracking module, a monitor, and a computer running the eye
tracking software.

Different approaches for tracking the eyes were invented for measuring the
human’s viewing behavior. The early devices were based on measuring skin’s
electric potential differences by placing electrodes on the skin around the eye.
Contact lens-based methods were also developed. They allow very sensitive
measurement but are also coupled with the need of physical contact with the
eyeball and a distinct discomfort for experiment participants.

Nowadays, the most common eye tracking devices are based on measuring
the pupil and the corneal reflection in a video sequence to identify the viewing
direction. They are non invasive and thus more comfortable to be used. The
hardware components of these systems are cameras and optionally additional
sources of light. Most often, they make use of infrared light, as it is invisible
for the user and less sensitive to daylight and other surrounding light sources.
Depending on the position of the source of light and the human eyes, the pupils
appear dark or bright in the recorded video sequence. In Figure 2.4, pictures
of a bright pupil (A) and a dark pupil (B) are shown. For the bright pupil
tracking, the illumination has to be placed close to the viewing direction of the
camera. The light is then reflected off the back of the retina, which causes a
light pupil, as also known from the red eyes effects in photographies. When
the camera is offset from the viewing direction and the retro reflection from the
retina is directed away from the camera, the pupil appears black. Most systems
use the dark pupil approach while in some cases, depending on, for example,
the race, the bright pupil approach delivers better results. The two methods
can be combined in advanced eye tracking systems.

A B

C

Figure 2.4: Pictures of the human eye, showing the pupils (A and B) and the
corneal reflection C [Mil03].
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Computer vision techniques are used to identify a person’s head, eyes, pupils,
and corneal reflection. The corneal reflection is the reflection of light sources on
the surface of the eyeball, also called Purkinje reflection. See Figure 2.4 for an
example of corneal reflection labeled with C. Usually, at least four reflections of
the surrounding can be seen on one human eyeball but most systems rely on the
first Purkinje reflection, the corneal reflection. From the position of the pupil
and the corneal reflection and the changing offset between them, the viewing
direction can be calculated. Taking the geometry of the complete scene with the
position of a computer screen relative to the user’s eye allows the trigonometric
calculation of PORs. For increasing the robustness of an eye tracking system,
several cameras and light sources can be deployed. Both eyes are detected, and
consequently, two PORs are calculated which can be not congruent. The two
points are usually combined by building the average, or if the differences are
big, only the data from the dominant eye is used.

The eye tracking systems can be head-mounted or table-mounted, which de-
scribes the position of the camera in the experiment setup. It can be placed on
the human head, for example, by wearing a helmet with an attached camera.
This approach avoids the need of considering head movements in the computer
vision part of the eye tracking process. But as for the invasive techniques,
head-mounted systems bring disadvantages in use, for example, discomfort as-
sociated with wearing a helmet. In table-mounted systems, the camera is placed
statically in front of the research participants. These systems are used when
eye movements on a computer screen are being recorded. The alignment be-
tween eye tracking device (camera) and the computer monitor has to be given
manually.

Video-based eye tracking devices work at specific sampling rates, usually
between 30 Hz and 1250 Hz. Very high rates are necessary for high-quality
eye tracking, for example, for analyzing human gaze during the reading process
or for neurological experiments. Most devices have a sampling rate of 50 to
60 Hz. Vendors of professional eye tracking systems offer solutions for various
experiment setups, from systems recording the human gaze while driving a car
with several cameras to devices integrated in computer monitors. Varieties of
sampling rates and tracking accuracy are available. Most systems provide pupil
diameter and POR.

Calibration

For calculating the POR on a computer screen, the eye tracking system needs
an internal model of the experiment scene, including the setup of the scene, the
user’s anatomic characteristics, and the imaging properties of the cameras. For
the calculation of this model, a calibration period is performed during which
reference data for known fixated positions on the screen is collected. During
the calibration phase, the user is asked to follow a point on the screen with
his/her eyes. The point stops for short periods at several calibration points.
The number of points can vary; it is usually 5 or 7. The positions of this
specific calibration dots on the screen are known, and a model of the scene can
be calculated by the eye tracking system.
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The quality of the calculated model can be tested against the collected cal-
ibration data. Figure 2.5 shows a visualization of the quality of the model by
showing the differences between the known positions of the calibration points
and the calculated fixation points. Depending on the quality of the calibration,
which could be visualized by the calculated offset, the investigator can decide
whether the calibration has to be repeated or if it is accepted.

Figure 2.5: Visualization of the calibration results in Tobii Studio. The lines
depict the offset between the calibration points on the screen and the fixations
points calculated by the internal model.

Accuracy and Freedom of Head Movement

Accuracy is defined as the average difference between the real stimuli position
and the measured gaze position. Precision is defined as the ability of the eye
tracker to reliably reproduce the POR when the same point is fixated. Accu-
racy and precision need to be high when reliable eye tracking data should be
recorded. A number of factors complicate the gaze analysis and can lead to low
accuracy and precision results, for example, noise from small eye movements
such as microsaccades, limitations of the resolution of the used camera system,
an incorrect calibration or strong position changes of the users that cannot be
compensated.

Professional devices reach an accuracy of around 0.5◦ (see Table 2.1 for some
examples for professional eye tracking systems), which roughly corresponds to
5 mm on the screen at a distance of about 60 cm between the eyes and the
monitor.

The area in which the eye movements can be recorded reliably with high
accuracy is limited to an area described by the freedom of head movement. Eye
tracker vendors provide information about the freedom of head movements for
their devices. They are usually described by an operating distance, describ-
ing the supported distances between the user and the eye tracker and a head
box, giving the range of possible head movements vertical to the visual axis.
Examples are given in Table 2.1. The values show that head movements are
supported in a range that allows natural behavior. However, the change of po-
sition in front of the computer can be too strong to be supported, for example,
when a user moves back and forth.
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Company Product Operating distance Head Box Accuracy

Tobii X2-601 40 - 90 cm 50× 36 cm 0.5◦

SMI RED2 60 - 80 cm 40× 20 cm 0.4◦

myGaze Eye Tracker3 50 - 75 cm 32× 21 cm 0.5◦

Table 2.1: Specifications for operating distance, freedom of head movements,
and accuracy for a selection of professional eye tracking device.

Eye tracking software usually supports the users in finding the ideal position
in front of the eye tracking device. Figure 2.6 shows the diagnosis tool of the
Text 2.0 framework [BBS+10b]. This framework realizes gaze interaction for
web applications, including the correct positioning of the users, the calibration of
the eye tracking system, and the extension of web elements by gaze interaction.
Here, the distance between the user and the screen as well as the position of
the eyes are displayed for supporting the correct alignment before starting the
calibration.

Position of the eye vertical to the visual axis 

Distance between eyes and eye tracker

Figure 2.6: Text 2.0 framework: the diagnosis tool helps the participants to
get into right tracking position in front of the eye tracking device by offering a
visualization of the eye position and the distance to the eye tracking device.

2.2.2 Recent Development of Eye Tracking Hardware
While in the past, high-quality eye trackers were deployed mainly in research
or usability laboratory, it can be assumed that eye tracking will be available
to the average user in the near future. The interest in eye tracking technology

1http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x2-60-
eye-tracker, last visited February 15, 2013

2http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/red-red250-red-
500.html, last visited February 15, 2013

3http://www.mygaze.com/fileadmin/download/Tech_Specs/130613_mygaze_techspecs.pdf,
last visited December 20, 2013
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in general is growing because of its unique possibilities in enriching the human
interaction with computers and the information provided by analyzing visual
attention.

Costs for professional eye tracking hardware have significantly dropped in
the past. While the cost for eye tracking systems was about USD 30, 000 just
three years ago, embedded and low-cost solutions are available now for less than
USD 100.4 With the low-cost devices, Tobii tries to enter the end user market.
The integration of eye tracking units into everyday devices such as laptops was
realized by Tobii, although these devices are still prototypes (see Figure 2.7).

Figure 2.7: Tobii prototype of a laptop with eye tracking unit.

Systems that can detect the eyes and can calculate the viewing direction us-
ing cameras integrated in common devices such as tablet PCs are already on the
market (e. g., Natural User Interface Technology, OKAO Vision5). Furthermore,
eye trackers can be developed using low-cost hardware. Several approaches us-
ing webcams or low-cost equipment at open-source base were published within
the last year. San Agustin et al. [SASHH09] compared a commercial eye tracker
and a webcam system. The results for the webcam system are satisfactory and
comparable with the commercial system, although still with limitations con-
cerning the comfort of use because the webcam has to be very close in front
of the eye and the user has very limited freedom for head movements. Lin
et al. [LLLL12] presented an eye tracking system using a webcam that even
works in real-time. Another open-source solution has been published by the
ITU GazeGroup.6 Promising results on using eye tracking data from unmodi-
fied, common webcams were also presented by Sewell and Komogortsev [SK10].
Lukander et al. [LJCM13] presented an open-source mobile eye tracking device.
The Gaze Interaction Association COGAIN provides a list of open-source sys-
tems, which contained — at the time of writing — nine entries and a list of
low-cost eye tracking providers with six entries.7

4http://www.tobii.com/eye-experience, last visited December 27, 2013
5http://www.omron.com, last visited May 8, 2014
6http://www.gazegroup.org, last visited May 8, 2014
7http://wiki.cogain.org/index.php/Eye_Trackers last visited January 22, 2014
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The cell phone Samsung Galaxy S4 provides, as the first mobile device, a
simplified gaze control system. The idea is called “Smart Scroll” and is designed
for changing the behavior of the mobile phone application whether the user is
looking at the phone or not. When the user is facing the phone, browsing is
performed when tilting the head or tilting the device. “Smart Pause” pauses
the playing of a video on the smart phone when the user is not facing it any
more.

A patent revealed by Apple on “Electronic Devices With Gaze Detection
Capabilities” describes several actions depending on the viewing direction of
users, for example, the idea to dim a display screen when the user is not looking
at the it. Another patent about the usage of gaze information supports the
assumption of wider-spread of eye tracking techniques in the future: Google’s
patent on the usage of eye tracking technology describes a system for using
eye gestures for unlocking head-mounted displays. And the fast development of
sensors in IT hardware in the last years is still continuing. For example, future
mobile devices can be equipped with high-resolution cameras or even infrared
sensor and light sources.

2.2.3 Acceptance and Privacy Concerns

Eye tracking devices based on video recordings are non intrusive and can be
used without wearing contact lenses or fixating the participant’s head as it was
necessary in the beginning of eye tracking systems. Infrared light is invisible,
thus, it does not irritate the user while his gaze is recorded. However, calibration
is needed and it can be necessary to repeat the calibration during a longer period
of use, although the movements of the participants in front of the eye tracker
are limited.

In addition, it can only deliver a glimpse on how users would accept an eye
tracking device in their daily lives, their impression of using such a device in
the experiments conducted for this thesis was investigated in questionnaires.
Eighty-seven times experiment participants gave statements on their feelings
during the usage of an eye tracking device on a Likert scale from 1 (“I felt
uncomfortable while my eye movements were recorded”) to 5 (“I did not feel
uncomfortable while my eye movements were recorded”). An average rating of
4.5 (SD: 1) showed that the majority of the participants did not feel uncom-
fortable while their gaze was recorded. Furthermore, eye tracking technology
fascinates the users as a new input device; for some of them, the control by
eye tracking felt like “magic” because they can control a device without using
a computer mouse or keyboard.

Privacy concerns are of importance when dealing with personal data: this
includes the analysis of user behavior. For that reason, all data gathered for
this thesis was recorded anonymously under user IDs that were not linked to the
participants. Because the data can deliver sensitive information, for example,
on the relationships between users (e.g., who fixated which person longest or
how long does a participant fixate his own photo), no analysis was performed
in this direction. The experiment on photo selection by gaze was approved by
the Institutional Review Board (IRB) of the University of California, Irvine.
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When using gaze data in everyday life, privacy has to be protected in the
same way as other data on personal behavior such as web logs. Although
gaze data delivers additional information, often the more sensible information
is which content was viewed, not how. For example, the more sensitive informa-
tion is which photo was viewed, instead of which part of the photo was fixated.
If a photo with compromising content was displayed, even without eye track-
ing information, nobody would assume that only neutral parts of photos were
fixated.

2.2.4 Technical Equipment Used in this Work

As the underlying idea of this work is to benefit from gaze data in everyday
situations, the usage of a non invasive and not head-mounted tracking device
was appropriate.

The experiments that work is based on were performed with a Tobii X60
device, providing an accuracy of 0.5◦ and a precision of 0.19◦ under ideal con-
ditions (see Table 2.1 and Appendix A.3). This device makes use of both the
bright and the dark pupil approach. It has a data rate of 60 Hz, thus, a raw eye
movement data point is recorded each 16.7 milliseconds. The fixation points
are calculated for both eyes and the average is built for obtaining one POR. For
the calibration performed in the experiments, data of 5 calibration points was
recorded and analyzed. The device is an external, table-mounted eye tracker,
and it was placed in front of a computer monitor. An overview of a typical
experiment setup can be seen in Figure 2.8. The table in our experiment labo-
ratory was height adjustable; thus, it can be adapted to the participant’s body
height for bringing the eye in the head box area of the eye tracking device.

Monitor
Eye Tracking 

Unit

Participant's seat Experiment 
leader's seat 

Figure 2.8: Typical setup for an eye tracking experiment as conducted for this
thesis.
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2.3 Saliency and Gaze Prediction
Because the visual attention is influenced by the low-level features of the stim-
ulus, that is, the viewed photo, it can be predicted which parts of the photos
are of high saliency. Privitera and Stark [PS00] developed an algorithm based
on different image processing algorithms for identifying visual regions of inter-
est. They compared these fully automatically calculated regions of interest with
those generated from recoded gaze data. They showed that the loci of the hu-
man fixations can be predicted but the temporal order in which fixations take
place cannot be predicted.

More research was done on investigating how to calculate so-called saliency
maps, which predict areas on an image that attract human visual attention. Itti
and Koch [IK00] presented the model of a saliency map based on orientation,
intensity, and color information.Other approaches consider object-based visual
attention, as, for example, presented by Sun and Fisher [SF03], or combine
low-, middle- and high-level image features for creating a saliency map that
does not concentrate solely on bottom-up computation, as introduced by Judd
et al. [JEDT09]. Saliency maps calculate the regions in an image attracting the
most visual attention. These methods have limitations on the image complexity,
the placement of the objects, and the discrimination of different objects in one
image.

2.4 Gaze Data
Eye tracking devices deliver POR on the computer screen at a point in time.
Humans either gaze at a stationary point (fixations) or move their gaze quickly
between the fixations (saccades). Humans perceive the maximum visual infor-
mation during the fixations. First, the fixations have to be extracted from the
raw eye tracking data and can be used as an indicator for human attention.
Then, eye tracking measures are applied for analyzing the data. A eye tracking
measure is a function on the users’ fixations. The measure is calculated for
predefined image regions, for example, the measure “fixation count” calculated
for each region how many fixations were positioned on this region. The “fixa-
tion duration” indicated how long an image region was fixated by summing up
the durations of all fixations on this region. Several measures can be used to
analyze the gaze paths and will be presented in the following.

2.4.1 Preprocessing of Raw Eye Tracking Data
Raw eye tracking data consist simply of a list of look-at positions at a certain
point in time. With a sampling rate of 60 Hz, each 16.7 millisecond a POR
is recorded. In this stream of data, it has to be identified which raw data
points belong together and build one fixation. The differentiation between two
fixations is performed by applying a velocity threshold. When the eye movement
velocity rises above this threshold, the movement of the eye to a new fixation is
assumed. In addition, a duration or a distance threshold can be applied for an
improved identification of single fixations. For the determination of the position
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of a fixation, the median of all raw data points that belongs to one fixation is
built.

In this work, an algorithm integrated in the software Tobii Studio is used
for filtering the raw eye tracking data. The algorithm was presented by Ols-
son [Ols07] and it combines a velocity threshold as well as a distance threshold.
The threshold can be freely chosen; in this work, the default threshold of 35
pixels for the velocity threshold (which corresponds to a 0.42 pixels/ms thresh-
old) and 35 pixels for the distance threshold, which means that two fixations are
merged into a single fixation if their Euclidean distance is below this threshold,
were used.

2.4.2 Eye Tracking Measures

A eye tracking measure is a function on the users’ gaze path. It is calculated for
a specific region r on the computer screen. This region has to be defined, which
can be manually by drawing forms or automatically based, for example, on
segmented image. It can be calculated for one single gaze path and its fixations
or it can be calculated by aggregating several gaze paths and using all fixations
from the gaze paths of several users. State-of-the-art eye tracking measures are
described below, and an overview is presented in Table 2.2, including their units
of measurement. Most of the measures are a standard in eye tracking analysis,
and here they were taken from the gaze analysis performed by Tobii Studio.
Other measures come from related work.

The standard measure firstFixation (min count) computes the number of fix-
ations on the image before fixating on a region r. The favorite is the region
that was fixated first, that means the region with no previous fixations on the
image. A modification of the firstFixation measure called lastFixation [Kla10]
(min count) counts the fixations on the image after the last fixation on the ex-
amined region. The measure fixationDuration (max millisecond) describes the
sum of the duration of all fixations on a region r. The measure firstFixation-
Duration (max millisecond) considers the order of the fixations and describes
the duration of only the first fixation on a region r. The measure lastFixation-
Duration (max millisecond) provides the duration of the last fixation on the
region. The standard measure fixationCount (max count) counts the fixations
on a region r. The three measures maxVisitDuration (max millisecond), mean-
VisitDuration (max millisecond), and visitCount (max count) are based on visits.
A visit describes the time between the first fixation on a region and the next
fixation outside. The last measure saccLength (max centimeter) [KKK09] pro-
vided good results for the relevance feedback in image search. The assumption
is that moving the gaze focus over a long distance (i.e., long saccade) to reach
an image region r shows high interest in a region. In this work, results for
single measures as well as the combination of eye tracking measures are inves-
tigated and described in the particular sections. Dome additional measures are
introduced and evaluated.
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Name Description Favorite Origin

firstFixation Number of times the
participant fixates on
the image before fixat-
ing on region r for the
first time

min count Tobii

lastFixation Number of times the
participant fixates on
the image after last fix-
ation on region r

min count [Kla10]

fixationDuration Sum of the duration of
all fixations on r

max seconds Tobii

firstFixationDuration Duration of the first fix-
ation on r

max seconds Tobii

lastFixationDuration Duration of the last fix-
ation on r

max seconds New

fixationCount Number of times the
participant fixates on r

max count Tobii

maxVisitDuration Maximum visit length
on r

max seconds Tobii

meanVisitDuration Mean visit length on r max seconds Tobii
visitCount Number of visits within

r
max count Tobii

saccLength Length of saccade be-
fore fixation on r

max centimeter [KKK09]

Table 2.2: Eye tracking measures applied to an image region r.

2.5 Conclusions from Background

The psychological background on the human visual perception process showed
the complexity and the diversity of influencing factors on the visual perception,
ranging from low-level pixel information to complex mental processes including
knowledge and emotions. Although no apparent strategies for scene viewing
are known, humans have an impressing ability to interpret complex scenes in
real-time. The human visual perception is an interaction between bottom-up
and top-down processing. Related work showed that the influence of bottom-up
processing is strong enough to draw inferences from it, providing information
on the perception process. However, other research showed the strong influence
of interest (in free-viewing situations) and given tasks. Although it can be that
an object is fixated but not perceived or the other way around, it is not very
likely that this happens. When objects are in the focus of the visual attention,
they are usually fixated in the center.
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Eye tracking systems deliver fixation data with accuracy errors of a few
pixels. The rapid development in eye tracking hardware will presumably allow
the usage of gaze information in everyday tasks in the near future. Recent eye
trackers allow the users to move, although limited to a specific area. Interacting
in front of an eye tracking device was not perceived as uncomfortable.
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Chapter 3

Related Work on Eye
Tracking Applications,
Region Labeling, and Photo
Selection

Related work on the two core themes of this work, the image region labeling and
the creation of photo selections, is discussed first in this section. Subsequently,
the usage of eye tracking in existing applications and research is presented.
Interactive and diagnostic are distinguished, and a new category of eye track-
ing applications — the exploitative applications — is introduced. Finally, the
related work is summarized.

3.1 Creation of Image Region Annotation
The description of image contents is important for numerous applications such
as search. The creation of image descriptions or labels at pixel level can be
performed manually, semi automatically, or automatically. In the following,
existing work on these approaches is presented.

3.1.1 Manual Image Region Labeling
The simplest approach for annotating image regions is manual labeling. The
photo sharing platform Flickr1 allows its users to manually mark image regions
by drawing rectangle boxes on it and by assigning a text to it. Jeong [JHL11]
found that region labeling is not very frequently used in Flickr; only 27% of
the analyzed photos had region labels at all. Mostly, the notes were used for
comments expressing feelings or emotions. Only 14% of the comments included
information on concrete objects on the photos. Other web platforms such as

1http://www.flickr.com, last visited January 3, 2014
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LabelMe [RTMF08] allow for a more precise creation of regions by drawing
polygons on the images. These regions are annotated with a tag. The goal of
LabelMe is to create ground truth data for object detection algorithms. The
LabelMe community members have a strong interest in the data set as they
need the data for their own research, for example, on object detection, and
thus, they are willing to contribute to it. In general, the manual tagging of
regions is tedious [Rod99], and the users rarely perform region labeling.

Games with a Purpose

A variation of the manual labeling are games with a purpose (GWAPs). GWAPs
are computer games that have the goal to obtain information from humans in
an entertaining way. The acquired information is usually easy to be created
for humans but challenging or impossible to be created by fully automatic ap-
proaches. An example of a GWAP is the game Peekaboom, presented by von
Ahn et al. [vALB06]. Two users play together; one of the users can see a given
photo and a word related to the photo. He/she has to click on the photo for
making a specific area visible for the other player, who has to guess what the
given word is. The user can give extra hints to the guesser by additionally
clicking on the photo and by giving hints on how the word is related to the
photo. The players collect points for each correctly named word. In another
game, named Squigl,2 two randomly selected users team up to mark regions
on an image without seeing the markings of the partner. The goal is to mark
the same image regions for a given word. The highest score is obtained for
congruent regions. Ni et al. [NDFY12] introduced a game for explicitly labeling
image regions. The users look for specific objects in photos and mark them by
drawing bounding boxes. Known objects are added to the photos for measuring
the quality of the drawn bounding boxes.

Huang et al. [HCC09] presented a collaborative benchmark for region of in-
terest (ROI) detection in images. They collected a large number of annotations
by means of a game called Photoshoot. With the data gained from the game,
they were able to evaluate different detection algorithms for ROI. In Photo-
shoot, two anonymous players are grouped together. One user has to draw
rectangles over the image using drag-and-drop. The other player has to guess
which region was highlighted by the first player by clicking on the image. For
agreements, the players collect points, and it turned out the regions on which
the two players agree are usually the salient regions of a photo. Salvador et
al. [SCGiN+13] presented the game Ask’nSeek, which serves the improvement
of image segmentations and the identification of objects in images in an enter-
taining way. Two players play together; one marks a specific object on a photo
while the other has to guess which object was marked by clicking on the image.
The first player gives hints to the person who tries to find the object.

Although the idea of the GWAPs is to entertain the users while tagging
image regions, the user still has to spend time in playing the games, which is
contrary to the goal not to put a strain on the users at all.

2http://www.gwap.com/squigl-a/, last visited December 8, 2013
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3.1.2 Automatic Region Labeling
Much work was done on the automatic assignment of tags to images. Li et
al. [LSW09] made use of visual similarity for tag recommendation. They pre-
sented an approach that recommends tags for an unlabeled image by using
low-level similarity with already tagged images and by obtaining relevant tags
from these images. Tsai et al. [TJL+11] performed large-scale annotation of
web images by considering images that are visually similar and correspond
to the same semantic concept. They showed that their approach facilitates
a better prediction performance, compared with competing methods. Tang et
al. [TYH+09] extracted semantic concepts from community-contributed images
and tags. They succeed in providing a more robust and discriminative ap-
proach compared with other semi-supervised learning approaches. In addition,
they proposed a label refinement strategy that removed tag noise. However,
these approaches did not address the problem of assigning the tags to image
regions but to the image as a whole.

The automatic identification of concrete objects and their position in the
images is still a challenging task. There are different approaches based on
computer vision or saliency calculation. One approach is object detection with
computer vision techniques. A large amount of training data — consisting of
images and labeled image regions — is needed for such a purpose, e.g., [CF01,
VJ01]. The identification of objects is limited to the learned concepts and to
the visual similarity to the learned concepts, e.g.[SK00].

Different approaches were investigated to make use of salient image regions
in region labeling. Rowe [Row02] presented an approach for finding the visual
focus of an image by applying image processing in terms of segmentation and
low-level features. The idea was to link the visual focus with the image caption.
This approach was designed for images with a single object only [Row02]. In
addition, it has limitations concerning the position and characteristics of the
shown object. Duygulu et al. [DBDFF06] performed a mapping between region
types and keywords supplied with the images by learning a fixed image vocab-
ulary. Liu et al. [LCY+09] proposed a method to automatically assign labels at
image level to image regions. The method was based on local image patches,
gained from image over-segmentation, each of which may partially characterize
one image label. They exploited the fact that two images with the same labels
are likely to contain some similar patches. The images used in their experiment
were simple, with an average of 2 to 3.5 labels per image.

Itti et al. [IKN98] presented a visual attention model based on multi scale
image features (colors, intensity, and orientation), which delivered salient points
in order of decreasing saliency. Their system is offered in a toolkit, which is
used in this work as saliency-based baseline.3 Navalpakkam and Itti [NI05]
introduced a model that also took the influence of tasks into account. Besides
the usage of low-level features, their system considered a manual initialization
by the user by explicitly giving keywords and the relevance of these keywords.
The prediction of visual saliency was then biased by visual information relevant
to the given keywords. For their approach, a hand-coded ontology as well
as manually created classifications of images showing the same objects were

3http://ilab.usc.edu/toolkit/, last visited May 8, 2014
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needed. Privitera and Stark [PS00] compared the identification of ROIs by
gaze information and by image processing algorithms. They showed that the
algorithms cannot predict the sequential ordering of the loci of human fixations.
Yuan et al. [YLZ07] made use of spatial context constraints for solving the
region labeling task. Besides image features, four types of spatial relations were
considered (i.e., left, top, right, and bottom) when assigning semantic labels to
image regions. Liu et al. [LYL+10] performed label-to-image-region assignments
by means of online image search. For each tag that was assigned to an image,
they performed an online image search for obtaining visually similar images.
These images were analyzed for obtaining salient and descriptive features for
the tags. Finally, the assignment of the labels to regions was performed based
on these features.

The first difficulty of automatic region annotation is the lack of training
set with region-level ground truth as also indicated by Yuan et al. [YLZ07].
Automatic techniques are limited in their abilities to understand photo contents
and they are based on visual similarity. These approaches are dependent from
training data and a trained model, what makes them inflexible concerning the
number of concepts and new concepts.

3.2 Automatic Creation of Photo Selections
Manually selecting subsets of photos from large collections in order to present
them to friends or colleagues or to print them as photo books can be a tedious
task. Research was performed for supporting users in these tasks. Content-
based approaches make use of pixel information extracted from the images while
context-based approaches analyze contextual information, such as capture time
and focal aperture, or use both to determine a proper subset of photos.

3.2.1 Content-Based Approaches
The pixel information of photos are analyzed for these approaches with the goal
to identify photos that are representative for a set of photos.

Chu and Lin [CL08] selected photos by identifying near-duplicate photos in
given photo clusters. In the clusters, near-duplicate photo pairs were selected
first, and the relationships between these photos were modeled by a graph, from
which the most representative photos were selected by identifying the most im-
portant note in this graph. They concluded their evaluation results with hu-
man subjective judgment as satisfactory but also recognized high variances in
the human judgments. A semiautomatic collage creating tool that created a
selection of photos purely based on content-based information, such as color
histograms from which a sharpness score is calculated, was presented by Xiao
et al. [XZC+08]. They identified near-duplicate photos by means of binary clas-
sifiers working with similarity measures from literature and time stamp. Their
system additionally offered an auto-crop algorithm and automatic lighting/color
enhancement. Zhao et al. [ZTL+06] introduced an approach for the automatic
labeling of persons in family photo albums. They made use of face and body
information derived from image analysis of the photos. In addition, social con-
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text information was used when analyzing which persons were depicted together
more often. When persons were labeled in photos, the photos depicting, for ex-
ample, the in total most often depicted persons could be selected. The most
interesting photos in a sequence were identified by an algorithm proposed by
Grabner et al. [GNDVG13], which made use of computer vision techniques.
An evaluation showed that already four basic interestingness cues (emotion,
complexity, novelty, and learned) and their combination delivered good results,
even without considering semantic interpretations. However, the characteristics
of their data set have to be considered — image sequences recorded by a static
video camera — and make the application of the results to other, more diverse,
data sets difficult.

There are very few approaches in related work using content information
alone. Often, the context-based approaches that are described in the following
section also rely on content analysis.

3.2.2 Context-based approaches

The content-based approaches were followed by context-based approaches, which
exclusively or additionally analyze the contextual information of photos. Con-
textual information can be technical parameters of the digital camera, such as
capture times or GPS coordinates, or information gained from social networks
like blogs.

Platt [Pla00] clustered photos concerning capture time and/or photo con-
tent, based on a probabilistic model that identifies similar image characteristics.
Li et al. [LLT03] created summaries of photo collections based on time stamps
and facial features. Their photo summarization application had the aim to fa-
cilitate browsing and to offer summarizations in two steps: in the first step, the
whole photo set was divided into partitions based on the capture time. In the
second step, key photos were selected for the partitions by means of a “face
criterion” and on the “temporal importance” of the photos. Following the face
criterion, photos that depicted large and center-positioned frontal faces were
preferentially selected. For the “temporal importance,” photos were selected
that were part of time periods with a high concentration of photos, based on
the assumption that something interesting happened when many photos were
taken.

A framework for generating representative subsets of photos from large per-
sonal photo collections by using multidimensional content and context measures
was introduced by Sinha et al. [SJ11, SMJ11]. They solved the selection task by
maximizing the interest in the selected photos, the distance between the photos
(thus, the most diverse photos should be selected), and how strong the selected
photos represent the whole set. They proposed a concept space that has five
dimensions, which were visual (scene type such as outdoor day or sunset), tem-
poral (time stamps), event type (predefined event types such as birthday or
trip), location (city names), and people (unique faces from face recognition) for
computing these properties. They were able to show in an experiment that the
suggested summarization algorithm, based on this concept space, outperforms
baseline algorithms.
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Rabbath et al. [RSB11] used content and context information from blogs
to automatically create photo books. In their work, photos were collected in a
social network, and a subset of these photos was selected. The collection and the
selection took place based on photo content information as well as people-based
information (the persons depicted on the photos) and textual-based information
(from textual media attached to the images). Beginning with a seed photo,
which was a photo that could be easily found as it was well annotated, more
relevant photos were found from the social network by the above described
characteristics. From these photos, important photos had to be selected in
order to create a photo book with a limited number of photos. The criteria
for selecting important photos were that the photos had a high resolution; the
photos achieved a specific ratio between those which show people and those
which show landscapes (as background images in a photo book); the photos were
subject to user interaction like tag or caption assignment; the photos contained
important persons. The information on important persons was derived from a
people rank, which considered how often the user was depicted with this person.

Mor et al. [NYGMP05] made use only of contextual information that is
automatically available when a photo is taken, such as the capture time and
the location a photo was taken at. From this data, they derived events and
location clusters. From photos with labeled persons, labels for the photos with
no annotations were generated. Their system was evaluated with four different
personal photo collections and users who manually labeled the depicted persons.
They can successfully annotate up to 90% of the photos, even when only 10%
of the photos were previously labeled.

A framework for automatically selecting photos as a summary of a bigger
set of photos was presented by Jaffe et al. [JNTD06]. The provided algorithm
made use of location metadata (the location a photo was taken at), capture
time, photographer, textual labels, the photo quality, and relevance (which is
expressed by a relevance factor that measures an arbitrary bias concerning pos-
sible factors such as recency or specific user attributes) for creating a ranking of
all photos in a set. An evaluation with 25 participants showed that the summa-
rization based on these features outperformed baseline approaches, which were
randomly created or based only on single features (capture time for recent pho-
tos and ratings coming from Flickr for interesting photos). Boll et al. [BSST07]
presented a component-based framework for the automatic selection of a subset
of photos from a large collection based on both content-based and context-based
information.

3.3 Eye Tracking Applications
Eye tracking data is used in diverse applications. The applications are often
classified into two main directions — interactive and diagnostic systems [Duc07].
In interactive applications, gaze data is used to alter the runtime behavior of
software. One common field of application is to provide user interfaces for users
with disabilities, who have problems to use devices such as computer mice or
keyboards. But with the wider spread of eye tracking hardware, more and more
applications appear for diverse user groups. In diagnostic applications, gaze
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data is used as a measure for the human visual attention. The recently most
common use case is in usability studies in observation laboratories. Diagnostic
applications serve the goal either to understand and improve the visual saliency
of the viewed stimulus, such as web pages or user interfaces for software applica-
tions, or to understand the viewing behavior itself, for example, in psychological
research.

During the last years, a new direction appeared in eye tracking applications;
in this work, they are called exploitative applications. These applications serve
neither the goal of improving design nor the goal of understanding the viewer
but of exploiting the users’ viewing behavior for getting information about the
viewed content. This information is in turn used to support the users. Because
of these two components, exploitative applications are categorized to be in be-
tween the interactive and the diagnostic applications, as depicted in Figure 3.1.

In this section, state of the art work in interactive systems, diagnostic and
exploitative systems are reviewed.

Figure 3.1: Classification of eye tracking applications with the newly introduced
“Exploitative Systems.”

3.3.1 Interactive Applications
In interactive eye tracking applications, the movement of the eyes is used to
control a software. This can be typing, drawing, or browsing. The areas of
application are as numerous as for other input devices. Usually, the applications
offer gaze-sensitive areas, which have to be fixated for causing a reaction. But
control can also be realized by gaze gestures, that is, predefined eye movements
that trigger actions.

Gaze control is often used for supporting handicapped users but can also be
of advantage for other users. For example, for hygienic reasons, as no device
has to be touched in public area and there is no need for a mechanical input
device, which can be damaged. In addition, gaze control can be very fast [SJ00],
and users are often fascinated and entertained by the gaze interaction [QZ05,
LBS07].

Gaze control can be challenging, as the eyes are usually an input device for
perceiving information. When commands should be given by moving the eyes,
the movements have to be strongly controlled. This kind of control is unusual to
the users and can be tiresome. The control of the eye movements can be difficult
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because they are influenced by many factors such as visual distraction and the
eyes are constantly moving (see Section 2.1 for the diverse factors influencing the
eye movements). Thus, errors and inaccuracies always have to be considered.

Jacob [Jac91] introduced the “Midas touch” problem, which deals with an-
other specific problem in gaze control. It describes the problem that the two
modes “viewing for perceiving information” and “fixating with the goal to con-
trol a software” cannot be easily distinguished. For example, a user has to fixate
a button for understanding its function but the button should not be activated
automatically from this fixation. Solutions for this problem are dwell-time ap-
proaches, where the user has to fixate, for example, a button for a specific period
of time for activating it, or gaze gesture, where specific eye movements have to
be performed for triggering a control command. Drewes and Schmidt [DS07]
showed that users can perform complex gaze gestures intentionally and that
even standard applications can be controlled by it. Heikkilä [Hei13] compared
these two forms of interactions — dwell buttons and gaze gestures — for drawing
applications, with the results that in her application both methods performed
equally fast, while the gaze gestures were the preferred method of the study par-
ticipants. Gaze can also be combined with other input devices such as mice or
keyboards for avoiding the Midas touch problem. Zhai et al.[ZMI99] introduced
the MAGIC pointer, which combined gaze information and manual control by
moving the cursor toward the fixated area on the screen while selections take
place by means of a pointing stick. Kumar et al. [KPW07] combined gaze and
keyboard control. In their study, different tasks had to be performed by means
of a computer mouse and different variations of EyePoint. The results indicated
that control by EyePoint has a performance similar to the one of mouse control.

Typing is an important application in the area of gaze controlled appli-
cations, and several typing systems have been presented, for example, by Ma-
jaranta et al. [MAŠ09]. Räihä and Ovaska [RO12] introduced an extensive study
on eye typing. They showed the importance of variable dwell-time threshold,
allowing the users to adapt the software to their own experience or need. The de-
velopment of drawing systems was also the focus of some research. For example,
Hornof and Cavender [HC05] suggested a drawing system based on dwell time,
which allows children with disabilities to draw digital images. Bartelma [Bar04]
investigated the combination of gaze control and image segmentation. He im-
plemented a system that was controlled by gaze to manually segment images.
The gaze was exclusively used as a mouse replacement, and the subjects were
instructed to outline a given object with their gaze.

The use of gaze control in gaming was investigated by Smith and Gra-
ham [SG06]. They showed that gaze control can increase the playing expe-
rience for the investigated games, as the users felt more immersed in the gam-
ing world. However, problems also occurred from gaze control, such as that
for some games the learning was easier with the conventional mouse control.
Another use case is the active presentation of information depending on the
look-at position of the user. For example, the eyeBook framework from Biedert
et al. [BBS+10b, BBS+10a, BBD10] displays additional information such as
sound or modifies the text when the reader’s gaze reaches a specific trigger
position in the text. The user can be supported when skimming a text, or
translations are offered for foreign-language readers. Milekic [Mil03] introduced
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a conceptual framework for a museum application. The interface is controlled
by gaze gestures, for example, for zooming. GazeSpace, a browsing application
controlled by eye movements, was introduced by Laqua et al. [LBS07]. In the
presented study, users had to browse pictorial and textual information for an-
swering some information tasks. The results showed that the users enjoyed using
the gaze-based interaction systems. Mollenbach et al. [MSH08] conducted an
experiment with users performing simulated search and browse as well as simu-
lated target-selection tasks. The experiment showed that selection tasks can be
performed faster with gaze control compared to mouse control. An interactive
systems for city trip planning that offers visual and audio information about
different locations on a map, depending on the user’s behavior, was presented
by Qvarfordt and Zhai [QZ05]. In iTourist, interest was derived from predefined
gaze patterns. The evaluation of the prototype system showed that it can offer
required information to the users and that it caused positive reaction.

Gaze information is also of use for adapting an application to the users’
mental capacities. The goal for some applications is to improve the human
learning process by taking into account the user attention and to adapt the
content presentation to it. Among others, one framework with the name AdeLE
was presented by Pivec et al. [PTP06]. The information about the position of
the eye was used to adapt the content to the learner, for example, to provide
an abstract of a text to a reader who is only skimming a text. In the e-learning
environment of Porta [Por08], an ”emotion recognizer” was implemented. It
used mainly pupil size, blink rate, saccade length, and occurrence rate to identify
the user’s current capability to work with e-learning content. Another approach
was to continue with the presentation of content only when the user is looking
on the screen, invented as eyeLook by Dickie et al. [DVSC05]. The information
if a user is attentive was also used in an application presented by Nakano and
Ishii [NI10]. The disengagement of users in human-agent conversations was
identified, and questions were asked for bringing the user’s attention back to
the conversation.

3.3.2 Diagnostic Applications
In diagnostic use cases, eye movements are recorded and analyzed concerning
a given stimulus. This stimulus is not modified by the viewing behavior, thus
the analysis can take place offline. The stimulus as well as the human observers
can be subject of the studies.

In psychological research, human behavior is analyzed based on gaze data.
In Section 2.1, the human visual perception process is described and many of
the insights into the visual perception are based on eye tracking research. Eye
movements also provide insight into the memorability of humans. Bulling and
Roggen [BR11] showed that familiar and unfamiliar abstract pictures can be
discriminated by means of eye movement analysis. In these use cases, the goal
is to better understand humans and their visual perception.

The most common usage of gaze information in a diagnostic context is in de-
sign and usability studies. Here, the stimulus is in the focus of the investigations
as graphical user interfaces are subjects to be improved and optimized. In these
evaluations, the areas of highest user attention are identified and compared with

43



3.3. EYE TRACKING APPLICATIONS

the intentions of the designers, to identify design or usability problems. For de-
tailed analysis, ROI are marked on the investigated medium, for example, a web
page or a commercial. Based on these ROIs, the users’ attention was analyzed
in order to optimize the object that is under examination [CJP10, GSL+02].
Work in this direction was presented, for example, by Bruenau, Sasse, and
McCarthy [BSM02]. Often, the design of a web page or the placement of ad-
vertisements is analyzed.

Other studies address more general research questions on viewing behavior.
Pan et al. [PHG+04] investigated patterns in web page viewing. They found
that scan paths depend on both individual characteristics of the viewers and
the stimuli. Influencing factors seemed to be, for example, the gender of the
participants, the order of the viewed stimuli, and the complexity of the viewed
web pages. Duggan and Payne [DP11] examined the reading behavior of users
searching for information in text documents. As they were on time pressure,
they had to skim parts of the texts. The aim of this work was to better un-
derstand how text is read for supporting producers of online content. Findings
were, for example, that the texts at the start paragraphs are more likely to
be read and that also skimming can be effective. Cutrell and Guan [CG07]
analyzed the viewing behavior of users interacting with a web search service
with the goal to better understand how much information should be displayed.
They investigated how search results lists are used to find information, that is,
how these lists are read. By analyzing the gaze behavior, they found, for ex-
ample, that increasing the length of snippets in the search results list increases
the performance of users searching for information. In a study investigating
the viewing of web search engine result pages, Buscher et al. [BDC10] showed
that the given task type, the quality of the displayed advertisements, as well
as the sequence of advertisements of different quality influence the scan paths.
Marcos et al. [MNST12] introduced a user navigation search model with five
navigation patterns for identifying users with a need of support in their search.
Martínez-Gómez and Aizawa [MGA14] derived knowledge on users’ language
skills by analyzing the reading behavior and Toker et al. [TSG+] identified the
users’ skills in understanding visualizations in the form of diagrams.

3.3.3 Exploitative Applications
In exploitative applications, eye monitoring is used to generate information
about the viewed stimulus, not with the goal to modify it or to adapt it but for
annotating it.

One research direction is the identification of performed activities in real-life
situations. Kunze et al. [KUS+13] analyzed gaze data, recorded with a mobile
head-mounted eye tracker, for the classification of documents the participants
have read. The results of an evaluation showed that by means of the read-
ing behavior, the six investigated text document types can be distinguished.
According to their own statement, this work was a first step in the direction
of creating read logs from a scene camera where texts cab be identified and
annotated with the determined document type. Different activities performed
by users in office work situations are identified from eye movement by Bulling
et al. [BWGT09]. Six activities like reading, browsing, or writing were distin-
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guished with an average precision of 76.1%. EyeContext, a system presented
by Bulling et al. [BWG13], identifies human behavior from gaze analysis. This
information is valuable, for example, in the creation of life logs.

Another approach is to obtain information about a text from reading be-
havior analysis with the goal to annotate text parts, for example, as impor-
tant. These important parts can be used in the automatic generation of text
abstracts, as suggested by Buscher et al. [BDEM08]. Xu et al. [XJL09] pro-
vided individual document summarizations from gaze data. The quality of the
summaries was comparable with manually created summaries, as shown by the
presented evaluation. Putze et al. [PHK+13] combined eye tracking information
with electroencephalogram (EEG) data to identify events in video streams. The
gaze data was used for finding the location of the perceived event (with an accu-
racy of 86.3%), while EEG identified the temporal occurrence of an event. The
study was performed in a controlled setting with simulated video sequences.

Implicit Relevance Feedback in Search

In search applications, eye tracking data can be used as implicit relevance feed-
back. The visual attention delivers information about the relevance of a docu-
ment to the user.

Among others, the application of implicit relevance feedback to text search
was presented by Salojärvi et al. [SKSK03, SPK05]. They showed that rele-
vance can be inferred from human attention patterns. Buscher et al. [BDvE08]
investigated eye movement measures for detecting reading behavior. Their pre-
liminary results suggested that relevant and irrelevant text documents can be
discriminated by means of gaze analysis.

In image search, several approaches made use of eye tracking data to identify
images in a search results list as important and used this information as implicit
user feedback to adapt the search in subsequent retrieval steps. For example,
Klami et al. [KSDK08] performed implicit user feedback on image search results
lists by means of gaze information. They showed that it is possible to use gaze
information in the detection of image relevance in a controlled setup, with four
images on each experiment page. For each set, the participants had to decide
whether it contains a relevant photo for the search task “sport” by pressing a
key on the keyboard. Solely from the eye movement, Klami et al. were able to
identify relevant sets with an average area under the curve (AUC) score of 0.81
(random would be 0.5) and relevant photos in the sets with an AUC score of
67.7 (random: 0.25). Kozma et al. [KKK09] showed that a comparison of the
implicit gaze feedback with explicit user feedback by clicking on relevant images
and a random baseline are promising for quality of the gaze approach. They
presented GaZIR, a gaze-based interface for browsing and searching for images.
In the GaZIR system, images were presented in a circular order according to a
search query. The gaze data of the user viewing these images were recorded and
analyzed. Based on this implicit relevance feedback, the search was continued
whereby the images that obtained the most attention were considered relevant.
For six investigated categories, the gaze relevance feedback always performed
better than a random baseline.
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Pasupa et al. [PSS+09] applied a support vector machine (SVM) algorithm
using eye tracking information together with content-based features to rank
images. The participants had to choose and rank 5 of 10 photos concerning their
relevance for the topic “transport.” The results showed that the combination
of simple image features and implicit gaze feedback improves the search for
relevant images. Hardoon and Pasupa [HPS10] have extended this approach
by using images with gaze data as training set for ranking images when no
eye tracking data is available. The ranking is conducted using tensor kernels
in an SVM. Essig [Ess08] also took user-relevance feedback, gained from gaze
information, into account to improve the content-based image search. The
feedback is calculated on the basis of image regions. He showed that the retrieval
results of his approach received significantly higher similarity values than those
of the standard approach, which is based only on automatically derived image
features.

Gaze-based Image Labeling

The labeling of image regions is a difficult but important task in multimedia, as
pointed out in the introduction. Gaze data was analyzed in related work with
the goal to perform this task. Jaimes et al. [Jai01] carried out a preliminary
analysis on identifying common gaze trajectories in order to classify images into
five predefined semantic categories. These semantic categories were handshake,
crowd, landscape, main object in uncluttered background, and miscellaneous.
The general assumption was that similar viewing patterns occur when differ-
ent subjects view different images in the same category. To this end, a generic
object-definition model was provided that allowed the users to specify the rela-
tion of objects in the images, such as persons and hands, in an image showing
a handshake situation. The results of this work were encouraging, and the re-
searchers determined that it may be possible to construct an automatic image
category classifier from the approach. However, the construction of the object-
definition model was tedious, and an object classifier needed to be provided
for each object category in the definition model in order to actually be able to
classify new images.

Hajimirza and Izquierdo [HI10] used eye tracking information in a semi-
automatic image annotation system to annotate a selection of images with tags
based on gaze visit time and revisits. In their experiment, a concept was pre-
sented to the user. Then a list of images was presented and all images that
attract the user’s attention were annotated with the given concept. Prelim-
inary results showed an average annotation precision of 80% and a recall of
between 60% and 80%. Hajimirza et al. [HPI12] also introduced a real-time
user-adaptive framework that offered a user interest score that can be used for
image annotation.

A framework that assigned a user interest level between 0 and 1 to viewed
photos was introduced by Haji et al. [HMPI11]. In their experiment, users
viewed photos with the task to select a photo for the cover of a magazine
with a predefined content, given by an example photo. Twenty-one gaze-based
features were used for calculating the user interest level. Haji et al. declared
that this information can be used as a source of information for user adapted
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image annotation (when the user had a concept in mind, for example, during
search) and retrieval. Soleymani et al. [SKP13] used EEG, facial expressions,
and eye gaze for labeling images. In the experiment they conducted, images
were shown to users with correct and incorrect tags. From the users’ reaction,
the correctness of the shown tags can be derived with an F-measure of 0.59.
The results also showed that the gaze approach outperformed the two other
modalities.

Gaze-Based Image Region Labeling

Gaze information is also used for obtaining information on viewed photos at re-
gion level. Papadopoulos et al. [PAD13] made use of implicit feedback from gaze
data in region-based image retrieval. Besides presenting features for assigning
relevance assessment to image regions, they also showed the application of this
data to an image-retrieval application. For the investigation of gaze features,
the users viewed photos in sets of tens and in a zoom-in-image mode in a first
experiment part. The experiment application was controlled by eye movements,
using the dwell-time approach. The task was to observe the images, taking a
given semantic concept, such as building, street, or desert, into account. Sub-
sequently, the viewed objects were rated concerning their relevance for a given
concept. The recorded gaze data was analyzed to identify image regions that
were of interest to the participants. By means of a SVM, the degree of relevance
was calculated for all regions. Papadopoulos and colleagues could show that the
proposed features significantly outperformed features from related work. In a
second experiment part, the users performed image search sessions with five
successive iterations. The iterations were performed by taking the relevant im-
age regions into account, using the proposed features. The results showed that
gaze-based relevance feedback at image region level can improve the image re-
trieval results compared with concepts from related work. However, the amount
of improvement varied between the concepts. The researchers’ interpretation
of that result was that the variance in the low-level visual features for some
concepts (such as car or desert) hinders further improvements.

Santella et al. [SAD+06] presented a method for semi-automatic image crop-
ping using gaze information in combination with image segmentation. The goal
of this work was to find the most important image regions for adapting the
image cropping process. The users in their evaluation first viewed in total 50
photos with the task to “find the important subject matter in the photo.” The
participants knew that the gaze data was recorded and that it would be used in
photo cropping. Afterward, sets of two crops (one based on saliency, one based
on gaze data) were presented to the subjects who had to decide which crop was
the better one. For the gaze-based crop, first, the image was segmented and
then the most important image regions were identified from the gaze trajecto-
ries. The results of this evaluation showed that the image cropping approach
based on gaze information was preferred by the users to fully automatic crop-
ping in 58.4% of the cases. Sawada et al. [STM13] presented a system called
iMap, which made use of the knowledge of salient image regions in the creation
of film comics. The goal of their work was to find the best positions for speech
bubbles (those regions with less important content that could be covered by the
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bubbles) and to find good parameters for photo trimming. The gaze data was
collected from users just viewing the movies. Doug and Santella [DS02, SD02]
used eye tracking data to identify meaningful regions in photographies. The
gaze data was collected from users viewing photos for five seconds. This infor-
mation was used to perform a transformation of a photo into an artistic image
in line-drawing style.

Ramanathan et al. [RKS+10] made use of gaze information to improve the
segmentation of digital images. Their idea was to analyze the fixation data for
identifying good seeds for the segmentation algorithm. The gaze information
was collected from users free-viewing images, that is, without a concrete task
or interest in a specific object. The images used in their analysis showed only
one salient object against the image background. Their gaze-base approach per-
formed the segmentation 10% better, compared with the segmentation without
gaze information. Klami et al. [Kla10] presented an approach for identifying
image regions relevant in a specific task using gaze information. In their work,
relevance was calculated only from the gaze information represented in a Gaus-
sian mixture model, which resembles heat maps. The model was built based on
several gaze paths for identifying ROI. In an evaluation with 25 participants, two
different tasks were given to the subjects. The two tasks were to inspect photos
in the role of a burglar or in the role of a house buyer. This work revealed that
the regions identified depend on the task given to the subject before viewing
the image. They showed that their classifier clearly outperformed simple gaze
measures such as the number of fixations on a specific image part. The work of
Ramanathan et al. [RKH+09] aimed at localizing affective objects and actions
in images by using gaze information. Image caption localization was performed
based on the segmented image and the gaze fixations. An affect model for world
concepts was derived from fixation patterns. Experimental results showed that
an accuracy of 80% was achieved for the labeling of affective concepts with the
image caption texts.

3.4 Summary of Related Work
Many publications from related work aim at assigning tags to images. The
goal of this work is to assign tags to image regions at pixel level. Automatic
assignments of tags to regions in related work are usually based on the visual
similarity, a given training set, and a number of learned concepts. But as
Grabner et al. [GGVG11] constituted, objects are often identified by human
observers based on their function, not on their visual appearance. This shows
the limitation of the visual-similarity approaches. Humans are able to identify
objects based on but not limited to, their visual appearance.

Despite all research on the creation of photo selections, the task is still
challenging. Work was done on defining criteria that should be fulfilled by
photo selections. Sinha et al. [SMJ11] stated that an effective subset summary
should satisfy the criteria quality, diversity, and coverage. Savakis et al. [SEL00]
investigated how humans select photos from a collection with the result that
the selections are subjective and differ between the users. They also determined
that it is hard to identify the attributes on which the decisions are based,

48



CHAPTER 3. RELATED WORK

as it is part of a high-level human cognitive process. The automatic photo
selection approaches have to solve two problems: on the one hand, the diverse
and individual criteria of individual users have to be reduced to a model or
computational criteria. On the other hand, automatic techniques from, for
example, computer vision have, to be used for identifying photos fulfilling the
criteria. More complex criteria such as personal preferences or interest are
insoluble problems for these approaches.

The diversity of gaze controlled applications points out the numerous pos-
sible fields of applications for eye tracking technology. Advantages are that the
user does not have to physically touch a device. The gaze data can also be used
additionally and in combination with standard input devices. The information
on visual attention and the mental state of the users can be very valuable, and
it can hardly be measured with other input devices. Last but not least, the
control by eye movements is entertaining and can even be perceived as “magic”
by the users.

The expected spread of eye tracking hardware and the corresponding in-
crease of eye tracking applications support the approach presented in this the-
sis. However, the idea behind this thesis is very different from most approaches
presented in the last section, as for these interactive applications, the goal is to
control or adapt applications. Diagnostic applications analyze either the viewed
stimulus or the persons viewing the stimulus. The goal is to adapt the stim-
ulus for getting an intended viewing behavior (e.g., in usability studies) or to
understand the human (e.g., in psychological research). Both aims are different
from those of the applications called exploitative in this thesis. Exploitative
applications have the goal to obtain information from analyzing the viewing
behavior for annotating the stimulus. Existing work shows that gaze data can
be meaningfully used in different application, for example, for labeling logs with
specific activities or for identifying important parts of texts from reading be-
havior. Visual attention derived from gaze data is also a valuable source of
information as implicit relevance feedback in search. The related work on this
kind of feedback showed that for concrete search tasks, relevant photos can be
identified. However, no work deals with the identification of photos that are of
personal importance in a free-viewing task, as it is investigated in this work and
described in Section 8.

Related work also has shown that the identification of important image
regions, for example, for improving search, can be performed and the value of
this data was proven in some studies. But the concrete labeling of image parts
with a marked region at pixel and a tag explicitly assigned to this region was
not investigated in the presented related work. This region labeling and its
evaluation is part of this work and is described in Sections 4 to 7.
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Chapter 4

Image Region Tagging with
Given Tags and Given
Object Regions

Manually providing image annotations in the form of labels is a tedious task
for the users. This becomes even more cumbersome when objects shall be
annotated in the images. In addition, the automatic labeling of image regions is
far from fulfilling the human needs. Such region-based annotations are of value
in various areas of application such as similarity search or as training set for
object detection algorithms. The labeling of image regions by means of gaze
analysis is the goal of this thesis. The gaze data of users is recorded with an
eye tracking device and used as implicit source of information.

In this section, a first step in the direction of labeling image regions by means
of gaze data is presented. By means of gaze data, one object region r is selected
from a set of manually created high-quality object regions by means of gaze
analysis. The gaze data was recorded in a controlled experiment conducted with
30 participants. In the experiments, subjects had to decide whether an object,
described by a given tag, can be seen on an image or not. A sequence of 51 tag-
image-pairs was viewed by each participant while their gaze information was
recorded. The experiment consisted of three steps: first the tag was presented,
then a red dot concentrates the attention on one starting point, and finally the
image was shown and the decision was made. The images and labeled image
regions were taken from the LabelMe data set [RTMF08]. About 50% of the
given tags were correct, the others were incorrect.

In total 799 gaze paths were analyzed to calculate the tag-to-region assign-
ments. These assignments allocated the given tag a favorite object region, if
the users pressed the button for indicating that an object described by the tag
is depicted on the photo. 13 eye tracking measures were considered in the anal-
ysis and further parameters regarding the extension of region boundaries and
weighting of smaller regions were investigated. In addition, it was investigated
if different object regions were selected as favorite region when gaze data from
users with different primings (different tags) were analyzed. Furthermore, an
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in-depth analysis of the obtained results is provided, in which the size and posi-
tion of the correctly respectively incorrectly assigned regions analyzed with the
goal to identify typical characteristics that can restrict the gaze-based approach.
Gaze data of several users with the same primings are aggregated during the
analysis. The influence of the number of subjects in an aggregated analysis on
the precision of the tag-to-region assignments was investigated. The impact of
a previous fixation on the first fixations on an image with respect to identifying
the correct image region is explored. And finally, a closer look into differentiat-
ing two objects shown in the same image by analyzing gaze paths with different
primings is taken.

The experiment setup in this part of the work simulates the situation of a
user viewing images while being interested in a specific object. The users did
not know for which reason their gaze paths were recorded and that the shown
tag was assigned to an image region. Thus, the users were concentrated on
solving the given tasks to decide on whether they can see the given object or
not and scanned the photos with this goal, without trying to control the gaze in
any way. This viewing behavior simulates situation that occurs in everyday live,
when users are dealing with photo, for example, when searching for a photo with
by giving search term in an image search scenario. This scenarios may include
further challenges, such as possible distractions from the surrounding web search
page or smaller image size in the search results lists. Because of such additional
challenges, the approach to the overall research question of assigning tags to
image regions based on eye tracking data is broken down into a series of distinct
steps as presented in Figure 4.1. The first step, presented in this Section 4, is the
analysis of gaze data gained in a controlled experiment, with given tags, and the
usage of predefined high-quality segmentation (manually drawn in polygons in
LabelMe). The manually created object segments were chosen in this first step,
to excluded additional challenges and sources of error from image segmentation
algorithms. The goal in this strongly controlled experiment is to investigate
if the gaze indeed concentrates on given objects. The research questions are
extended in the following sections.

In this section, three research questions are addressed:

RQ 1.1 Is it possible to identify an object, from a given set of objects, by means
of gaze data from users who had decided if they can see that specific object on a
photo?

RQ 1.2 Can the identification be improved when considering inaccurate data?

RQ 1.3 Does the aggregation of gaze data gained from several users improve
the region identification results?

In Section 4.1, the conducted experiment is presented, including the experi-
ment data set. The analysis of the recorded gaze data is subject of Section 4.2.
Results on user feedback are presented in Section 4.3 while the presentation of
the gaze analysis results takes place in Section 4.4. Detailed analysis on specific
object region characteristics and the possibilities of distinguishing several ob-
jects in one photo are presented in Sections 4.5 and 4.6 before this part of the
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Figure 4.1: Embedding of this experiment (A) in the context of this thesis. The
gaze analysis based on given high-quality object region is the first step in the
analysis of gaze data with the goal to label image regions.

work is concluded in 4.7. Two papers [WSS13a] and [WSS12] were published
about this part of the work. The experiment images, gaze data and results were
published under http://west.uni-koblenz.de/Research/DataSets/gaze.

4.1 Experiment Setup
In the experiment application image-tag-pairs were presented to the subjects
with the task to decide whether an object, described by the tag, is depicted on
the image or not. The experiment application has been designed such that first
a tag and subsequently an image was shown to the subjects.

4.1.1 Participants
30 participants (9 of them female) attended the experiment. The age of the
subjects was between 22 and 45 years (average: 28.7, SD: 6.78). They were
undergraduate students (10), PhD students (17), or worked in other professions
(3). The subjects received a small present for participating.

4.1.2 Data Set
The LabelMe data set [RTMF08], with in total 182,657 user contributed images
(download August 2010), is used as experiment data set. It provides images
of complex indoor and outdoor scenes. The LabelMe community has manually
created image regions by drawing polygons into the images and tagging them.
The labels were used as tags and the regions as a manual, thus high-quality
image segmentation. The annotated regions were used as ground truth in the
analysis.
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For the experiment, images from the LabelMe data set with a minimum
resolution of 1000× 700 pixels and at least two labeled regions were randomly
selected. In average, every image in the selection is labeled with 18.4 tagged
regions (SD: 22.4, min: 3, max: 152). 72% of the image areas are covered by the
manually drawn polygons in average (SD: 32%, min: 1%, max: 100%). From
these images, three sets of 51 images, each with an assigned tag, were created.
For each image, a “true” or “false” tag was randomly selected. “True” means
that an object described by the tag was labeled on the image. “False” means
that no label with the tag was given for the image. These “false” tags had
been randomly selected from other LabelMe images. The purpose of creating
true and false image-tag-pairs was to keep the participants’ attention during
the experiment. Some images had to be removed manually from the selected
ones when a) the randomly selected false tags by coincidence correlated to some
actually visible parts of the image and thus were true tags. Also images where
b) the tags where incomprehensible or expert knowledge was required had to
be removed. In some cases there were c) not all instances of an object labeled
on the image.

4.1.3 Experiment Setup
The experiment was performed on a screen with a resolution of 1680×1050 pix-
els. The experiment application was implemented as a simple web application
running in Microsoft’s Internet Explorer. The participants’ gaze paths were
recorded with a Tobii X60 eye tracker at a data rate of 60Hz and an accuracy
of 0.5◦. For each image-tag-pair, the following three steps were conducted:

1. First, the tag with the question “Can you see the following thing on the
image?” was presented to the participants (see Figure 4.2, left). Af-
ter pressing the “space” button, the application continued with the next
screen.

2. In this screen, a small blinking dot in the upper middle was displayed for
one second (see Figure 4.2, center). The participants were asked to look
at that point. The red dot animated all participants to start viewing the
image (which has been shown next) from the same gaze position. It was
placed above the actual image that is shown in the third screen.

3. Finally, the image was shown to the participants (see Figure 4.2, right).
While viewing the image, the participants had to judge whether the tag
shown in the first screen would have an object counterpart in the image
or not. The decision was made by pressing the “y” (yes) or “n” (no) key.

The first image-tag-pair was used to introduce the application to the par-
ticipants. It has not been used in the analysis. Each participant evaluated one
of the three sets consisting of 51 image-tag-pairs from the data set described
above. The participants were told that the goal of the experiment was not to
measure their efficiency in conducting the experiment task. No time constraints
were given.
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Figure 4.2: The three pages in the experiment setup. 1. Declaration of the
object, 2. Fixation point, 3. Decision page.

4.2 Analysis
In this section, the analysis of the gaze data, the baseline approaches and the
calculation of precision P for all approaches are described.

4.2.1 Gaze Analysis
In the analysis of the gaze data, only fixations on the images are considered.
Fixations on the experiment screen but outside the evaluated image are ignored.

Eye tracking measures are applied to the experiment photo. They are calcu-
lated for each given image region over given fixations. The given tag is assigned
to the region with the highest fixation measure value. This region is called
the favorite region. In the analysis it is investigated which measure provides
the highest number of correct aggregations between tag and image region. In
total, 13 eye tracking measures are applied. 10 of them are standard measures,
integrated in common gaze analysis software such as Tobii Studio, or they were
introduced in related work. These measures are described in Section 2.4.2.
Three additional measures are introduced. As a variation of (1) firstFixation,
the measure (2) secondFixation (min count) ignores the very first fixation. This
measure was introduced because the very first fixation can be strongly influenced
by the position the user fixated before the image was displayed. Two other mea-
sures take the specific application characteristics into account and considers the
moment of the decision making. (4) fixationsBeforeDecision (min count) con-
siders the fixations before the moment the key was pressed by the user. Gaze
paths can contain fixations after the making of the decision by pressing the
button on the keyboard, due to the inherent reaction time of the experiment
application. The measure (5) fixationsAfterDecision (min count) analysis these
fixations. An overview of all measures investigated in this part of the thesis is
given in Table 4.1.

Aggregation of Gaze Paths

The eye tracking measures can be calculated for the fixations of a single gaze
path, recorded from one single user. Cumulative interest in a location is often a

55



4.2. ANALYSIS

No Name Description Favor. Origin

1 firstFixation Number of times the partic-
ipant fixates on the image
before fixating on region r
for the first time

min
count

Tobii

2 secondFixation Number of times the partic-
ipant fixates on the image
before fixating on region r
for the first time without
the first fixation on the im-
age

min
count

New

3 lastFixation Number of times the par-
ticipant fixates on the im-
age after last fixation on re-
gion r

min
count

[Kla10]

4 fixationsBeforeDecision Number of times the partic-
ipant fixates on the image
after the last fixation on r
and before the decision

min
count

New

5 fixationsAfterDecision Number of times the partic-
ipant fixates on the image
after the decision and before
the fixation on region r

min
count

New

6 fixationDuration Sum of the duration of all
fixations on r

max
seconds

Tobii

7 firstFixationDuration Duration of the first fixa-
tion on r

max
seconds

Tobii

8 lastFixationDuration Duration of the last fixation
on r

max
seconds

New

9 fixationCount Number of times the partic-
ipant fixates on r

max
count

Tobii

10 maxVisitDuration Maximum visit length on r max
seconds

Tobii

11 meanVisitDuration Mean visit length on r max
seconds

Tobii

12 visitCount Number of visits within r max
count

Tobii

13 saccLength Length of saccade before
fixation on r

max
centim.

[KKK09]

Table 4.1: Applied eye tracking measures fm including three new measures.
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valuable measurement. Particularly when the problem of distinguishing between
the scanning of a photo and the fixating of an important object on the photo has
to be solved. In the experiment design, several users viewed the same image
with the same tag given. When the region showing an object described by
this tag should be identified in the photo, the gaze paths of all users can be
aggregated and the eye tracking measures can be calculated based on all this
data. Here, only gaze paths of users who correctly identified a tag as correct are
considered. It can be that participants that gave an incorrect answer, did not
see the object. In a real-world scenario, these incorrect answers either has to
be identified or the gaze paths of all users have to be included in the analysis.

Extending Object Boundaries

Two additional parameters for identifying correlations between tags and image
regions are investigated, dealing with the specific characteristics of eye tracking
data.

The first parameter is an extension of the region boundaries to deal with
the inaccuracy of eye tracking data. One obstacle in the identification of image
regions from gaze information is the inaccuracy of the eye tracker (see Sec-
tion 2.2.1). It is investigate if this measurement uncertainty can be diminished
by extending the region boundaries. By this, fixations near to a region are also
considered belonging to the region. Values for the region extension d = 1 . . . 35
pixels are analyzed.

Weighting Small Objects

The second parameter deals with the fact that larger image regions are likely to
be fixated by coincidence than smaller regions while the participant is scanning
the image on the search for an object. It is analyzed, if the tag-to-region assign-
ment quality can be improved by adding a linear weighting function to support
smaller regions. The weighting depends on the image region size in relation to
the total image size. fm(r) with m = 1 . . . 13 is a measure functions applied on
region r as described in Table 4.1.

In the following, the linear weighting function weighted-fm on an image
region r is considered:

weighted-fm(r) =
{
fm(r) · weight(sr) if sr ≤ T
fm(r) else

(4.1)

with
weight(sr) = 1−M

T
sr +M

The relative region size sr is calculated from the size of the region in pixels
divided by the image size in pixels. The measure is weighted with a factor only
when sr ≤ T , where T is a predefined threshold. Thus, only image regions
up to a specific size gain from the weighting function. The weighting factor
itself is calculated depending on the threshold T and the maximum weighting
valueM . In the analysis, the parametersM and T of the weighting function by
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calculating the precision results of all images for T = 0 . . . 1 and M = 1 . . . 50
are investigated. An example of applying the weighted-fm for T = 0.05 and
M = 4 is shown in Figure 4.3. Here regions of size between 0% and 5% of the
actual image size are weighted with a factor between 1 and 4.

1
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4

0 0.05 0.1 0.15 0.2 0.25

w
ei
gh
t(
s r
)

sr

Figure 4.3: Example weighting function for T = 0.05 and M = 4.

4.2.2 Baselines

The baseline results and the gaze results are computed and compared for the
same input images. The baseline approaches use exclusively the same data
as the gaze approach — excluding the eye tracking data. This is the set of
images, their tags, and the manually created image regions obtained from the
LabelMe data. The use of methods based on a training set, methods requiring
a training period, or methods that support a limited number of pre-defined
concepts only (such as typical object detection algorithms) are hard to compare
to the proposed gaze approach as they require additional input data or a bigger
data set.

Three baselines are applied for comparing the gaze-based approach to other
approaches that are not based on the usage of eye tracking information. These
baselines are (a) a “random” baseline [KSDK08], (b) a baseline based on the
calculation of the most salient points on the image [NI05] [Row02], and (c)
a “naive” baseline [KKK09]. The random baseline (a) randomly selects one of
the labeled regions of the image as favorite. The saliency baseline (b) assumes
the depicted object at the most salient points on the images. The salient points
were calculated by the toolbox offered by Itti et al. [IKN98]. The favorite region
is selected by using the salient points and their ordering as computed by Itti et
al. and interpreting them as simulated gaze paths for the gaze analysis method.
The eye tracking measures introduced above and shown in Table 4.1 are used
to compute the favorite region from the saliency map. The naive baseline (c)
makes the assumption that the area in the center of an image should be the
favorite one. It was chosen because it is common that photographers position
important motives in the middle of the image.
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4.2.3 Calculating the Precision of Tag-to-Region Assign-
ments

The whole procedure for calculating the tag-to-region assignments is illustrated
in Figure 4.4. The single steps for each fixation measure are:

1. For each region in an image b) a value for a fixation measure is calculated
for each gaze path c).

2. For each region, the fixation measure results for each gaze path are summed
up. From this, an ordered list of image regions for a fixation measure that
determines the favorite region d) as described before is obtained.

3. The label of the favorite region is compared with the tag a) that was
given to the participant in the experiment. If label and tag match, the
assignment is true positive tp, otherwise it is a false positive fp. The
total number of correct and incorrect assignments is summed up over all
images and the precision P for the whole image set is calculated using the
following formula:

P = tp

tp+ fp
(4.2)

For the baseline approaches, the selected favorite region is also evaluated
by calculating precision P . The results of the gaze-based and the baseline
approaches are compared subsequently.

Figure 4.4: Overview of calculating the tag-to-region assignments.

4.3 Evaluation Results for Effectiveness, Effi-
ciency, and Satisfaction

Besides recording the raw gaze data, also the time the participants took to make
a decision per image and the correctness of the answers was taken. In addition,
the participants were asked to express their emotions during the experiment on
a 5-point-Likert scale where a value of 1 means strong disagreement and a value
of 5 stands for strong agreement.
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4.3.1 Effectiveness
It was measured how many image-tag-pairs have been correctly classified by
the participants. Correctly classified means that a true tag is confirmed with
“yes” and that a false tag is decided with “no” in the experiment application.
In total, 1,500 answers, 10 answers per image-tag-pair, were given. 5.4% of
the given answers of all participants were incorrect. The proportion of wrong
answers for true (5.8%) tags is close to the value for false tags (4.8%). The
highest number of wrong answers for one image-tag-pair is 8, that is, most of
the users did not correctly identify whether the tag given was true or false. In
this work, only the gaze paths of participants having successfully identified a
tag as true or false. Only image-tag-pairs with a true tag and a given the correct
answer were analyzed.

4.3.2 Efficiency
The average answer time over all images is 3.00 ms (shortest answer time is
204 ms and the longest is 25.16 ms). 50% of the answers are given in a time
between 1.42 ms and 3.92 ms. For true tags, the average answer time over all
participants and all images is 2.82 ms, for false tags it is almost twice as long
with 3.85 ms. Also the number of fixations on the image is higher for false tags
(13 fixations in average) than for true tags (9.6 fixations). In an independent-
samples Mann-Whitney U Test the answer durations and number of fixations
measured for true and false tags were compared. For both tests a significant
difference with p < .0001 was obtained. This means that the participants look
longer and more precisely on images when there is no object related to the
provided tag.

4.3.3 Satisfaction
Concerning the statement “It was easy to decide on an answer.”, the participants
answered on average with a score of 3.85 (SD: 0.59). 15 participants agreed or
strongly agreed with the statement. Most of the participants felt comfortable
during the evaluation (average: 4.4, SD: 0.75). 11 strongly agreed and 6 agreed
to the statement. Thus, it can be assumed that the results obtained from the
experiment application are not influenced by side effects such as users feeling
discomforted in front of the eye tracker.

4.4 Results of Finding Objects in Images

In total 1,500 gaze paths were recorded (30 users, each viewed 50 images) during
the experiment. Each of them contains fixations on the presented image. An
average number of fixations per image over all images and all users is 10.9 (SD:
9.2, min: 1, max: 112). The gaze information was also recorded during and
after the decision making by pressing of the “y”- or “n”-button on the keyboard.
88% of the records contain fixations after the decision before the next page of
the experiment application was shown.
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Only the gaze paths from images with a true tag and a correct answer given
by the user were used in the analysis (see Section 4.1.3). In cases where the
participants gave incorrect answers, it cannot be known if a participant did not
took enough time to examine the image, if he/she did not understand the given
tag, or if other problems occurred. 799 gaze paths were collected during the
experiment that fulfill the requirement. 656 (82%) of these gaze paths have at
least one fixation inside or near (10 pixels) a correct region.

The preprocessing of the raw eye tracking data for identifying fixations is
performed with the fixation filter offered by Tobii Studio with the default veloc-
ity threshold of 35 pixels and a distance threshold of 35 pixels (see Section 2.4.1
on preprocessing of the raw eye tracking data).

4.4.1 Best Eye Tracking Measures

Figure 4.5: Precision for the eye tracking measures from Section 4.2.1 calculated
from tp (true positive) and fp (false positive).

The results for all measures are presented in Figure 4.5. For each measure the
tp and fp results and the precision P , calculated as described in Section 4.2.3,
are depicted. The best result was obtained for the measure (8) lastFixationDura-
tion with precision P = 0.55. That means, 55% of the image regions selected
by the gaze analysis are described by the tag shown to the participants. The
second best value with P = 0.54 is (11) meanVisitDuration, followed by (6) fixa-
tionDuration with precision P = 0.52. The fourth best result is P = 0.52 for (4)
fixationsBeforeDecision. Among the top four measures, two measures take the
moment of decision into account: (8) lastFixationDuration, (4) fixationsBefore-
Decision. The lowest precision results were 0.19, and 0.26 for (1) firstFixation
and (2) secondFixation. These measures are using the first fixations on an
image and the fp values are very high. This problem is further examined in
Section 4.5.4.
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Figure 4.6 shows some examples of successfully identified tag-to-region as-
signments. A closer look at the image region characteristics and a qualitative
description of the incorrect correlations can be found in the detailed analysis
presented in Section 4.5.

Figure 4.6: All labeled regions (black borders) and correctly identified favorite
objects (white borders).

A possible influence of the complexity of a scene on fixations measures was
analyzed. As measure for the complexity of a scene, the number of tagged
regions per image was used. The number of tagged regions nt is clustered ac-
cording to the three quartiles (Q1 = 6.25, Q2 = 11.5, Q3 = 21). The maximum
difference diff between the precision results for different quartiles for one mea-
sure is also calculated. The results are depicted in Figure 4.7. For each measure
from (1) firstFixation to (13) saccLength the precision P is calculated separately
for images with a number of tagged regions between 0 and Q1, Q1 and Q2, etc
. In general, more correct assignments were performed for images with less
tagged regions. This finding is not surprising as it is easier to perform a correct
assignment by chance for less complex scenes with less regions. The influence of
the scene complexity is varying between the measures. The three best perform-
ing measures have an average diff value between 0.33 and 0.35. The measure
(5) fixationsAfterDecision with the smallest result diff = 0.21 shows an average
precision performance.

4.4.2 Extension of Region Boundaries
The influence of the extension on the precision of the three best performing
measure (8) lastFixationDuration, (11) meanVisitDuration and (6) fixationDura-
tion is described in this section. The precision increases when applying the
extension parameter. The best result was precision P = 0.6 for (8) lastFix-
ationDuration with d = 18 as shown in Figure 4.8. This corresponds to an
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Figure 4.7: The precision P compared for different levels of scene complexity
(measured by the number of tagged regions nt).

improvement of about 9%, compared with the result of P = 0.55 without ex-
tension. A baseline is added to each diagram, displaying the precision results
without extension. The precision is even below (> 1%) the threshold for d < 6
for (8) lastFixationDuration, d > 32 for (6) fixationDuration, and d > 29 for (11)
meanVisitDuration.

The results suggest that it is reasonable to include the extension of region
boundaries in the calculation of tag-to-region assignments. The precision is
fluctuating depending on the chosen extension value d. In the investigations,
the best results were obtained for 6 ≤ d ≤ 29.

4.4.3 Weighting function
The best precision applying the weighting function on the fixation measure
(8) lastFixationDuration is P = 0.56, the worst result is P = 0.47. (for (11)
meanVisitDuration best P = 0.6 and worst P = 0.53, for (6) fixationDuration:
best P = 0.54 and worst P = 0.48). These results were obtained from different
combination of M and T . In Figure 4.9, the results for the two weighting
parameters are displayed. As baseline precision, the precision results obtained
without extension and weighting (see Section 4.2.1) are considered. Values equal
to this baseline are marked in white. Values higher than and lower than the
baseline precision are highlighted in the figure in red respectively blue.

From the results depicted in Figure 4.9, one can see that the influence of
parameter T is higher than the influence ofM . The precision is strongly varying.
Every chart (a) to (c) shows an area of highest values for 0.04 < T < 0.1. The
precision decreases for every measure from T > 0.13 but also here good precision
results can appear for higher T .

The usage of the weighting function can improve the results. However,
the precision can also decrease. Further investigations are necessary to better
explain the fluctuation of the graph.
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Figure 4.8: Influence of different extension parameters d on the precision results
for three eye tracking measures.
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Figure 4.9: Influence of the weighting function on precision P for three different
eye tracking measures (white: baseline without weighting).
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4.4.4 Combination of Region Extension and Weighting
Function

Finally, the three best performing eye tracking measures were combined with
both parameters, the region extension and the weighting function. The best
precision for fixation measure (8) lastFixationDuration was P = 0.62, the worst
result is P = 0.49. The best result was delivered by (11) meanVisitDuration with
P = 0.63, including extension d = 10 and weighting (e.g., T = 0.05, M = 4).
For (6) fixationDuration the best result was P = 0.61, the worst P = 0.51.

4.4.5 Comparison of the Eye tracking Approach with three
Baselines

The precision results obtained by the gaze approach are compared with the
three baselines described in Section 4.2.2. The results in Figure 4.10 show
that the random baseline has an average precision of 0.17 over 30 samples (SD:
0.04, min: 0.1, max: 0.26). The saliency approach has a best precision of 0.21
for the measure (11) meanVisitDuration, followed by a precision of 0.20 for (1)
firstFixation. The worst result was obtained with a precision of 0.15 for the mea-
sure (2) secondFixation. The naive approach achieves a precision of also 0.21.
These baseline results are compared with the gaze-based approach with preci-
sions between 0.52 and 0.55 for the measures (6), (8), and (11), and between
0.61 and 0.63 for the measures with extension and weighting. The identifica-
tion of assignments based on gaze or on gaze including extension and weighting
performs better than the baseline approaches. 18 Chi-square tests were per-
formed to investigate significant differences between the approaches. They all
show a statistical significance at level α < 0.05. The least significant result
with χ2(1, N = 124) = 10.723, p < 0.0015, φ = 0.162 was obtained for the naive
baseline and measure (6) fixationDuration without extension and weighting.

Figure 4.10: Precision for three baselines approaches and gaze based analysis.

4.5 Detailed Analysis of Image Region Charac-
teristics and Gaze Paths Patterns

The best precision P = 0.63 for measure (11) meanVisitDuration (including ex-
tension and weighting) was obtained from 54 tp and 32 fp assignments. First
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in this section, a qualitative analysis of the fp assignments is presented. Sub-
sequently, it is investigated if there are typical characteristics concerning region
sizes or positions of image regions for correct and incorrect tag-to-region assign-
ments, followed by a look into typical patterns for the first fixations. Finally,
the effect of aggregating gaze paths of several participants is investigated.

4.5.1 Qualitative Analysis of Incorrect Assignments

Some examples of incorrect assignments can be seen in Figure 4.11. The white
boundaries show the objects that corresponds to the tag given to the partici-
pants. The black boundaries show the objects determined as favorite from the
gaze information. The correlations are calculated with measure (11) meanVis-
itDuration including extension and weighting. From an qualitative analysis of
the 32 wrongly assigned tags, the following characteristics were identified:

• Some images show scenes with a small correct object also had small
wrongly selected favorite object which were located next to the correct
object (cf. images 1 and 2). Six images belonged to this category. These
wrong assignments can be caused by the inaccuracy of the eye tracker.

• In some images, the correct object is displayed within another object (cf.
image 3, lamp inside wall). In these cases, the outer region is identified
as favorite. That means the weighting function does not work for all
occurrences of smaller regions. Eight images belonged to this category.

• Further images show scenes with an object that seems to be very easy
to identify. For example, larger objects such as road (cf. image 4), sky
or tree might be perceived even in the corner of the human eye or based
on context knowledge (e.g., sky is above sea is above sand in a beach
scene). Nine images belonged to this category. This is a basic limitation
of the provided approach but it appears infrequently in comparison to the
number of all shown images.

4.5.2 Comparing the Region Size for Correct vs. Incor-
rect Assignments

The average size of the LabelMe regions in the images used in the experiment
is 66,3811 pixels. The average region size for correctly assigned regions tp is
123,609, for incorrectly assigned regions fp 214,704 pixels. The region size of
the selected favorite regions (tp or fp) is clearly larger than the average region
size. Thus, larger regions are selected with a higher probability for tag-to-region
assignments by the gaze-based approach. It is also interesting to notice that
the average region size of fp assignments is about 70% larger than the region
size of tp assignments.
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Figure 4.11: Examples of image-tag-pairs with given tags (white shape) and
incorrectly identified favorites (black shape).

4.5.3 Comparing the Region Positions for Correct vs. In-
correct Assignments

The images were divided into nine uniform areas. Based on these areas, the
positions of the assigned regions were investigated. The percentage of image re-
gions having an overlap with the particular area is calculated. In Figure 4.12(a),
the positions of all regions in the data set corresponding to true tags are de-
picted. 49% of the regions overlap with the center field of the image. In the
upper third of the images only one fourth of the regions is located. In the lower
areas it is about one third. This can be explained by how people take images,
for example, with the object in the center of the image and sky or the ceiling
in the upper areas. The differences between the left and the right areas are
very small. In Figure 4.12(b) and (c), the positions of correctly and incorrectly
assigned regions are depicted. One can see in Figure 4.12(b) that the positions
of the correctly assigned regions are distributed over the image areas in a sim-
ilar way as the true-tag image regions (cf. Figure 4.12(a)). For the correct
assignments it is not possible to identify a privileged area on the image.

For the incorrect assignments in Figure 4.12(c), one can notice that the
positions of the regions concentrate in the center of the image. One can further
observe that in the center top part the value is also increased compared with
the true-tag image regions. The total number of touched areas is bigger for (c)
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compared with (a) and (b). This finding is based on the bigger size of incorrect
areas, as described in Section 4.5.2. This higher percentage of wrongly assigned
regions might be caused by a concentration of fixations in the center of the
images. This concentration has been observed during the first fixations on the
images as shown in the next section.

Figure 4.12: Percentage of regions located in image areas for (a) all labeled
image region in the experiment data set, (b) only correctly identified object
regions, and (c) only incorrectly identified object regions.

4.5.4 Bias in the First Fixations
Figure 4.13 shows an illustration of the first five fixations over all participants
and all images. One can see that the first fixations are concentrated in the
center of the images. Later, the fixations are more distributed over the whole
image. This effect is knows as center bias and was described in Section 2.1.3.
In the related work, the eye tracking information showing the center bias is
collected in free-viewing scenarios (i. e., no specific task was given to the users,
they were asked to just view the images). The influence of this bias was not
clear in task-driven viewing and a fixated starting point outside the image itself.
As can be seen in Figure 4.13, the center bias is highly distinct only for the very
first fixations. This is a valuable finding, as the fixation order is considered in
the analysis. The weak results for the measure (1) firstFixation and (2) sec-
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ondFixation show this problem. In the experiment setup, the participants were
asked to look at a red dot — placed above the image position — before the
image appeared on the screen (see Section 4.1.3). The influence of this point
can be seen in the illustration of the first and second fixations because of the
fixations in the upper center of the images. This also provides an explanation
for the high value of incorrect aggregations in the center of the images in the
previous Section 4.5.3.

Figure 4.13: Positions of the first five fixations accumulated over all participants
and all images.

4.5.5 Effect of Aggregation of Gaze Paths on Precision

Finally, it is interesting to know how many users are needed to accomplish a
certain level of reliability in assigning a tag to the correct region. Thus, it
was investigated which precision can be reached when aggregating an increas-
ing number of users’ gaze paths. Precision results for aggregations from 1 to
10 participants for the measure meanVisitDuration, including extension and
weighting, are presented. Precision P was calculated for each possible subset
of participants and averaged for all subgroups of the same size. As shown in
Figure 4.14, the number of users has a high influence on the precision. With
the gaze paths of only single users, an average precision (over all users and
all images) of P = 0.25 (SD: 0.1, min: 0.16, max: 0.53) was obtained. For
the aggregated data of all 10 users the precision increased to P = 0.63. This
corresponds to an improvement of 152%. The biggest improvements took place
between the first group sizes. For example, between one and two users per group
an improvement of 46% in average was measured. Between nine users and ten
users per group, only an improvement of 7% was observed.

In addition, the range between minimum and maximum precision is depicted
in Figure 4.14. The range decreases from the single user results to the multiple
user results. Even for single users and single images a good precision can be
achieved for some images and regions, respectively. For 10 users there is only
one set, therefore no range can be indicated. The big step for the minimum
values between the subgroups of 8 and 9 users can also be caused by the small
number of only 10 subsets for 9 users. The results based on multiple gaze paths
are considerably better than the ones calculated from only a few gaze paths.

The results based on multiple gaze paths are considerably better than the
ones calculated from only a few gaze paths. However, the improvement of
the precision gets lower when aggregating more gaze paths. Compared with the
two baselines from Section 4.4.5, the results for single users are still significantly
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Figure 4.14: Influence of gaze paths aggregation on precision P for numbers of
users between 1 (no aggregation) to 10.

better than the naive or random baseline. The Chi-square test provides for the
naive approach α < 0.001 and for the random approach α < 0.002.

4.6 Discriminating Different Objects in One
Image

It was investigated if it is possible to differentiate objects in one depicted scene
by analyzing the users’ gaze paths. Two of the three image data sets from
Section 4.1.2 were composed from the same image subsets, which allows to
perform this analysis. As a result, two sets of 51 image-tag-pairs each, sharing
the same images but different tags, were obtained. All combinations of correct
and incorrect tags appear: images with a correct tag for both sets, images with
one correct, one incorrect tag and images with two incorrect tags. The data
set included 16 true-true image-tag-pairs (tags for both groups were true), 24
true-false image-tag-pairs (one tag was true, one tag was false), and 10 false-
false image-tag-pairs. In this section, the investigated measure is again (11)
meanVisitDuration, including extension and weighting.

4.6.1 Proportion of Correctly Discriminating Two Objects
For the 16 images with two correct tags, the favorite image regions were cal-
culated. In 6 images, two correct image regions were identified. This is a
proportion of 38%. In Figure 4.15, some examples with two correctly identified
regions are shown. As the figure shows, the two tags sky and sea can be distin-
guished in the upper image. Also the tags water pot and teas in the lower image
can be identified using gaze information. The average probability to identify the
correct region in one image is 63% (see Section 4.4). Therefore, the probability
to obtain two correct tag-to-region assignments in two different images is 40%.
With a value of 38% for two image regions in one image, the probability is close
to the probability for two image regions in two different images. Thus, it is
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possible to identify different image regions in one image with an accuracy very
close to the accuracy of the single assignments. The 16 images with two correct
tags provided to the participants has in average 15 tagged regions (SD: 16, min:
3, max: 62). The six images with two correctly identified favorite regions have
an average of 17 tagged regions (SD: 22, min: 5, max: 62), whereas the 10 im-
ages with one or two incorrect favorite regions has in average 14 tagged regions
(SD: 11, min: 3, max: 37). These results indicate that the rate of successfully
assigned tags is not or only weakly influenced by the complexity of the depicted
scene. An accumulation of the error for detecting multiple objects in one image
can lead to an overall low precision of the tag-to-region assignments.

Figure 4.15: Example images with two correctly identified object regions (white
borders). Black borders: all given object regions.

4.6.2 Influence of Different Tag Primings on Tag-to-region
Assignments

In this section, the influence of the priming by the given tags on the tag-to-region
assignments is investigated. Every true tag tr, assigned to an image, describes
one or multiple image regions r. Here, the results for the gaze-approach for
users with a provided true tag tr are compared with results for users, viewing
the same image but given a false tag or a tag describing another region on
the image. It is measured how often region r is determined as favorite region,
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although not tag tr but another tag was presented in advance. The calculation
was performed based on the 16 true-true and 24 true-false image-tag-pairs.

The tp and fp values in Figure 4.16(a) show the results for the assignment
of tag tr to region r from the analysis presented in Section 4.4. A tp assignment
means that the favorite region was described by the tag presented to the user.
The fp assignments describe the incorrect correlations, that is, when a favorite
region was selected that was not r.

tp′ in Figure 4.16(b) shows how often a region r was determined as favorite
region from the gaze path analysis that did not belong to tag tr, that is, where
a tag is provided to the users that did not refer to region r. Rather, the tag
given to the users could be incorrect (true-false image-tag-pairs) or correct for
another region in the image (true-true image-tag-pairs). In case of fp′, the
region r was not identified as favorite. Thus the fp′ assignments mean that
the investigated region was not described by the tag presented to the user and
the region r was not determined as favorite. A low precision of P = 0.12 was
obtained in the calculations from tp′ and fp′. That means that the region r
referring Figure 4.16(a) was rarely selected when a tag was shown to the user
that did not correlate to the image at all or correlated to a region different
from r.

The results show that the assignments to region r by providing a tag referring
to a different region or not referring to any region at all are significantly lower
compared with the assignments based on true tags of region r. The result
of a Chi-square test shows that the difference is significant with χ2(1, N =
114) = 32.8005, p < 0.0001, φ = 0.5364. The correct assignments did not appear
coincidentally but strongly depend on the gaze paths, guided by the given tag.

(a) Results for users given a
tag tr describing region r (see
Section 4.4)

(b) Results for users NOT
given tag tr for the same im-
ages as in (a)

Figure 4.16: Comparing the identification of region r as favorite from gaze paths
(a) corresponding and (b) not corresponding to tag tr.
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4.7 Conclusion
The assignment of tags to given object regions by means of gaze data alone was
investigated in a first experiment. The gaze data was collected in a controlled
experiment where the users had to decide whether they can see a given object
on presented photo. It could be shown that 82% of these gaze paths had at
least one fixation inside or near (10 pixels) an region region, showing the asked
object. 13 eye tracking measures were investigated for analyzing the gaze data
and for assigning the tags to an image region. The best result was obtained for
the measure (8) lastFixationDuration with precision P = 0.55. Taking the exten-
sions of region boundaries into account as well as weighting of smaller regions
improves the results. The best performing fixation measure correctly assign
tags to regions for 63% of the image-tag-pairs and significantly outperformed
three baselines (random, saliency-based, and naive).

No limitation on typical visual objects’ appearances (such as size) or posi-
tions were observed. Investigating the first fixations on the image explains the
low precision results of measures such as firstFixation and shows the center bias.
More incorrect tag-to-region assignments are made in the center than correct
assignments, what can also be caused by the center bias. The result showed the
potential of gaze path aggregation, which means that the gaze data of several
users is aggregated in the gaze analysis. An improvement of 152% was measured
when comparing the results for single gaze path analysis with the results for 10
aggregated gaze paths. The potential of discriminating different objects in the
same image was studied. Here, it could be shown that two regions in the same
image with different primings can be identified with an accuracy of 38%.

Summarizing the findings of this first experiment, it could be shown that
the identified tag-to-region assignments were not a matter of chance but are the
results of analyzing the users’ gaze path, as shown by evaluating the effect of
different primings such as providing different tags.
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Chapter 5

Image Region Tagging with
Given Tags

The understanding of photo content is still a challenge in automatic image pro-
cessing. Often, tags are used to manually describe the content of images. An-
other approach is to analyze the text surrounding an image, for example, on web
pages and to draw conclusions about the depicted scene. A better understand-
ing of the objects depicted in an image can improve the handling of images in
many ways, for example, by allowing similarity search based on regions [KY08]
or by serving as ground truth for computer vision algorithms [RTMF08].

Eye tracking data can be used to assign given tags to given object regions in
order to describe the depicted scene in detail. This is the result of the first step in
the direction of region labeling that was described in the previous Section 4. The
analysis took place based on given high-quality object segments, which are usu-
ally not available for photos. Thus, the next step is to avoid using these segments
in the analysis. The manually labeled objects are still used as ground truth data
for evaluating the labeling results. Two novel eye-tracking-based measures for
conducting tag-to-region-assignments are introduced and compared in this sec-
tion. The first measure is the eye-tracking-based measure I Segmentation Gaze.
It is based on a standard image segmentation algorithm [AMFM11] and selects
the image segment as most relevant for the given tag by means of fixation in-
formation. The second measure is the eye-tracking-based measure II Heat Map
Gaze. It is based on a traditional eye tracking heat map. Both measures are
applied on gaze data obtained from the experiment with 30 subjects described
in the previous Section 4. The experiment details like the setup, the data set
and the participants are described in the Section 4.1.

How this section is embedded in the whole context of this work, is depicted
in Figure 5.1. As an extension of the work presented in Section 4 it does relies
on manually created polygons describing depicted objects. However, the data
was still collected in a strongly controlled experiment. This work pave the way
for region labeling performed in real-world applications. In this section, the
following research question is tackled:
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Figure 5.1: Embedding of the analysis presented in Section 5 in the context of
this thesis. This second step in the region labeling approach does not rely on
high-quality segments.

RQ 1.4 Can objects on photos be identified from gaze analysis when no high-
quality object regions are given?

In detail, the question is answered by treating the following two questions
facing different evaluation measures:

• To which extent may the two new eye-tracking-based measures identify
the correct position of an object in the image for a given tag (maximum
precision)?

• To which extent does the area determined by the two new measures cover
the actual object depicted in the image (maximum F-measure)?

It can be shown that the I Segmentation Gaze measure performs better for
both questions, although the difference to the II Heat Map Gaze measure is
not significant. The I Segmentation Gaze measure delivers significantly better
results for precision and F-measure than the baseline approaches.

It can be shown that the labeling is indeed possible without the usage of
given object regions and still baseline approaches can be outperformed. In
Section 5.1, the two novel eye-tracking-based measures and the baselines are
introduced. The examination of the best parameters determined on a subset of
the images is presented in Section 5.2 followed by the results obtained from the
experiments in Section 5.3. The section is concluded in 5.4 The results of this
research were published in [WSS13b].
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5.1 Gaze Analysis and Baselines
Two methods for assigning tags to image regions, thus identifying objects that
correspond to a predefined tag, are proposed in this work. Both methods pro-
ceed using the following input:

1. A photo o is a set of pixels p(x, y), 0 ≤ x < width, 0 ≤ y < height

2. A tag t, describing an object depicted in o

3. A set of users U that have viewed the images during the experiment

4. Set of gaze paths provided by users u ∈ U , to which the tag t was shown
and who had to decide whether an object described by t can be seen in
the image or not

The baseline methods perform the assignments without the usage of gaze
data. A Gaze path G consist of fixations and saccades. A fixations f is a short
stop that constitute the phases of the highest visual perception, while saccades
are quick movements between the fixations. Each gaze path Gt consists of a
set of fixations F , provided by user u ∈ U . Every fixation f = (xf , yf , d)
is described by a fixated point in the image (xf , yf ) and a duration d. To
measure the human visual attention, the fixations are analyzed by so-called
eye tracking measures. From these eye tracking measures, a measure fm(r) is
calculated for given regions r of a photo o. Example eye tracking measures are
the fixationCount, a standard measure which counts the number of fixations on
a region and the lastFixationDuration, which sums up the duration of the last
fixation on an image region. 13 eye tracking measures were compared in the
previous section (see 4.4) with respect to their ability to identify a concrete
image region for a tag t given to the users. Derived from the results of this
work, the measure lastFixationDuration is used in the analysis of this section.

5.1.1 Eye-tracking-based Measure I Segmentation Gaze
The idea of the first approach is to calculate fm(r) for the eye tracking measure
lastFixationDuration for all regions r ∈ R gained from the automatically seg-
mented image. fm(r, u) is calculated for every user u ∈ U viewing the image.
The values fm are summed up for every region over all users and the favorite
region rfav is determined by the highest value:

rfav = arg maxr∈R

∑
u∈U

fm(r, u) (5.1)

5.1.2 Eye-tracking-based Measure II Heat Map Gaze
Heat maps are two-dimensional graphical representations of a number of gaze
information. They visualize the frequency of fixations for every pixel p = (x, y)
in an image. Different colors symbolize how many times or how long a pixel
was fixated. The advantage of heat maps is that they can summarize a large
quantity of data and are easy to comprehend by humans. Thus, they are often
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used in usability experiments to visualize users’ attention. Different kinds of
heat maps can be created based on different eye tracking measures, for example,
a fixationCount or an absoluteDuration heat map [Boj09]. As the lastFixation-
Duration was the best measurement for the region identification in section 4,
this measure is used as basis for this approach. A radius rd has to be defined
for the creation of a heat map. A default value of 50 pixels is used, taken from
Tobii Studio [tob10]. A maximum value of hmax = 100 is assigned to the pixel
fixated by a fixation f = (xf , yf , d). Starting from this point, values are added
to the pixel in the surrounding of the fixation, based on a linear interpolation
between hmax and 0. The result is multiplied by the fixation duration d. An
example is visualized in Figure 5.2(a). For a single fixation, the heat map values
h are calculated for all pixels P = (x, y) in the surrounding of the fixation:

h(P, f) =
{
d ∗ (hmax −

(
dist(P, f) ∗ hmax

rd

)
) , if dist(P, f) ≤ s

0 , otherwise
(5.2)

All last fixations flast of all gaze paths provided by the users u ∈ U are
summed up in the final heat map H:

H(P ) =
∑
u∈U

h(P, flast) (5.3)

From all heat map values H, the highest value max(H) is determined. To
obtain the favorite region from the heat map, a threshold 0 < t ≤ 100% is
set. For example, t = 5% means that only heat map values are considered
that belong to the highest 5% of all values. This procedure can be described
by an analogy of a flooded region with valleys and elevations. The threshold
t symbolizes the water level. With a level of t = 5%, only the highest 5% of
the landscape are visible above the water level or here all pixels with H(p) >
0.95 ∗ max(H) are determined as possible favorite regions. The biggest area
of connected pixels is selected as favorite region rfav. An illustration of this
thresholding is presented in Figure 5.6.

5.1.3 Baselines
Initially, a random baseline approach as used in the previous section 4.2.2, which
randomly selects one segment of an automatically segmented image as favorite
region. As the results of this baseline were very weak, the baseline approach
was improved by taking into account the position of the segments in the image
in two different ways. As the photos used in the experiment were taken by
humans, an inherent photographic bias can be supposed. The golden ratio rule
is a very basic rule in photography [Fre07]. Taking images based on this rule
can improve the aesthetics of a photograph and it is often met instinctively to
achieve aesthetically appealing photos. According to the golden ratio, width
and height of an image are divided into two parts in the ratio 1 to 1.618. This
results into four intersections, at which important objects in the photos are
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(a) Heat map creation
for one fixation.

(b) Identification of the four golden sec-
tion points.

Figure 5.2: Visualization of heat map and golden ratio baseline calculation.

often placed. In Figure 5.2(b), the golden sections are highlighted by black
circles. Another typical bias is to position the important object in the center
of the image. For each photo, the golden ratio and the center baselines are
calculated. The segment placed at the golden section respectively the center
point is selected as favorite region rfav.

5.1.4 Evaluation Measures
After obtaining favorite regions with one of the two new measures or the baseline
measures, the results have to be evaluated by means of comparing them with
ground truth object labels. In information retrieval, precision, recall, and F-
measure are standard approaches to measure the relevance of search results.

precision = tp

tp+ fp
(5.4)

recall = tp

tp+ fn
(5.5)

F-measure = 2 · precision · recallprecision + recall (5.6)

These measures are used in evaluating the coverage of the ground truth
object region rgt by the favorite region rfav at pixel level. The algorithm runs
through the image and classifies every pixel as tp (true positive), fp (false
positive), fn (false negative), and tn (true negative) as described in Table 5.1.

5.2 Determining Best Parameter Settings
The data set is split into two subsets: a training set for the parameter fitting (56
images-tag-pairs each viewed by 10 users) and a test set for the evaluation of the

79



5.2. DETERMINING BEST PARAMETER SETTINGS

Figure 5.3: Image and its segmentations with different parameters k.

rgt from the ground truth image

Pixel belongs to
rgt

Pixel does not
belong to rgt

rfav calculated
from heat map,
segmentation or

baseline
measure

Pixel belongs to
rfav

tp fp

Pixel does not
belong to rfav

fn tn

Table 5.1: Calculation of tp, fp, fn, and tn.

approaches (29 images-tag-pairs each viewed by 10 users). In this section, three
different parameters are investigated for the gaze-based approaches and identify
the parameters leading to the best results. The outcome is applied to the test
data set and used for comparing the different measures from Section 5.1.

5.2.1 Eye-Tracking-Based Measure I Segmentation Gaze
The segmentation is performed by using the gPb-owt-ucm algorithm [AMFM11].
Different hierarchy levels for k = 0 . . . 1 are calculated, each representing a
different level of detail. An example is presented in Figure 5.3, showing the
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segmentation results for different k-values. The first segmentation level k = 0
delivers 1831 segments, the segmentation with k = 0.4 the least number of
segments, namely six.

Applying eye-tracking-based measures I Segmentation Gaze to those seg-
mentations provides the favorite region rfav from all segments, as described in
Section 5.1. In Figure 5.4(a), an example for a gaze path of a single user is
shown. The fixations are displayed as circles, the fixation duration is presented
by the diameter of the circles. The saccades are depicted as lines between the
fixations. The brightness of the image segments encodes the eye tracking mea-
sure values fm. The order of the viewed regions is encoded from the favorite
region in white to the segments with few fixations in dark gray. The black
segments have not been fixated at all. Figure 5.4(b) shows the results for one
image aggregating the gaze paths of all users. To determine the best hierarchy
level k, the results for different levels k = 0 . . . 1 are compared by calculating
precision, recall, and F-measure. For k > 0.4, the number of segments is too
low to obtain a reasonable favorite region rfav. Basically the result is one very
large segment, covering almost the entire image plus a few very small segments.

(a) Gaze path with intersected re-
gions for k = 0.2. Fixations are de-
picted as circles.

(b) Favorite regions over all users for
k = 0.2.

Figure 5.4: Identification of rfav for one user (a) and aggregated for 10 users
(b) with measure I Segmentation Gaze.

The results for all investigated k values are depicted in Figure 5.5(a). The
best precision with 50% was obtained for the smallest sizes of segments for k = 0
and the best recall with 54% for k = 0.4. The maximum F-measure of 25% was
reached with k = 0.1. It was calculated from a precision of 4% and a recall of
34%. One can see that the F-measure was relatively stable between k = 0.1 and
k = 0.4 because of the rising recall and the falling precision values.

5.2.2 Eye-Tracking-Based Measure II Heat Map Gaze
For measure II Heat Map Gaze, described in Section 5.1, different thresholds
t = 1 . . . 100% were investigated. Some examples are depicted in Figure 5.6.
It shows the original image, next to a classical heat map visualization of gaze
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(a) Measure I Segmenta-
tion Gaze with k.

(b) Measure II Heat Map
Gaze with parameter t.

(c) BL Golden Section
with k.

(d) BL Center with k.

Figure 5.5: Precision, recall, and F-measure for the two gaze-based and the two
baseline measures (BL).

information from all 10 users. The next four images show different potential
favorite areas after applying the threshold t to the heat map. If multiple areas
appear, the biggest one (i.e., the one with the most pixels) is supposed to be
the favorite region rfav.

Precision and F-measure are calculated, comparing the computed favorite
region rfav with the ground truth object region rgt. An overview of the results
is presented in Figure 5.5(b). The highest precision value is obtained for t =
35% with 57%. Even with constantly high precision values of more than 44%
the F-measure values cannot get very high because of the poor recall results
(maximum: 31%). The best F-measure result is 19% with t = 95%.

5.2.3 Baseline Measures
For the baseline measures, the segmentation using the gPb-owt-ucm algorithm
is computed. [AMFM11] For both baselines, the best parameters k = 0 . . . 0.4
were investigated by means of the training set. For the golden section baseline,
the highest precision value over all images with 18% for k = 0.2 and the highest
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Figure 5.6: Visualization example for measure II Heat Map Gaze.

the F-Measure with 14% for k = 0.2 was obtained. The best results for the
center baseline are a precision of 16% for k = 0.1 and a F-Measure of 13 % for
k = 0.4.

Figure 5.7: Comparison of the two gaze-based measures I Segmentation Gaze
(I Segment.) and II Heat Map Gaze and the baseline measures BL Golden and
BL Center — best precision results.

5.3 Results
The best performing parameters from the training data set for each of the mea-
sures are applied to the test data set. For each measure, values for precision and
F-measure for each image were obtained. For comparing the different measures,
a Kolmogorov-Smirnov test was conducted to determine if the precision values
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Figure 5.8: Comparison of the two gaze-based measures I Segmentation Gaze
(I Segment.) and II Heat Map Gaze and the baseline measures BL Golden and
BL Center — best F-measure results.

and F-measure values exhibit a normal distribution. As most of the computed
values do not exhibit a normal distribution, a Friedman test was conducted to
investigate for a statistical significance in the difference of the obtained preci-
sion values and F-measure values. The differences between the four assignment
measures (I Segmentation Gaze, II Heat Map Gaze, and two baselines) were
significant (α < .05) for precision (χ2(3) = 32.668, p = .000) and F-measure
(χ2(3) = 15.891, p = .001). Thus, post-hoc analyses with pairwise Wilcoxon
Tests were conducted with a Bonferroni correction for the significance level
(now: α < .017). The values used in the pairwise Wilcoxon Tests are presented
in Figure 5.7. The best precision with 65% was obtained for I Segmentation
Gaze and the second best with 48% for the measure II Heat Map Gaze. These
results significantly outperform the two baselines with Z = −4, 059, p = .000
for the measure I Segmentation Gaze compared with the golden section base-
line, respectively Z = −4, 090, p = .000 for the center baseline. The results
for II Heat Map Gaze are Z = −3, 438, p = .001 and Z = −3, 286, p = .001,
respectively. There was a weakly significant difference between the two eye-
tracking-based measures (Z = −1.905, p = .057). For 12 of 29 images, rfav lies
completely inside rgt. For 20 images at least 1% of rfav intersects the ground
truth object region rgt. The highest F-measure was obtained again by the mea-
sure I Segmentation Gaze with 35%. All results are depicted in Figure 5.8. The
result for the heat map measure was 22% and for the baselines 11% (golden
section) and 14% (center). A significant difference was recognized between the
segmentation measure and the baselines with Z = −2, 943, p = .003 for both
baseline. The other results did not show significance (I Segmentation Gaze —
II Heat Map Gaze: Z = −.934, p = .350, II Heat Map Gaze — golden section:
Z = −2, 345, p = .019, II Heat Map Gaze - center: Z = −2, 186, p = .029).
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5.4 Conclusion
In this section was shown that the labeling of image region is possible, even
without the usage of high-quality segmentation. The assignment of tags to re-
gions becomes much harder without the given, manually created regions as they
were used before. The reason are additionally inaccuracies caused by the au-
tomatic image segmentation. Two measures were presented in this section for
performing the labeling. For both measures, best parameters for obtaining a
maximum precision and a maximum F-measure were determined on a training
data set. The measures and the best performing parameters were applied to a
test data set for evaluating the approach. A maximum average precision of 65%
at pixel level was obtained by the measure I Segmentation Gaze, which is base
on the segmented photo. The other proposed measure, the measure II Heat
Map Gaze, can deliver a maximum precision of 48%. The second measure does
not use any low-level image information at all but is exclusively based on the
gaze data. The best ‘coverage’ of an given object is obtained by the I Seg-
mentation Gaze measure with a F-measure of 35%. For measure II Heat Map
Gaze, this results was 19%. Overall, both newly introduced gaze-based mea-
sures deliver better results than baseline measures which select a segment based
on the golden ratio of photography or the center position of an object region in
the image. The eye-tracking-based segmentation measure I Segmentation Gaze
significantly outperforms the baselines for precision and F-measure. By means
of the parameters for both measures, it can be controlled if a high precision
result is intended (the position of an object can be determined but the selected
region is small and does not cover the object) or if a high F-measure should
be obtained (good coverage of the primed object). The decision can be made
based on the application.
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Chapter 6

Image Region Tagging
during Search

The aim of Sections 4 and 5 was to create labeled image regions by assigning
tags or object names to image region by means of gaze analysis with the aim
to describe the content of the photos. In these first steps, the gaze data was
collected in a controlled classification experiment. In this experiment, the users
had to decide whether they can see a given object on a photo by pressing a
button on the keyboard. It was shown that the gaze analysis delivers correct
image regions, depicting the given object, with a precision of up to 65% at pixel
level.

It is intuitive for humans to automatically identify objects depicted in an im-
age and this identification is very fast. Humans can easily compensate perspec-
tive distortions, occlusions, and they can also identify objects with an unusual
appearance. The work described in this section goes a step further in benefiting
from these skills. Gaze data from users who viewed photos in the results list of
an image search application were analyzed with the goal to automatically per-
form the labeling of images at region level. The gaze paths of users searching for
images were recorded by an eye tracking device. Subsequently, the gaze paths
were analyzed and regions of the photos in the search results that caught most
attention were identified. The search terms entered by the user was assigned
to the most viewed image regions for describing the photo content. The gaze
paths of several users were aggregated when they viewed the same photos with
the same search term. The labeled image regions were evaluated by comparing
them to ground truth regions, which were part of the experiment data sets. The
work presented in this section addresses the following research question:

RQ 1.5 Can the region labeling approach be applied to daily routine tasks such
as online image search, with users searching for photos in a simulated web search
application?

The context of this work can be seen in the overview, depicted in Figure 6.1.
This work was published in [WNS14].
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Figure 6.1: Embedding of this experiment in the context of this thesis. After
a first proof of the feasibility of gaze-based region labeling in a first, controlled
experiment, the application to a search scenario is shown.

First, the performed gaze analysis, the applied baseline measures and the
evaluation measures are presented in Section 6.1. Subsequently, in Section 6.2,
the experiment design and the experiment data sets are described. The results
of the analysis are presented and discussed in Section 6.3, before this part of
the thesis in concluded in 6.4.

6.1 Analysis
The work in this section is part of the overall goal to use human gaze information
in the annotation of image region. The gaze analysis performed in this work was
first presented in Section 5. An experiment was conducted for collection data
in a less controlled application, which is more alike to a real-world scenario.

6.1.1 Gaze Analysis
Two gaze-based predictors are applied for labeling image regions. The two gaze-
based predictors are the I Segmentation Gaze and the II Heat Map Gaze ap-
proach, both presented in the previous Section 5. By means of these approaches,
a given search term is assigned to an image region for labeling it. The measures
were modified for allowing the selection of several object regions. An overview
of the calculation of both measures with one sample image from the experiment
data set is depicted in Figure 6.3. For all photos belonging to a search set, the
input for the gaze analysis was (i) the given search term and (ii) the gaze paths
of all users who fixated the photo (Figure 6.2). The I Segmentation Gaze mea-
sure additionally took (iii) (hierarchical) photo segments as input data. The
photo segments for measure I Segmentation Gaze were obtained from applying
the gPb-owt-ucm algorithm [AMFM11]. The different hierarchy levels describe
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different levels of detail and are controlled by the parameter k = 0, 0.1 . . . 0.7,
with k = 0 as highest level of detail. Please refer to the original publication by
Arbeláez et al. [AMFM11] for details of the gPb-owt-ucm algorithm.

Figure 6.2: Example gaze paths (ii) of nine different users searching for a “brown
cow” viewing one photo of the search results list.

The I Segmentation Gaze measure can be performed based on several eye
tracking measures (cf. Section 5.1.1). A subset of the measures presented in
Table 4.1 was selected for the analysis based on their capability in preliminary
tests. The measure (1) fixationCount counted the number of fixations on a seg-
ment. (2) fixationDuration calculated the sum of the duration of all fixations on
a segment. The measure (3) firstFixationDuration also considered the duration
of a fixation but it only took the very first fixation on a segment into account.
Accordingly, (4) lastFixationDuration measured the fixation duration of the very
last fixation on a segment. A visit describes the time between the first fixation
on a region and the next fixation outside. (5) visitCount counted the number of
visits on a segment and (6) meanVisitDuration calculated the average duration
of these visits. In the previous section, only the segment with the highest eye
tracking measure results was selected. Here, the segments with the highest 10%
of the measure values were selected. They were assumed to show an object or
several objects described by the search query. The search term was assigned to
these regions. The measure results for all participants which viewed the same
photos are summed up. In order to take the inaccuracies in the eye tracking
data into account, the region extension introduced in Section 4 was also applied.
The region extension considers fixations in the surrounding of up to 13 pixels
of a segment as belonging to the segment.
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Figure 6.3: Gaze-based region labeling with predictors I Segmentation Gaze
and II Heat Map Gaze. Input data is (i) the given search category, and (iii) the
segmented image (only for I).
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The II Heat Map Gaze approach identified intensively viewed photo regions
by summing up the fixations of all gaze paths at pixel level (cf. Section 5.1.2).
A value of 100 was applied to the center of each fixation. In a radius of 50 pixels,
linear decreasing values were applied to the surrounding pixels. The value of all
fixations were summed up for all pixels of the image for building the so-called
heat map. From the created heat map, the assumed object region was calculated
by applying a threshold to the data, identifying the mostly viewed pixels. The
parameter t indicates the percentage of viewing intensity (e.g., t = 10 indicates
the 10% of all pixels with the highest values). The investigated parameters in
this work were t = 1 and t = 10 . . . 100 in steps of 10. In the previous section,
an additional step was performed for selecting only one favorite region from all
remaining regions after the application of the threshold. This step is skipped
in the analysis here, thus more than one region can be the result.

6.1.2 Baselines

Two baseline approaches were compared with the gaze-based ones. The baseline
approaches did not make use eye tracking data. Furthermore, the baselines
did not need training data nor a training period, exactly like the gaze-based
approaches. Both baseline were introduced in the previous sections.

The saliency baseline is based on the assumption that the important objects
of a photo are the most salient points on an image. The saliency baseline was
presented in the previous section and is described in Section 5.1.3. The saline
points were calculated by the toolbox offered by Itti et al. [IKN98]. The favorite
region was selected by using the salient points and their ordering as input data.
This saliency paths were interpreted as simulated gaze paths. Subsequently,
the same methods as for the gaze analysis approach, described in the previous
section, were used to analyze them. Thus, the investigated baseline approaches
are called the III Segmentation Saliency approach and the IV Heat Map Saliency
approach

Finally, for the baseline V Random, the photo was first segmented by the
algorithm published by Arbeláez et al. [AMFM11]. Subsequently, one of the
segments was selected randomly and the search term was assigned to this seg-
ment. The random baseline was also used in Section 4.2.2. This very naive
baseline serves as measure for how difficult the task of selecting one favorite
region was.

6.1.3 Calculating Precision, Recall, and F-measure

By means of ground truth data for all images and assigned labels (cf. Section
Photo Sets described above), the computed object regions can be evaluated. For
each pixel, the ground truth was compared with the labels obtained from the
gaze analysis by calculating precision, recall, and F-measure, with F-measure
= 2 · precision·recall

precision+recall , as presented in Section 5.1.4. An example photo with two
object regions and their evaluation can be found in Figure 6.4.
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Figure 6.4: Comparing labeled image regions and ground truth regions at pixel
level.

6.2 Experiment Setup

An experiment for investigating the potential of photo region labeling during
image search was conducted. Therefore, participants used a simulated search
page for performing different search tasks.

Figure 6.5: Sample search tasks and images not fulfilling and fulfilling the exact
search task.

6.2.1 Participants

23 volunteers participated in the experiment, 11 of them were female. Their
average age was 23.3 (SD: 2.09) with the youngest person being 20 and the
oldest 29. Most of the participants were computer science students but there
were also students of other subjects, such as mechanical engineering, biology,
geology, and educational science.
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Figure 6.6: Cropped and scaled screen shots of the three experiment steps: A
Search task and start search, B Search results, C Photo selection. The arrows
show interaction options.

6.2.2 Photo Sets
Photographs of natural scenes were presented to the users. These photos were
taken from three data sets. All sets provided ground truth region labeling data.
The VOC2012 data set [EVGW+] was made available for the Visual Object
Classes Challenge. The segmentation set, which contains ground truth region
labels at pixel level, contains 2913 photos and 20 classes of objects such as
“airplane,” “sofa,” and “dog.” The MSRC [WCM05] data set, published by
Microsoft Research, consists of 592 photos and 23 labeled object classes. The
objects belong to simple concepts like in the VOC2012 set, e. g., “bird,” “sky,”
and “sheep.” The LabelMe [RTMF08] data set with 182,657 user contributed
images and 291,841 labels (download August 2010) provides images of complex
indoor and outdoor scenes. The LabelMe community has manually created
region labels by drawing polygons into the images and by tagging them.

The photos for the experiment data set were selected based on their labels.
The labels were taken from the “All time most popular tags” of the online
photo sharing page Flickr1. Among the most frequently used tags, 23 occur in
at least two of the three data sets. These labels were selected for the use in the
experiment application. For each label, a random number of photos between 9
and 24 was chosen from the two resp. three data sets. 10 labels occur in all
three data sets, whereas 13 labels are present in only two sets. The label-sets
were composed in equal parts of the data sets. In total, the experiment data set
consists of 361 photos, with 103 photos taken from MSRC, 112 from VOC2012,
and 146 from LabelMe.

6.2.3 Tasks
For each search set, consisting of a label and a set of photos, a search task was
defined with the goal to simulate an online image search and to motivate the
users to scan the image search results lists. The tasks request the participants
to find an object with specific characteristics. For example, for the label “bus,”
the search task was “Search for a green bus”. The tasks were created in a way
that at least one photo fulfills the task. Often, even more than one photo could

1http://www.flickr.com/photos/tags/ (last visited Sept. 29, 2013)
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be selected. Also, fore some tasks the answer could depend on the subjective
impression of the user. For example, a participant might chose an image showing
a bird with an orange bill for the task “Search for a bird with a red bill”. Some
more examples of search tasks can be found in Figure 6.5. This figure also shows
examples of photos fulfilling and not fulfilling the given search task. 10 of the
search tasks ask for a specific color as characteristic (e.g., Search for a green
bus), 4 for animals with a specific coat color or pattern (e.g., Search for a dog
with black spots), 5 tasks concentrate on other characteristics (e.g., Search for a
building with balcony), and 4 ask for objects in specific situations (e.g., Search
for a horse with bridle). In the analysis, the named object was assigned to an
image region in all photos of the search results list that were fixated, ignoring
the specific characteristics. Possible differences in region labeling results for
photos fulfilling the search task (the photos with the green bus) and photos not
fulfilling the task (photos depicting a bus but not a green one) were investigated.

6.2.4 Procedure and Experiment Application
Before starting the experiment application, the participants were introduced
to the experiment tasks and the eye tracking device. A calibration of the eye
tracker was performed by fixating five dots on the computer screen.

The experiment application was designed to resemble online image search
pages. It consists of three pages. Screen shots of the application can be found in
Figure 6.6. On the first page of the experiment application, page A in Figure 6.6,
the search task was presented to the user. The user had to enter a search term
as free text into the search input field. By pressing the OK button the simulated
search was started. It was not allowed to start the search with an empty text
field but no further checks with regard to its meaning were performed on the
given search query. On the second page B, the photos of the experiment data
set were displayed in rows of three photos each. The photos were scaled to a
maximum width and height of 450 pixels. The page was scrollable as not all
photos could be shown on a static page. The user could go back to the search
page by pressing the “Back” button. By clicking on the photos, page C opened.
On this page, the user could select a photo by pressing the “Select” button for
completing the search task. It was possible to go back to the search result page
by clicking on the “Back” button.

Eye tracking data was recorded while the user performed the tasks. No
time limitations were given for the 23 search tasks. The order of the tasks
was randomly alternated for each participant. Also the order of the photos
on the search result pages was randomized. At the end of the experiment,
each user filled out a questionnaire. It comprised questions about demographic
information (age, profession) and some ratings about the experiment application
and tasks.
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Figure 6.7: Precision for I Segmentation Gaze with k = 0 for six different eye
tracking measures.

6.3 Results
In this section, the labeling results are presented and the gaze-based methods
are compare to the baseline methods. Also the results for the three different
data sets are compared. In addition, the differences for photos fulfilling or not
fulfilling the search task were investigated.

6.3.1 User Feedback and Behavior
The participants did not feel uncomfortable while their eye movements were
recorded by the eye tracking device. Most participants gave an answer of 5 (M:
4.92, SD: 0.28) on a Likert scale from 1 (“I felt uncomfortable while my eye
movements were recorded”) to 5 (“I did not feel uncomfortable while my eye
movements were recorded”). The users’ comfort was asked in the questionnaire
to check if there was a strong influence of the eye tracker recording on the partic-
ipants’ well-being and thus their gaze. As the users did not feel uncomfortable
such an influence is not very likely.

The users did not have problems controlling the application as shown by an
average answer of 1.04 (SD: 0.2) on a scale from 1 (“The application was easy
to control”) to 5 (“It was hard to control the application”). Also the tasks were
not to difficult to perform, as the level of difficulty was in average rated with
1.33 (SD: 0.62) on a scale between 1 (“The search for images was easy”) to 5
(“The search for images was difficult”).

The average time the users spent on a search task was 14.6 s. The longest
average search time was obtained for the search task “Search for a road with me-
dian strip.” with 23.3 s. The shortest average time was 8.8 s for task “Search for
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a chair with a red seating surface.” The searching behavior of the participants
showed that in 99.98% of all cases the photo selection page was opened only
once, namely for the final selection. Nine times participants went from photo
selection page C back to search page B before they chose an image according to
the search query. With regard to the final selections, a percentage of 98.03%
correctly selected images reveals the high quality of the results.

On average, each user fixated 11.63 photos per search query. The average
number of fixations over all users per photo is 2.88 (SD: 1.63). The average
number of fixations on an image was highest for the search set “bottle” with
6.42 (SD: 1.91). In contrast, for the search set “car,” the number of fixations
on an image on average was the lowest with only 1.94 fixations (SD: 0.91).

max F-measure
per approach

max F-measure
overall

Figure 6.8: Precision and recall for the two gaze-based measures I and II, the
two saliency-based measures III and IV, and the V Baseline measure.

6.3.2 Comparison of Eye Tracking Measures
First, the six eye tracking measures are compared for the I Segmentation Gaze
predictor. As parameter for this approach, the smallest segmentation size k = 0
was chosen. Figure 6.7 depicts the detailed results. For each eye tracking
measure the average precision results for each search term are depicted. The box
plot diagram shows the first and third quartiles as boxes, the median is displayed
inside the boxes as horizontal line, the mean as small circle, and the vertical lines
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show the range of all values. The measure (5) visitCount clearly performed worse
than the other measures. (6) meanVisitDuration and (3) firstFixationDuration
had good mean results but a big spread in the results over the different search
terms. The measures (1) fixationCount and (2) fixationDuration performed best.
As the measure (1) fixationCount provided the best average result (M = 0.48,
SD = 0.13) over all search terms compared with (2) fixationDuration (M = 0.47,
SD = 0.13), (1) fixationCount is used in the following analysis.

6.3.3 Region Labeling Results

The results for the five region labeling approaches are compared in Figure 6.8.
The precision and F-measure results are depicted for different parameters k =
0 . . . 0.7 and t = 1 . . . 100 (see Section Analysis above). Both gaze-based ap-
proaches I Segmentation Gaze and II Heat Map Gaze performed better than
the baseline approaches. The saliency approach already showed better results
than the random baseline. The II Heat Map Gaze approach clearly delivered the
best precision and recall results over all parameters. The best F-measure was
obtained for II Heat Map Gaze with 0.38 (marked as black circle in Figure 6.8)
with t = 90. The overall best precision was obtained for the same measure and
parameter with 0.56. The best performing baseline approach with a F-measure
result of 0.33 is IV Heat Map Saliency with t = 100.

A Wilcoxon signed-rank test showed a statistically significant difference with
α < 0.05 when comparing the average precision and F-measure results per search
category for the best performing predictor II Heat Map Gaze with t = 90 and
the best performing baseline predictor IV Heat Map Saliency with t = 100
(precision: N = 23, Z = −3.194, p = .001, F-measure: N = 23, Z = −3.346, p =
.001).
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Figure 6.9: F-measure results for all images of the experiment data set calcu-
lated with II Heat Map Gaze with t = 90. The images were sorted according
to their F-measure value in descending order.
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Figure 6.10: Example image with results for II Heat Map Gaze with t = 90
with evaluation of the labeled image regions.

6.3.4 Example Photos
The F-measure results for all photos are depicted in Figure 6.9, sorted by the
F-measure values. No correlations between the number of fixations on a photo
and the precision nor F-measure results were found. Only 9 of the 361 photos
had a precision result of 0, that is, not a single pixel of the labeled area covered
a correct object.

The three photos with the best F-measure results are depicted in Figure 6.10.
Some negative examples with low F-measure results are shown in Figure 6.11.
Besides the original photo, also the region the search tag was assigned to, as
well as the ground truth regions for the given object, are depicted. Regarding
the average number of fixations for the best labeling predictions one can observe
that 1.47 fixations on that image were obtained by 15 participants (the other
ones did not fixate the image). In contrast, the second ranked image was fixated
on average 9.90 times by 20 participants. The image placed on rank three was
fixated 2.15 times by 13 participants.

6.3.5 Example Sets
In Figure 6.12, the precision and F-measure results for approach II Heat Map
Gaze with t = 90 were split up for the different search tasks. In the diagrams,
the results for all photos in each task are displayed (boxes show the area between
the first and the third quartile, median as horizontal line, and the range of all
photo results as vertical line). One can see that the range in the results is high.
This means that the labeling results strongly depend on the given photos. The
highest average precision value over all photos of one search task was obtained
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Figure 6.11: Negative example image with results for II Heat Map Gaze with
t = 90 with evaluation of the labeled image regions.
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Figure 6.12: Detailed precision and F-measure region labeling results for each
search task for approach II Heat Map Gaze with t = 90. The terms are sorted in
descending order by their median precision value (above) and F-measure value
(below), respectively.
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for “tree” with P = 0.61, the worst for “bottle” with P = 0.09. The best
average F-measure value was obtained for “building” with P = 0.63, the worst
for “sky” with P = 0.16.

Figure 6.13: Compare results for the different data sets.

6.3.6 Comparison of the Data Sets
The experiment data was composed of photos from three different data sets, as
described in Section Photo Sets (6.2.2). For the best performing approach II
Heat Map Gaze, the best performing baseline approach IV Heat Map Saliency,
and the V Random Baseline, the precision and recall results were split up for
the three data sets VOC2012, MSRC, and LabelMe in Figure 6.13. Already the
random baseline shows differences in the level of difficulty for the segmentation
approach. In total, the results are much better for the MSRC data set containing
scenes of low complexity, compared with the most challenging data set LabelMe
which includes images showing scenes of high complexity (i. e., many different
objects). However, it can be observed that the gaze-based approach improves
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the results for all data sets over the saliency baseline. The results of II Heat
Map Gaze always lie above IV Heat Map Saliency.

6.3.7 Comparison of True and False Images
In the experiment application, a search task was given to the participants asking
for an object with specific characteristics, e. g., “Search for a green bus”. In the
search results list, photos showing an object which was asked for (e. g., “bus”)
were displayed. But only a few photos showed the object with the specific
characteristics (e. g., “green bus”). In total, 97 of the 361 photos fulfilled the
search task, 264 did not. For the approaches II Heat Map Gaze and IV Heat Map
Saliency, labeling results for photos fulfilling the search task and not fulfilling
the task are compared. Precision and recall results are depicted in Figure 6.14.
As can be seen in the figure, the curves lie close to each other. The results for the
photos fulfilling the tasks were slightly better. A Wilcoxon signed-rank test was
applied to the data. The results were computed using the values obtained from
the approach II Heat Map Gaze with t = 90. The differences in the results are
not significant with α < 0.05 for precision (N = 23, Z = −.487, p = .626) and
F-measure (N = 23, Z = −3.346, p = .001). This suggests that the approach
also works for objects that do not exactly fulfill the task, that is, where the
photos show the object asked for but the object does not match the additional
characteristics such as the color. With other words, the results imply that the
labeling of objects is agnostic to characteristics of the objects the user is looking
for.

Figure 6.14: Precision and F-measure results for II Heat Map Gaze with t = 90
and IV Heat Map Saliency with t = 100 for photos fulfilling the search task
versus not fulfilling the search task.
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6.4 Conclusion
The experiment results presented in this section suggest that the labeling of
image regions by means of gaze data is possible in a scenario such as the search
for images. Comparing the best precision and F-measure results (P = 0.56,
F-measure = 0.33) of this work shows slightly lower results compared with the
ones obtained in previous work, presented in Section 5 (P = 0.65, F-measure =
0.35). The results strongly vary for different search terms and photos. There are
usually two reasons for difficulties in identifying objects in photos: One reason
is caused by the characteristics of human visual perception. Big objects and
objects that can easily be identified in the corner of ones eyes. Here, the user
does not have to fixate it directly. One of the weak categories, “sky,” is very
likely to belong to this group of things. Another challenge are very small objects,
due to inaccuracy of the eye tracking data and the segmentations of the photos.
This problem also occurred in the previous experiment (cf. Section 4.5.1).

A detailed analysis of the factors influencing the results (such as how many
details are depicted on a photo) can be subject of a future study. More data
and different photos might be needed for such a study. Only “correct” photos
were selected for the search sets. Correct means that on each photo at least
one correct object is depicted, even though the object did not have the specific
characteristics. In a real-world application, search engines reach a very high
quality for simple search queries. Thus, it can be assumed that the results may
be transferred to a real search engine. However, when applying the gaze-based
method to real image search, this question has to be handled and wrong photos
in the result set have to be considered. From the two approaches for the gaze-
based (I, II) and the saliency-based (III, IV) methods, the heat map approach
performs better. An additional advantage of this approach is – compared with
the segmentation-based approach – that no segmentations have to be calculated.
The computation of high-quality segmentations can be time-consuming. By
varying the parameters of the II Heat Map Measure Gaze approach, the focus
can be moved from good F-measures results (a higher parameter t which leads
to bigger selected areas) to good precision values (small t values).

The results presented in this section shows that it is possible to assign search
terms to image regions by means of gaze paths recorded while users are searching
for images. The usage of gaze data significantly improves the labeling results
over a baseline approach using only saliency information. The method works
even for photos depicting an object that was asked for but did not fulfill the
specific characteristic mentioned in the search task. With a performance time of
14.6 s per search query, including the scanning of numerous photos, the labeling
of image regions is very fast compared with the manual drawing of polygons.
Also, no more effort is needed by the users than viewing search engine results.
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Chapter 7

EyeGrab — A game with a
purpose

Metadata, describing the content of photos at pixel level are of high importance
for applications such as image search or as part of training sets for object detec-
tion algorithm. Up to this point, the previous sections showed the potential of
labeling image region by means of gaze analysis in two experiments. First, the
gaze data was collected in a strongly controlled classification experiment (Sec-
tions 4 and 5). A second experiment, presented in Section 6, showed that even
in an experiment setup which resembles a real-world application, the search
for images, the labeling of image region is feasible and outperforms baseline
approaches.

In this section, tags are again applied to image regions for a more detailed
description of the photo semantics. The region labeling is again performed
without any additional effort for the user, just from analyzing eye tracking
data. Here, the data is recorded while users are playing a gaze controlled game.
In the game EyeGrab, users classify and rate photos falling down the screen.
The photos are classified according to a given category under time pressure.
The game has been evaluated in a study with 54 subjects. 91% of the users
enjoyed playing the game, thus the requirement to attract the users attention in
the game is fulfilled. Only 7% of the shown images passed without classification
and 90% of the classifications were correct with respect to the given category.
The region labeling results, based on the analysis of the fixations on the images,
show that it is possible to assign the given categories to image regions with a
precision of up to 61% at pixel level. Thus, an almost equally good region label-
ing using gaze information can be performed even in an immersive environment
like in EyeGrab compared with a previous classification experiment that was
much more controlled. The contribution of this section to the overall goal of
this thesis is shown in Figure 7.1. The specific research question, tackled in this
section is:

RQ 1.6 Does the approach perform well in a distracting situation?
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For answering this question, gaze-based region labeling is compared with
baseline approaches and to previous labeling results from other experiments.
The work presented in this section was published in [WNS12] and [WSS14a].
The recorded data, leading to the results of this section, can be downloaded
under http://west.uni-koblenz.de/Research/DataSets/gaze.

Figure 7.1: Embedding of this experiment in the context of this thesis. The
labeling of image region by means of gaze data was shown before in a controlled
experiment and in an image search scenario. In this Section 7, the labeling in the
strongly distracting scenario of a gaze controlled computer game is investigated.

Related work is shortly discussed in the subsequent section before the ap-
proach for region labeling based on gaze data in is presented in Section 7.1.
The game EyeGrab is introduced in Section 7.2, and the experiment setup is
described in Section 7.3. The results concerning the image classification are pre-
sented and discussed in Section 7.4. In Section 7.5, the photo region labeling
results are presented before the section is concluded.

7.1 Approach

Games with a purpose (GWAPs) are computer games that have the goal to
obtain information from humans in an entertaining way. The information is
usually easy to create for humans but challenging or impossible to be created
by fully automatic approaches. In Section 3.1.1, some games are presented
which have the aim to deliver image labels.

Smith and Graham [SG06] described the advantages of gaze control in video
games. They stated that the use of gaze control can improve the game play
experience. An example is EyeAsteroids1, an eye-controlled arcade game pre-

1http://www.tobii.com/en/gaze-interaction/global/demo-room/tobii-eyeasteroids/, last
visited May 15, 2012
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sented by Tobii. The game is entertaining but does not have the goal to exploit
the users’ activities while playing.

In EyeGrab, users classify and rate photos falling down the screen. Photos
are selected by fixating them. Subsequently, the classification is performed
by fixating specific objects on the screen, which represents different classes.
In the classification is considered, if a photo belongs to the given category
and if a player likes a photo or not. By analyzing the recorded gaze paths,
given categories, which describes a specific object such as “car” or “tree,” are
automatically assign to image regions. All photos used in the evaluation had
ground truth information concerning the depicted objects.

In order to assign a given category to an image region, the two gaze measures
(presented in Section 5.1) and a baseline are applied to the data. The two gaze-
based measures are the segmentation measure (I) and the heat map measure
(II). All fixations on the classified photos are analyzed for performing the region
labeling. The measures predict which region of the photo is assumed to show
an object, belonging to the given category.

In the segmentation approach, the fixations on every region of the segmented
photo are counted, which corresponds to the fixation measure fixationCount.
The segment with the highest outcome is assumed to show the object for the
given category. For the I Segmentation Gaze measure the results for different
parameter k = 0 . . . 0.5 are investigated. The heat map approach (II Heat Map
Gaze) identifies intensively viewed photo regions by summing up the fixations
of all gaze paths at pixel level. A value of 100 is applied to the center of each
fixation. In a radius of 50 pixels, linear decreasing values are applied to the
surrounding pixels. From the created heat map, the object region is calculated
by applying a threshold to the data, identifying the mostly viewed pixels. The
parameter t indicates the percentage of viewing intensity (e.g., t = 5 indicates
the 5% of all pixels with the highest values). After the thresholding, the biggest
area of connected pixels is assumed to depict the object. The concrete parameter
values for both approaches are determined based on the findings in previous
work presented in Section 5. Also the center baseline approach from this work
is also applied to the data.

Only fixations on correctly classified images are part of the analysis. The
gaze data of all users on the same image with the same category and a correct
classification are aggregated, as the results in Section 4 showed the potential
of gaze aggregation. In order to take potential inaccuracies in the eye tracking
data into account, region extension and weighting, also introduced in Section 4,
were applied. The region extension considers fixations in the surrounding of
up to 13 pixels of an segment as being on the segment. Due to the weighting
results for segments that are smaller than 5% of the photo are multiplied by a
factor up to 4. Different segmentation levels k = 0 . . . 0.5 are considered in the
analysis.

By means of ground truth data for the image regions and labels (cf. Sec-
tion 7.3), the computed object regions can be evaluated. For each pixel, the
ground truth was compared with the label obtained from the measures by cal-
culating precision, recall, and F-measure. An example photo with two object
regions and their evaluation can be found in Figure 7.2. Details about the
calculation can be found in Section 5.1.4.
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Figure 7.2: Comparing labeled image regions and ground truth regions at pixel
level.

7.2 The EyeGrab Game
The task in EyeGrab to “clean up an aliens’ universe” by categorizing and
rating photos. Before starting the game, the user has to calibrate the eye
tracking device by fixating several points on the screen. Subsequently, a small
introduction to the game’s rules is given to the gamer. In addition, he/she has
to choose a user name and to indicate his/her gender. Besides entering the
gamer’s nickname, the game is solely controlled by eye movements. Gaze-based
interactions are triggered after a dwell time of 450 m. With a normal dwell time
for fixations of between 200 and 400 ms (see Section 2.1), the selection dwell
time lies above this value to avoid random selections. For example, the selection
of the gender is done by focusing on a male or female character as shown in
Figure 7.3(a).

(a) Entering of personal information (b) Playing screen

Figure 7.3: Screen shots of EyeGrab. (a) Starting page with player’s name and
gender input, (b) Playing screen with three photos.

A game consists of several rounds. In each round, a set of photos has to be
classified concerning a given category such as “car,” “person,” and “sky.” First,
the category is presented to the user for 6 s. Subsequently, the photos fall down
the screen as depicted in Figure 7.3(b) and are classified by the gamers. Each
round has a different speed level at which the photos move. Several photos can
appear on the screen at the same time. The player selects an image by fixating
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it for longer than the dwell time of 450 ms. As soon as a photo is selected,
it is highlighted by a thin frame, and the user can classify it into one of three
categories. The classification takes place by fixating symbols on the screen as
shown in Figure 7.4. The categories are “not relevant” (symbolized by a trash
can), “relevant & like” (symbolized by a hand pointing upward), and “relevant
& dislike” (symbolized by a hand pointing downward). Playing EyeGrab, the
gamer scores for each correctly categorized image, receives negative points for
each wrong one, and no points for images that fell off the screen without clas-
sification. No scores are obtained for the ratings of “like” and “dislike.” An
acoustic feedback is given for each classification. An applause is played for cor-
rect classifications, while a booing sound signals incorrect classifications and
missed photos. A high score list is presented to the user at the end of the game.

Figure 7.4: Symbols representing the classification options.

7.3 Experiment Description
EyeGrab has been evaluated with 54 subjects (with 19 female). The subjects’
ages were between 17 and 56 years (avg = 30 years, SD = 7.7). The majority
of the participants were students or research fellows in computer science (70%)
but students from other fields of study or members of other professional groups
such as restorers or psychotherapists participated in the experiment as well.

As pointed out by von Ahn [VAD04], games with a purpose have to fulfill two
requirements. On the one hand, they have to offer solutions for the addressed
problem and on the other hand the playing has to be fun. Most subjects enjoyed
playing the game EyeGrab. In a questionnaire, 49 of the 54 subjects rated the
statement “The game is fun.” with a 4 or a 5 on a standard 5-point Likert scale
(avg = 4.22, SD = 0.72). The level of difficulty playing EyeGrab seems to have
been adequate, as most of the participants did not agree with the statement
“The game overexerts me.” (M = 2.54, SD = 1). Most of the participants
did not feel uncomfortable using the eye tracking device as shown by the low
average agreement of 2.24 (SD = 1.15) to the statement “The eye tracker has a
negative impact on my well-being.”

7.3.1 Procedure
Every participant played four rounds of EyeGrab. The first round was a short
test round consisting of only 12 photos. This test round with the category
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“tree” served as an introduction to the game. The data collected during this
round was not used in the later analysis. The other three rounds with the
categories “car,” “person,” and “sky” consisted of 24 photos each. The photos
of each round were displayed in a randomized order. Different falling speeds
were applied to each round. In the slowest pace (speed 1) the photos were
falling with 3.6 pixels/ms, and they were visible on the screen for 5,200 ms.
In the medium pace (speed 2), the photos were visible for 4,500 ms (pace =
4.3 pixels/ms). In the most challenging speed (speed 3) the photos were falling
down within only 3,800 ms (5 pixels/ms). A complete round took between 64.4
s (speed 1) and 50 s (speed 3). A Latin Square design was applied in order to
randomize the order of the three categories with the three speed levels. The
participants were asked to express their agreement to several statements on a
5-point Likert scale between 1 (strongly disagree) and 5 (strongly agree) in a
questionnaire at the end of the experiment.

7.3.2 Data Set: Categories and Photos

The categories used in EyeGrab were taken from the top six of the list with
the mostly used tags in LabelMe [RTMF08]. The LabelMe data set consists
of photos, uploaded by the community, and has manually drawn region labels.
The first two categories of this list (“window” and “building”) are not taken
into account because often not all instances of these objects are labeled on the
photos. This can cause problems during the evaluation of the approach, as
Ground truth data with a complete labeling of all occurring objects belonging
to the given category is needed. Thus, the next top categories were taken, which
are the above-mentioned categories of “car,” “person,” and “sky.”

In total, 84 photos (24 for each round and 12 for the test round) were selected
from the image hosting page Flickr2 and from LabelMe [RTMF08]. To create
a challenge for the gamers, only 50% of the selected photos actually belonged
to the given category. Thus, half of the photos were randomly chosen from the
photos tagged with the given category, the other half from all other photos. An
additional criterion for the selected photos was a minimum size of 450 pixels
for one of the photo dimensions. All photos were scaled such that the longer
edge has a length of 450 pixels. The 46 photos from Flickr belonged to the
ones labeled as the most “interesting.” For all photos in the experiment, ground
truth information regarding the region labels was required. For the LabelMe
images, manually drawn polygons describing the shapes of the depicted objects
are part of the data set. Some photos had to be replaced after a manual check
because not all occurrences of an object were labeled or an object described by
the given category was depicted, although the photo was not labeled with it.
For the Flickr images, the ground truth region labels were manually created by
a volunteer not involved in the research.

2http://www.flickr.com/
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7.4 Photo Classification Results

Excluding the test round, 72 photos in the three rounds were viewed by each
subject. This makes a total of 3,888 photo views. In 260 cases (7%), a photo
passed without classification, resulting in a total of 3,628 classified photos. 3,279
images (90%) were correctly classified. Overall, 1,624 correct classifications for
photos belonging to the given category (true-positive), 1,655 correct classifi-
cations for photos not belonging to the given category (true-negative) were
obtained. Meanwhile, 241 classifications were false-negative (photo belonged
to the category but was classified as not), and 108 classifications were false-
positive, which leads to a precision of 94% and a recall of 87% over all users.
The number of incorrect assignments per image lies between 2 and 40 with an
average of 4. The three photos with the lowest error rate and the three photos
with the highest error rate are depicted in Figure 7.5.

Figure 7.5: Upper row: the three photos with the lowest number of correct
classifications. Lower row: the photos with the highest number of correct clas-
sifications. All photos show an object described by the given category.

When comparing the error rates for different speed levels, one can see that
the number of unassigned or incorrectly assigned photos is increasing with the
falling speed of the photos. See Figure 7.6 for the results. The number of
not-assigned photos is increasing from 7% to 12%. The number of incorrectly
assigned photos is increasing from 4% to 11%. The number of unassigned photos
is increasing stronger than the incorrectly assigned photos. Thus, the subjects
were still capable of deciding if an image belongs into a category or not, even
with a higher speed level. However, they run out of time to focus each image
for classification.
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Figure 7.6: Distribution of correctly assigned, incorrectly assigned, and unas-
signed images for different speed levels. The total numbers of assignments are
given inside the bars.

Also the improvement of the gamers while playing the game was investi-
gated. The classification error rate per round was analyzed, for all participants,
categories, and speed levels. An overview of the classifications per round over all
user can be found in Figure 7.7. Regarding the first and the last round played
by each subject, it is to see that there is a small error rate decrease of 2.78%.
Of this rate 2.39% are due to an decrease of a reduction of not assigned images,
whereas only 0.39% reduction are reflected by the incorrect assignments. How-
ever, the second round does not show an improvement as its values worsen the
total error rate for 1.31% to a total of 17.82%. The obtained results show that
a small learning effect regarding unassigned images takes place after the second
round is played. For the classification, however, the values vary only between
8.33% and 9.72%.

Figure 7.7: Distribution of correctly assigned, incorrectly assigned, and unas-
signed images separated for each of the three main rounds. The total numbers
of assignments are given inside the bars.
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The classification results of EyeGrab were compared with results from the
photo classifications in the strongly controlled experiment which was conducted
before and presented in Section 4.1. In the previous experiment, a specific tag
was first presented to the subjects. Subsequently, a photo was presented to the
user who had to decide whether an object described by the given tag is depicted.
The decision was made by pressing a key on the keyboard. Of all classification,
5.4% were incorrect. In this work, 10% of all classifications are incorrect over all
speeds. The slowest speed level with an error rate of 7% is close to the results
observed in previous work.

In the questionnaire, the subjects were asked how much effort they put into
the subjective classification of the photos into “like,” and “dislike” (0 = no effort,
5 = much effort). They answered this question with a mean value of 3.43 (SD
= 1.35), which points out that their effort was not very high. Of all classified
photos, 62% were rated as “like,” the rest as “dislike.” Of the Flickr images,
70%, were liked in comparison with 56% of the LabelMe images. As the Flickr
photos were selected from the most interesting, it can be assumed that they are
more attractive to most viewers than the LabelMe photos. This assumption is
only reflected slightly in the rating results. In summary, the user gave a rating
but it does not seem to be of high quality. Thus, the rating information is not
further considered in the remainder of the work.

7.5 Photo Labeling Results
The region labeling results for all photos using the aggregated data of all users
who correctly classified a photo were analyzed. In Figure 7.8, the results for
the region labeling using the different measures are depicted by comparing pre-
cision and recall, as well as precision and F-measure. The best precision with
61% was obtained for the segmentation measure with parameter k = 0, which
corresponds to very small segments. The highest precision for the heat map
measure was obtained for t = 1 with 59%. For the baseline approach the best
precision was only 19% (k = 0). The best recall results were 96% for the heat
map measure with t = 100, 70% for segmentation measure with k = 0.5, and
53% for the baseline with also k = 0.5. The F-measure was also calculated, con-
sidering both, precision and recall. The overall best F-measure was obtained
by the segmentation approach with 32% (k = 85), followed by the heat map
approach with 31% (k = 0.5). The baseline approach clearly performed weaker,
with a maximum result of 21% (k = 0.5). A Friedman test was applied to
compare the results for the best performing parameters. The test showed that
the differences are significant (α < .05) for precision (χ2(2) = 15.436, p = .000)
and F-measure (χ2(2) = 18.048, p = .000). A post-hoc analysis with pairwise
Wilcoxon tests with a Bonferroni correction (α < .017) showed two significant
results for precision between heat map and baseline (Z = −3.527, p = .000)
and segmentation and baseline (Z = −3.704, p = .000). No significance was
measured in the post-hoc test for F-measures.

The results vary for the three categories “car,” “person,” and “sky.” For
example, the precision values for k = 0 are pcar = 0.79, pperson = 0.28, and
psky = 0.76. This range of results seems to be caused by the sizes of the
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objects. The average size of the ground truth objects of the different categories
are (compared with the whole image size) as follows: sizecar = 11.5% (SD =
8.3%) , sizeperson = 11.7% (SD = 19.9%), and sizesky = 42.8% (SD = 23.1%).
Although the sizecar and sizeperson are similar, the high standard derivation
for “person” points out that the object sizes vary strongly. Very small objects
are known to be difficult in the region labeling (cf. Section 4.5.1).
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Figure 7.8: Precision and recall results for the three labeling approaches. The
curves are limited by the investigated parameters (e.g., the Center Baseline by
the number of segmentation levels).

In addition, the region labeling results for the different falling speeds were
analyzed. A faster falling speed increases the pressure on the user to perform
the classification. An overview of the results for the different speed levels can be
found in Figure 7.9. It shows that the falling speed does not have a high impact
on precision and F-measure. For both eye tracking measures, the medium speed
level delivers the best results. However, only minor differences can be noticed.
Please note that the results for all speeds are not the average of all speed levels
as the region labeling for the different speed levels is done with only one-third
of the data. This is caused by the fact that every user played the game in three
different speed levels (cf. Section 7.3). Thus, the influence of the speed on the
region labeling results is, at the least, not strong.
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Figure 7.9: Region labeling results for different falling speeds.

7.6 Comparison of EyeGrab Results with Those
from the More Controlled Experiment

The results in terms of precision and F-measure from the EyeGrab experiment
with the results obtained from previous work, presented in Section 5 were com-
pared. The best performing parameters were determined in the previous work
by means of a training set and applied to the test set of the previous work and to
the EyeGrab data. The parameters are k = 0.1 for the segmentation measure,
t = 95 for the heat map measures, and k = 0.4 for the baseline. The results are
depicted in Figure 7.10.

Figure 7.10: Region labeling results for EyeGrab and previous work (Section 5).

The segmentation measure performs best, while the baseline approach de-
livers clearly weaker results than both eye tracking methods. The F-measure
results are more diverse. The differences between the two gaze-based measures
and the baseline are less distinct for the EyeGrab data than for the data from the
previous experiment presented in Section 5 (i. e., the results between the mea-
sures and baseline in the earlier experiment differ more). Using the parameters
from earlier work for the EyeGrab analysis delivers only slightly better results for
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the segmentation approach than the baseline, whereas the heat map approach
performs clearly better. The center baseline results for photos of the first ex-
periment and EyeGrab data were compared in a Mann-Whitney U test and do
not obtain a significant difference, neither for precision (U = 467, p = .291) nor
for F-measure (U = 446, p = .302). Thus, it can be concluded that the photo
sets are comparable concerning the center baseline results and infer that the
region labeling results can be compared. No statistically significant differences
can be found comparing the results from EyeGrab and the previous work with
regard to the segmentation measure and the heat map measure, neither for pre-
cision (segmentation: U = 528, p = .909; heat map: U = 480, p = .467), nor
for F-measure (segmentation: U = 436, p = .19; heat map: U = 468, p = .376).
Thus, similar results in region labeling in EyeGrab and the previous, simplified
experiment were obtained.

7.7 Conclusion
The work in this section showed that the labeling of image regions is possible
by means of data collected from subjects playing the immersive game-with-a-
purpose EyeGrab. A precision of 61% of correctly labeled image region pixels
was obtained. For one of two gaze-based measures, the results were comparable
with those from the previous, much less immersive experiment, described in
Section 5. This is quite interesting as the conditions for obtaining the gaze
data are more difficult due to factors such as time pressure and distraction
caused by the gaming environment in EyeGrab. The region labeling results are
only slightly influenced by different speed levels, which are forcing the subjects
to make decisions on the photo classifications faster. The possibility to offer
EyeGrab as a game for a wide public is appealing, as a big number of region
labels could be achieved from crowd sourcing.
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Chapter 8

Photo Selection by Gaze
Analysis

Users easily take hundreds of photos during vacation or personal events such
as weddings or birthday parties. The amount of digital images makes the cre-
ation of selections an essential task. Only few are worth to be kept in a photo
book or to show them to friends and family. Often, selections of “good” pho-
tos are created to reduce the amount of photos stored or shared with oth-
ers [FKP+02, KSRW06, NF09, RW03]. The manual selection of interesting
photos is possible but a very labor-intensive approach. While users enjoy cer-
tain photo activities like the creation of collages for special occasions such as
anniversaries or weddings, these tasks are seen as “complex and time consum-
ing” for normal collections [FKP+02].

In the section on Related Work 3.2, different content- and context-based
approaches for the creation of selections were presented. While acknowledging
the achievements made by content- and context-based approaches, they miss
an important factor in the photo selection process: the user’s interests. In
the first sections of this thesis, the gaze data was analyzed with the goal to
label image regions. Here, the information gained from the eye tracking data
is interest. Capturing the user’s interests is important as the human photo
selection process is assumed to be guided by very individual factors and is
highly subjective [SEL00].

First in this thesis, the capability of gaze analysis in the labeling of image
regions was investigated in Sections 4 to 7. The approach of exploitative eye
tracking analysis is applied to the photo selection problem for supporting the
users. It is assumed that interesting photos catch the human attention already
at first glimpse and the catch it longer than less interesting photos. The visual
attention is measured through gaze data recorded with eye tracking devices
during the photo viewing process. As such devices become cheaper and more
ubiquitous and it is expected that they become part of future standard com-
puter hardware (cf. Section 2.2.2), the opportunity to record gaze data during
everyday tasks like photo viewing can be assumed.
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Figure 8.1: Embedding of this experiment in the context of this thesis. After
the first part of this theses dealt with the labeling of image regions, the work
presented in this Section 8 investigated the exploitation of visual attention in
the creation of photo selections.

The main research question addressed in this part of the thesis is:

RQ 2 Can important photos in a collection be identified from gaze analysis, and
is this information worthwhile in the creation of individual photo selections?

Human gaze paths are influenced by different factors from low-level infor-
mation such as contrasts and colors to high-level factors like a given task, see
Section 2.1.3. In this section it is investigated, if the influence of “interest” on
the viewing behavior is high enough to derive valuable information from the
gaze paths. The aim is to identify the users’ preferences when viewing photos
without a specific task, besides the instruction to get an overview of a photo
collection. The visual attention while viewing the photos is analyzed for cre-
ating personalized photo selections. Photos with the highest attention, that is,
those that are fixated longest, are assumed being most interesting to the user
and should be part of a selection. In the evaluation, gaze-based selections are
compared with selections based on related work. The analysis aims to answer
the question:

RQ 2.1 Does a gaze-based selection outperform objective selections based on
content and context analysis when comparing the selections with those created
manually by the users?

Eye movements are strongly influenced by interest (see Section 2.1 for the
background on human visual perception). Here, it is also investigated how the
personal relevance of viewed photo sets influences the quality of the gaze-based
photo selection results. To this end, photos of an event the user took part in
or in which the user knew the participants (“home collection”) were shown as
well as photos of an event the user was not personally involved in (“foreign
collection”). Thus, selection results for both kinds of photos can be compared
for answering the research question:
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RQ 2.2 Does the personal interest in a viewed photo set have an impact on the
obtained selection results?

First in this section, the experiment design including the data set and the
experiment application are presented in Section 8.1. Subsequently the applied
methods for creating photo selections are introduced in 8.2. In Section 8.3,
the results of analyzing the participants’ behavior when viewing and selecting
photos as well as the distribution of the selected photos are shown. Finally,
the gaze selection results are presented and discussed in 8.4 before the section
is concluded. The work presented in this section was published in [WNS+13]
and [WSS14b].

8.1 Experiment
An experiment application was developed that allowed the participants to view
and select photos from a collection C = {o1, o2, . . . on}. In the first part of
the experiment, eye tracking data was collected from the participants while
viewing photos. Subsequently, ground truth data was collected by asking the
participants to manually create three personal selections of these photos.

8.1.1 Participants
A total of 33 participants (12 of them female) completed the first part of the
experiment. Twelve were associated with a research lab A in North America
and 21 with institute B in Europe. Members of institute A and institute B
did not know one another. Their age ranged between 25 and 62 years (M: 33.5,
SD: 9.57). Twenty of them were graduate students and 4 post-docs. The remain-
ing 9 participants worked in other professions, such as secretaries or veterinary
assistants. Eighteen of the 33 participants (7 of them female) completed the
second part of experiment. Six of them were associated with institute A and 12
of them with institute B. Their average age was 31.7 (SD: 8.74).

8.1.2 Materials
The experiment photo collection C consisted of two collections of photos taken
during two social events, one organized by each of the two research institutes
the participants were associated with. The activities during the events included
teamwork situations, group meals, as well as leisure activities such as bowling
and hiking. Event A lasted half a day and event B three days. The photos
were taken by different people: three people for collection CA and two for
collection CB . The photos were not preselected but taken directly from the
camera. Only two extremely blurry photos were removed. The photo collection
of the participants’ own institute is called “home collection” and the other
one “foreign collection” (cf. Figure 8.2). Collection CA (photos were taken
during the event of institute A) consisted of 162 photos and CB 126 photos.
The photo collection C = CA ∪ CB was split chronologically into sets of nine
photos ci = {pi·9+1, . . . , pi·9+9}. Each set ci contained only photos of one of the
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Figure 8.2: Composition of the experiment data set.

collections. The complete collection of 288 photos was thus split into 32 sets
(18 sets of CA and 14 sets of CB).

It is assumed that the photos of the home collection are of higher personal
interest for the participants than the photos of the foreign collection. This
assumption is supported by results from the questionnaire. The participants
were asked to indicate how interesting the two photo collections were using a
Likert scale from 1 (“Not interesting”) to 5 (“Very interesting”). For the home
collections, the question was answered with an average of 4.36 (SD: 0.6) and
for the foreign collection with an average of 2.72 (SD: 1.14). A chi-square test
was applied for testing the significance of the differences as the data was not
normally distributed (shown by a Shapiro-Wilk test of normality with p < .001
for the home set ratings and p < .018 for the foreign set ratings). The chi-
square test showed a statistically significant difference between the answers,
χ2(5, N = 66) = 34.594, p < .001.

8.1.3 Apparatus
The experiment was performed either on a 22-inch or a 24-inch monitor for
the two research groups (cf. section Participants). The participants’ gazes were
recorded with a Tobii X60 eye tracker at a data rate of 60 Hz and an accuracy
of 0.5◦. The distance between the participants and the computer screen was
about 60 cm. The setup (including a laptop, the eye tracking device, and a
standard computer mouse) was the same for both groups.

8.1.4 Procedure
The experiment consisted of four steps, one viewing and three selection steps.
In the first step (“Photo Viewing” in Figure 2.8), the participants were asked to
view all photos of collection C with the goal “to get an overview.” Eye tracking
data was recorded only during this photo viewing step. This was crucial to
avoid an impact of the selection process on the viewing behavior. The order
in which the two collections CA and CB were presented to the participants in
the experiment was alternated. No time limit was given for viewing the photos.
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The participants were told that they would afterward, in the second step, create
selections of the photos. No details about the selection process were given at
this stage of the experiment.

Figure 8.3: Experiment setup with the photo viewing step and the three selec-
tion steps.

Each photo set ci was presented on a distinct page; the photos were arranged
in 3 × 3 grids in the center of the screen. The photos’ maximum height and
width were set to 330 pixels, corresponding to about 9◦ at the visual angle.
The minimum distance between the photo was 22 pixels (0.6◦). By clicking on
a button, the next set of nine photos was presented. The photos in each set ci

were arranged in random order, whereas the sets themselves and the order of
the sets remained the same to preserve the chronological order of the events.

After having viewed all photos, the participants were asked to select exactly
three photos of each set ci in the second step (“Photo Selection 1” in Figure 8.3).
The photos were selected by means of a drag-and-drop interface as depicted in
Figure 8.4. The same sets as in the viewing step were again presented to the
participants but the photos were rearranged in a new random order. The par-
ticipants were asked in this second step to select the photos as they would do
for their private photo collection. No specific instructions were given regard-
ing the selection criteria for choosing the photos. Thus, the participants could
apply their own (perhaps even unconscious) criteria. Also, in the third and
fourth steps (“Photo Selection 2” and “Photo Selection 3” in Figure 8.3), the
participants performed manual selections. In the third step (Task 2), the par-
ticipants were asked to “select photos for their friends or family that provide
a detailed summary of the event.” The fourth step (Task 3) was to “select the
most beautiful photos for presenting them on the web, for example, on Flickr.”

In the experiment steps 3 and 4, the users performed the manual selections
only for the photo sets belonging to their home collections, not the complete
collection C. Eighteen of the participants completed these tasks. The manual
selections served as ground truth in the later analysis. Finally, the participants
filled in a questionnaire. It comprised questions about demographical user data
(age, profession), the experiment data set, and the experiment task as well as
a rating on different selection criteria.
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Figure 8.4: Photo selection interface with one selected photo.

8.2 Methods for Creating Photo Selections
The aim of the photo selection methods is to create a subset S ⊂ C that best
suits the user’s preferences. The capabilities of each method are evaluated by
comparing the calculated selection with the manual selection for each set ci cre-
ated during the experiment. A “perfect” selection would be a selection identical
to the manual selection. The photos C were displayed in sets of nine photos ci.
Selections of j = 3 photos are created for each set. An overview of the different
photo selection approaches is shown in Figure 8.5. They are presented in detail
in the following sections. First, the content-based and context-based measures
for photo analysis used in the baseline system are described. Subsequently,
eye tracking based measures and then the combination of different measures by
means of logistic regression are presented. Finally, the calculation of precision P
for comparing the selections with the ground truth selections SmT ask1 , SmT ask2 ,
and SmT ask3 is described.

8.2.1 Content and Context Analysis Baselines
Six measures that analyze the context or the content of photos are used as
baselines. An overview is shown in Table 8.1. The measures are motivated from
related work, and details on their implementations can be found in the cited
papers.

The first measure, (1) concentrationTime, relies on the assumption that many
photos are taken within a short period of time when something interesting hap-
pens during an event [LLT03]. This measure is context-based as the information
when a photo was taken is obtained from the photos’ meta-information. Li et
al. [LLT03] created a function fk indicating the number of photos taken for a
point in time. By means of the first derivation of this function, a temporal
representative value for each photo is calculated. The next four measures are
content-based as they analyze the photos’ content at pixel level. The photos’
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Figure 8.5: Overview of the investigated photo selection approaches and calcu-
lation of precision P .

No Measure Description

1 concentrationTime o was taken with other photos in a short period of
time [LLT03]

2 sharpness Sharpness score [XZC+08]
3 numberOfFaces Number of faces
4 faceGaussian Size and position of faces [LLT03]
5 personsPopularity Popularity of the depicted persons [ZTL+06]
6 faceArea Areas in pixels covered by faces

Table 8.1: Baseline measures based on content and context analysis for photo o.

quality is considered in measure (2) sharpness by calculating a sharpness score
as presented by Xiao et al. [XZC+08]. The score is calculated as Q = strength(e)

entropy(h)
with strength(e) as the average gradient edge strength of the top 10% strongest
edges and entropy(h) as the entropy of the normalized gradient edge strength
histogram. The edge strength is calculated by the well-known Sobel operator
from computer vision.1

Related work, presented by Boll et al. [SB11], showed that depicted persons
play an important role in the selection of photos. The four measures (3) to
(6) are based on the analysis of depicted persons. Measure (3) numberOfFaces
simply counts the number of faces on a photo. The detection of faces is done
using OpenCV’s Haar Cascades1. Also, measure (6) faceArea is based on this
calculation. It considers the size in pixels of the photo areas covered by human
faces. A Gaussian distribution of the face areas as proposed by Li et al. [LLT03]

1http://opencv.org/, last visited September 17, 2013
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is considered by measure (4) faceGaussian, identifying photos with large depicted
faces in the photo’s center. Measure (5) personsPopularity considers a persons’
popularity in the data set as presented by Zhao et al. [ZTL+06]. It assumes
that faces appearing frequently are more important than the ones appearing less
often. The calculation is performed by the OpenCV’s face recognition algorithm
and considers persons appearing in each set ci of nine photos. This measure is
context-based as well as content-based.

8.2.2 Gaze Analysis
A visualization of a sample gaze path, recorded in the experiment, can be found
in Figure 8.6. Fixations are visualized as circles, and the diameter indicates the
duration of a fixation. The gaze paths has to be filtered for extracting fixations
and the fixations are analyzed by means of eye tracking measures, as described
in Section 2.4. An overview of all measures used in this section can be found
in Table 2.2. To compensate the inaccuracy of the eye tracking data, fixations
in the surrounding of 11 pixels (0.3◦ at the visual angle) of a photo are also
considered as being on a photo (the smallest distance between two photos is
22 pixels, or 0.6◦). This extension as introduced in Section 4.2.1. In previous
sections, a weighting factor was applied to small regions. In this analysis, it was
not apply as all photos were of about the same size.

Figure 8.6: Visualization of a gaze path on a photo set.

8.2.3 Combining Measures Using Logistic Regression
Different combinations of the content-based and context-based measures and
eye tracking measures are investigated. To this end, all measure values are
normalized per set ci by subtracting the mean of the nine values per set and
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No Measure Description

7 fixated Indicates if photo o was fixated or not
8 fixationCount Counts the fixations on o
9 fixationDuration Sum of the duration of all fixations on o
10 firstFixationDuration Duration of the first fixation on o
11 lastFixationDuration Duration of the last fixation on o
12 avgFixationDuration Average of the durations of all fixations on o
13 maxVisitDuration Maximum visit length on o
14 meanVisitDuration Mean visit length on o
15 visitCount Number of visits within o
16 saccLength Mean length of the saccades before fixating on

o

17 pupilMax Maximum pupil diameter while fixating on o
18 pupilMaxChange Maximum pupil diameter change while fixating

on o
19 pupilAvg Average pupil diameter while fixating on o

Table 8.2: Eye tracking measures for photo o.

dividing it by the standard derivation σ. The measures are combined by means
of a model learned from logistic regression as presented by Fan et al. [FCH+08].
The data of all users is split into a training set and a test set. About 15% of
the data are selected as test data, which correspond to five sets of nine photos
for every user as test data and 27 sets of nine photos as training data. The test
sets are randomly chosen. Only complete sets ci are selected for training and
testing, respectively. When analyzing subsets of the data (e.g., when analyzing
only the photos that are part of the home collection for each user) less data is
available. The test data size is reduced to three sets of nine photos. The model
is trained with the training data of all 33 users. That corresponds to 33 ∗ 27 ∗
9 = 8, 019 training samples, when using the whole data set C. This number
reduces to 3,699 samples when training the model only with those photos of the
home sets. 1,998 samples were used when performing the training for the data
from the experiment steps 3 and 4, which were completed by less participants.
The default parameter settings of the LIBLINEAR library [FCH+08] are used
for training. For every analysis, 30 iterations with different random splits are
performed and the average results of all iterations are presented in this section.

Three different measure combinations are investigated. Selection Sb takes
only the baseline measures (1) to (6) into account. For the selection Sb+e, all 19
measures are considered in the logistic regression. For Se exclusively the gaze
measures (7) to (19) are used in the learning algorithm. The logistic regression
predicts a probability of being selected for each photo in set ci of nine photos.
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The three photos with the highest probability are chosen for the selection and
compared with the ground truth selections SmT ask1 to SmT ask3 .

8.2.4 Computing Precision P

For comparing a computed selection to the ground truth, the percentage of
correctly selected photos of all selected photos is calculated (precision P ). This
calculation is conducted for each set ci. Precision P for a selection approach
is the average precision over all sets ci. As three of nine photos are selected,
a random baseline selecting three photos by chance would have an average
precision of Prand = 0.3. Figure 8.7 shows an example page with two selections
and corresponding precision results. For both selections Se and Sb the same
precision with P = 0.667 is obtained, as for both selection two of three photos
are part of the baseline selection SmT ask1 . Recall is always the same as precision
because of the fixed number of selected photos.

Figure 8.7: Examples of different selections and evaluation results.

8.3 Users’ Photo Viewing and Selection
Behavior

In this section, the users’ photo viewing time and photo selection time in the
experiment are investigated. Subsequently, the distribution of the manual photo
selections of the participants is presented. Finally, the users’ rating regarding
the importance of different photo selection criteria are given.
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8.3.1 Viewing and Selection Durations
The sets ci of nine photos were viewed on average for 12.6 s (SD: 11.9 s). The
shortest viewing time was below a second and the longest 121.1 s. The viewing
duration were on average higher for the sets belonging to the home collection
with 13.3 s (SD: 12.2 s) compared with 11.8 s (SD: 11.5 s) for the foreign
collection. These values are calculated from the time the participants looked at
the photo viewing pages in the experiment application. The distribution of the
viewing durations significantly deviated from a normal distribution (shown by
a Shapiro–Wilk test of normality with p < .001 for the home set and foreign
set, respectively). Thus, a Mann–Whitney U test is applied in comparing the
viewing durations for the sets belonging to the home collection and the foreign
collection. The result is that the viewing durations are significantly longer for
the home sets compared with the foreign sets (U = 138462, Z = −3.194, p =
.001).

The average selection time per set was 20.9 s (SD: 11.6 s) for Task 1. The
selection durations were slightly shorter for the foreign sets with an average of
20.1 s (SD: 10.5 s) compared with those of the home collection with an average of
21.7 s (SD: 12.6 s). Like the viewing durations, the distribution of the selection
durations also significantly deviated from a normal distribution (shown by a
Shapiro–Wilk test with p < .001 for the home set and foreign set, respectively).
Applying a Mann–Whitney U test on the selection durations showed that the
differences are not statistically significant (U = 125877, Z = −1.013, p = .311).
The selection process clearly took longer than the viewing step (+66%). Al-
though the selection process was different from selections usually performed in
daily life, it shows that the selection of photos is more time-consuming than the
viewing.

The participants rated how difficult the creation of the selection was on a
Likert scale from 1 (“It was hard to select the photos”) to 5 (“It was easy to select
the photos”). The ratings were performed separately for the home collection
and the foreign collection. The results show that the ratings were on average
higher for the home set with 3.85 (SD: 0.94) versus 3.06 (SD: 0.94). Shapiro–
Wilk tests revealed that the data was not normally distributed (p < .001 for
the home set ratings and p < .015 for the foreign set ratings). A chi-square
test was applied, which showed that the difference is significant (α < 0.05) with
χ2(4, N = 66) = 9.714, p < .046.

8.3.2 Distribution of the Users’ Manual Photo Selections
In Figure 8.8, the numbers of selections for all photos are displayed. On average,
every photo was selected 3.7 times. The highest number of selections was 24.
Approximately 75% of the photos were selected five times or less. Thus, most of
the photos were selected only by a minority of the participants. There are very
few overall favorites, those that were selected by most of the participants. The
two photos with the highest number of selections are shown in Figure 8.9. The
left photo was selected by 24 users and the right one by 21. Thus, the photo
selections were very individual in the experiment. This finding confirms results
from previous work [SEL00].
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Figure 8.8: The number of selections for all photos in data set C, ordered by
the number of selection.

Figure 8.9: The two most frequently selected photos.

Cohen’s kappa k was calculated for all possible user pairs with k = qx−qr

1−qr
. In

this formula, qx is the observed agreement between two users. This corresponds
to the percentage of photos that were selected by both users. The value qr =
0.556 is the probability of a by-chance agreement of two users on their photo
selections. As the number of selected photos is high compared with the total
number of photos per page (three out of nine), the value for qr is already quite
high. The obtained results for Cohen’s kappa comparing all user selections
have a minimum of k = 0.5 and a maximum of k = 0.757. The average Cohen’s
kappa over all users is k = 0.625. The average result lies only about 12% above
the by-chance probability of qr = 0.556. This further confirms that the photo
selections are very diverse.
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8.3.3 Ratings of Photo Selection Criteria

In the second experiment step, where a manual selection was created for Task 1,
no specific criteria regarding the selection of photos were given to the partici-
pants. They were just asked to create selections for their private photo collection
and could apply their own criteria. In the questionnaire, the participants were
asked to indicate how important different criteria were for their selections. Nine
criteria were rated on a five-point Likert scale. In addition, the users were given
the option to add criteria as free text. The selection criteria were taken from
related work [SMJ11, SB11, XZC+08, KSRW06, RW03]. An overview of the
criteria rated by the participants can be found in the following list:

1. Attractiveness — the photo is appealing

2. Quality — the photo is of high quality (e.g., it is clear, not blurry, good
exposure)

3. Interestingness — the photo is interesting to you

4. Diversity — there are no redundant photos

5. Coverage — all locations/activities of the event are represented

6. Depiction of the persons most important to me

7. Depiction of all participants of the event

8. Refreshment of the memory of the event

9. Representation of the atmosphere of the event

Figure 8.10 shows the results of the ratings on a Likert scale between 1 (“Not
important”) and 5 (“Very important”). The criteria are ordered by their mean
results. One can see that some of the criteria have a wide range of ratings, from
1 to 5. Every criterion has at least one rating with five points.

The criteria were classified as “rather objective” (striped bars) and “rather
subjective” (solid bars), expressing if a criterion is an objective measure and
can (theoretically) be calculated by computer algorithms. Although this classi-
fication can be a subject of discussion, it serves the goal to better understand
the nature of selection criteria. In Figure 8.10, it can be seen that three of the
five criteria with the largest range in the answers (8, 4, 6, 7, 5) belong to the
objective criteria. Also, the two criteria with the lowest mean results are rather
objective criteria. It is remarkable that the two criteria with the highest average
rating and the smallest deviation, 3. Interestingness and 1. Attractiveness, are
rather subjective criteria. Also, four of the five highest-rated criteria are sub-
jective. Eight participants provided additional criteria as free comments such
as “the photo makes me laugh” or “the photo is telling a story.” All criteria
added by the participants were very subjective.
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Figure 8.10: Selection criteria sorted by mean value.

8.4 Gaze Selection Results

The results for selections based on single measures are presented, followed by
the results from combining the measures with machine learning. Subsequently,
the influence of personal interest in the photos on the selection results is shown.
Finally, the weak influence of different selection tasks is revealed.

8.4.1 Correlation between Measures and Manual
Selections

In order to investigate how well the measures work in terms of predicting which
photos are selected by participants, the correlations between the measure results
and the number of correctly selected photos by these measures are analyzed.
To this end, the measure results (i. e., number of photos selected) were binned
in the range of ±1σ in equidistant steps of 0.2σ. This results 11 bins, for which
the photos selected are calculated by the measures as shown in Figure 8.12. The
baseline measures are depicted as dashed lines and the eye tracking measures
as solid lines. For example, for the bin σ = 0.2 and the measure (1) concen-
trationTime the percentage of correctly selected photos is 0.312. A correlation
between an increasing measure value and an increasing percentage of selected
photos can be seen for the eye tracking measures. For the baseline measures,
a high fluctuation can be observed. A Pearson’s correlation analysis shows a
very strong, positive correlation between the percentage of selected photos and
the eye tracking measures, which were statistically significant: (9) fixationDura-
tion (r(9) = .983, p = .000), (13) maxVisitDuration (r(9) = .928, p = .000),
and (14) meanVisitDuration (r(9) = .937, p = .000). The correlations for the
baseline measures were much weaker and not significant, (1) concentrationTime
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Figure 8.11: Sample photos with the highest and lowest results for three of the
baseline measures.
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Figure 8.12: Correlation between percentage of correctly selected photos and
measure values for gaze (solid lines) and baseline measures (dashed lines). The
results show that the eye tracking measures (9), (13), and (14) are a good linear
estimator for the selected photos. The baseline measures show a high variance
and thus can hardly predict the selected photos.

(r(9) = −.054, p = .874), (3) numberOfFaces (r(9) = .181, p = .595), and (5)
personsPopularity (r(9) = .349, p = .292). Overall, this shows that the eye track-
ing measures are a good approach to predict which photos are picked out by
the participants for their photo selections.

8.4.2 Selection Results for Single Measures
Figure 8.11 shows some sample photos with the highest and lowest measure re-
sults for three baseline measures. The samples show that the measures basically
succeeded in analyzing the content of the photos. For example, the first row
shows the most blurred photo (left) and the photo with the highest sharpness
(right). But it also shows the limitations of today’s computer vision approaches
as, e. g., the photo with the highest number of faces is determined with 7 faces,
although almost 20 people are captured in this shot. Please note that for mea-
sure (4) faceGaussian the examples with the lowest result of 0 (no faces) are not
considered in this overview.

As described in the previous section, the data set is randomly split into a
training set and a test set in 30 iterations. For the analysis of the performance of
single measures in this section, no training was needed. Thus, the training data
set was not considered but for ensuring compatibility to the following sections,
the measures are applied only on the test data sets. Figure 8.13 shows the
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average results for each user over the 30 iterations. Precision P was calculated
by using only a single measure for creating the selections of the test data sets.
The photos in the selections were the three photos with the highest measure
values. The results strongly vary between P = 0.202 and P = 0.56 for different
users and measures. Of all baseline measures, (6) faceArea performed best with a
mean precision of P = 0.365. One can see that the face-based baseline measures
(3) to (6) show high variances in precision P . (2) sharpness delivered a mean
result that lies with P = 0.344, which is close to random selection with Prand =
0.3. It is interesting that photo quality as a selection criterion was ranked
very high by the users (third important measure, see previous section) but the
sharpness score, considering the photo quality, did not deliver good results. On
average, 29.3 fixations were recorded per set (SD: 19.97). The average fixation
number per photo is 3.25 (SD: 3.15). The highest median precision results are
obtained by the three eye tracking measures (9) fixationDuration (P = 0.419),
(13) maxVisitDuration (P = 0.42), and (14) meanVisitDuration (P = 0.421).
The pupil-based eye tracking measures (17) to (19) did not deliver good results.
They are close to the precision results for a random selection Prand = 0.3 or
even slightly below for (19) pupilAvg with P = 0.32.
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Figure 8.13: Precision results for all users averaged over 30 random test sets
when selecting the photos based on single measures.
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8.4.3 Selection Results for Combined Measures

The measures are combined by means of logistic regression. Pairwise Pear-
son correlation tests showed that all correlation coefficients were below 0.8.
Thus, the correlations between the single measures were not too high, and
we, therefore, decided not to exclude measures from the logistic regression.
The best average precision result of P = 0.428 is obtained for Sb+e, the se-
lections created based on baseline measures and eye tracking measures. The
result for Se (only eye tracking measures) is P = 0.426 and P = 0.365 for Sb

(only baseline measures). Using gaze information improves the baseline selec-
tion by 17%. The results of all users averaged over 30 iterations are shown
in Figure 8.14. Statistical tests were applied on the average precision values
obtained from the 30 random splits for each user for investigating the signifi-
cance of the results. A Mauchly’s test showed that sphericity had been violated
(χ2(2) = 27.141, p = .001). Consequently, the nonparametric Friedman was
used for the analysis. The differences between the three selections are signif-
icant (α < 0.05) for P with χ2(2) = 49.939, p = .001, n = 33. For post hoc
analysis, pairwise Wilcoxon tests were conducted, with a Bonferroni correction
for the significance level (α < 0.017). The tests showed that baseline selec-
tion Sb was significantly outperformed by the gaze including selections Sb+e,
Z = −4.297, p = .001, and Se, Z = −3.600, p = .001. No significant difference
was detected between Sb+e and Se, Z = −0.019, p = .496.
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Figure 8.14: Precision results for all users averaged over 30 random splits ob-
tained from combining measures by logistic regression. The results are based
on baseline measures Sb, eye tracking measures Se, and all measures Sb+e.

Figure 8.15 shows the results for the 30 random splits for one single user.
Precision results are between P = 0.267 and P = 0.6 and point out the strong
influence of the training data and test data splits. The user selected for this
example is the one with the precision result closest to the average precision over
all users.
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Figure 8.15: Precision results for Sb+e over 30 different random splits for one
user.

8.4.4 Influence of Personal Involvement

For each user, it is distinguished between photo sets ci that were part of the
home collection and those that were part of the foreign collection as described in
the section Experiment. Precision of selection Sb+e was calculated separately
for both collections. The results can be found in Figure 8.16. They show
that P results for the foreign photo set have a larger range, and the average
precision is lower with P = 0.404 compared with P = 0.446 for the home set.
Comparing the precision result for the home sets with the results for Sb leads
to an improvement of 22%. A Wilcoxon test showed a significant difference
between the precision values of all users for the home and foreign photo sets,
Z = −2.842, p < .004.
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Figure 8.16: Results for Sb+e for foreign and home sets.
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8.4.5 Influence of the Selection Task

In the experiment, the participants were first asked to create a “selection for
their private photo collection” (Task 1). Subsequently, they were asked to per-
form further selections for the task: “Select photos for giving your friends or
family a detailed summary of the event” (Task 2) as well as “Select the most
beautiful photos for presenting them on the web, for example, on Flickr” (Task
3). The participants created the selections in Task 2 and Task 3 only for the
photo sets of personal interest (the “home sets”), which were taken during the
event they participated in.

Precision results of the selections under each task (Tasks 1 to 3) for in-
vestigating the performance of the gaze selections in the context of different
applications. The results are shown in Figure 8.17. The average precision re-
sults for the 18 participants that took part in this part of the experiment are
P = 0.456 for Task 1, P = 0.432 for Task 2, and P = 0.415 for Task 3. A
Friedman test revealed no statistical significance between the three tasks with
α < 0.05 for P , χ2(2) = 0.778, p = .678, n = 18.
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Figure 8.17: Results for Sb+e for different selection tasks.

8.5 Conclusion

In this section individual photo selections were created by means of gaze anal-
ysis. It was shown that users created highly individual photo selections based
on very individual selection criteria in the experiment. From the analysis of the
selection criteria, it can be concluded that the criteria judged as most important
by the users are rather subjective. At the same time, the more objective criteria
which can at least theoretically be calculated by algorithms, such as the number
of faces depicted or the sharpness of a photo, are less important to most users.
In addition, the manually created selections are very diverse; only few photos
were selected by most of the users. Thus, there is no “universal” selection that
fits the preferences of all users.
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Previous attempts to automatically select photos solely based on content
information and context information are not sufficient. Rather, a system sup-
porting users in automatic photo selections by applying eye tracking data signif-
icantly outperformed these approach by 17%. Considering only photo sets that
were of personal interest, the improvement increased to 22% over the baseline
approach. Thus, the approach performed better for photos that are personally
related to the user viewing them. The overall best selection result with a mean
precision of 0.428 were obtained when combining all measures (content, con-
text, and gaze) by machine learning. It is noteworthy that a single eye tracking
measure already delivered competitive results with a mean precision of 0.421
without any machine learning.

In the experiment application, users viewed sets of nine photos and navigated
through the sets by clicking on a “Next” button to avoid scrolling. This viewing
behavior is different from real life photo viewing, where it is more likely that
photos are viewed in a file viewer environment or in full screen mode. It could
be that the analysis of viewing behavior in these settings has to be adapted.
Bias effects such as the concentration on the first photo of a page would be
necessary to be considered.

The results strongly vary between users and between different partitions of
the data into training set and test set for the machine learning. It is possible
that this effect depends on the users and their individual viewing behavior or
on the characteristics of the viewed photo sets. For example, for sets including
many interesting and good photos the viewing behavior is less obvious because
it is likely that several photo are intensively fixated, and it is more difficult to
create a selection.

Automatic approaches, even when including gaze data, may probably be not
sufficient for a “perfect photo selection,” because of the complexity of human
decision processes. The decision on how much support a gaze-based system
should offer has to be made by the user. Assistance in the creation of selections
by suggesting photos is an option as well as applications that fully automati-
cally create photo selections for the user without additional interaction. One
participant in the study concluded: “Dealing with only half of the photos of a
collection would already be an improvement.”

The viewing durations and the selection durations were longer for photo
sets of personal interest. At the same time, the ratings from the questionnaire
showed that the selection was rated as being less difficult for the photos of
personal interest. This indicates that on the one hand, users like viewing pho-
tos of personal interest but on the other hand, the selection process seems to
be even more time-consuming for these sets. The suggested approach delivers
significantly better results for photo collections of personal interest than for
photo sets of less personal interest. With other words, the prediction of the
photo selections performs better when the photos’ content is personally related
to the users. This suggests that the proposed approach works even better in
real life with users viewing photos of strong personal interest, e. g., one’s wed-
ding, summer vacation, or a family gathering, compared with the data set in
this experiment, which is taken from a working group situation. Finally, the re-
sults for different manual selections created under different selection tasks were
compared. The obtained results are about the same. This result indicates that
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8.5. CONCLUSION

the information gained from eye movements can be useful in diverse scenarios
where photo selections are needed.

Based on the results, others features such as photo cropping based on gaze
data [SAD+06] may be integrated into future research. The findings may be
implemented in authoring tools such as miCollage [XZC+08] to enhance an
automatic photo selection for creating multimedia collections.
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Chapter 9

Conclusions

Eye tracking data delivers information on where humans fixate their gaze during
the visual perception process. This information is very unique and allows an
insight into the human attention. In this thesis, eye tracking data was used for
deriving information on the viewed stimulus, here digital images. The gained
information can support users in the management of photo collections. The
new terminology of “exploitative eye tracking applications” was introduced for
describing the approach of exploiting the visual attention in the annotation of
photos while the user is performing other tasks.

One research direction was the labeling of image region, described in Sec-
tions 4 to 7. The aim of this part of the research was to assign object names to
image regions at pixel level for describing the depicted scene. In three exper-
iments with a total of 100 unique participants and 108 test executions, it was
demonstrated that in diverse contexts, the gaze-based labeling outperformed
baseline approaches. The labeling was performed by assigning names to objects
in a controlled classification experiment, by assigning search terms to image
regions in an image search scenario and by assigning object categories to object
regions in a classification game. The most important contributions of this part
of the work are as follows:

• Gaze data can significantly improve the assignments of tags to regions
compared with baseline approaches. This applies to different scenarios
such as image search or game playing.

• The analysis of gaze data aggregated from several users delivers better
results compared with analysis based on the data of single users.

• The possible inaccuracy of gaze data can be alleviated by considering the
surrounding of a fixation as possible fixation target (region extension).

The second line of research investigates the usage of visual interest as a
selection criterion in the automatic creation of photo selections, described in
Section 8. An experiment with 33 participants showed that the gaze data made
a valuable contribution to an automatic selection process. The most important
contributions in this part of the work are as follows:
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9.1. LESSONS LEARNED

• Gaze-based photo selection performs better than baseline approaches.

• Gaze-based selections perform even better for photo collections of personal
interest.

The presented approach of using gaze data in the generation of information
results has some considerable advantages. First of all, no additional effort is
required for the users. During their usual work with images in everyday life —
like the viewing of photos or the search for photos — they are fixating photos.
This information is usually unused but can be recorded and exploited by the
presented eye tracking approach. The application of machine learning tech-
niques delivers only small improvements compared with simple gaze-analysis
approaches. Thus, even without training data and training period, gaze data
can be used and information can directly be gained from it. Usually information
on photos are derived from the analysis of the pixel information (content) or the
surrounding information (context). The presented approach provides an addi-
tional source of information, which adds a new dimension of information to a
photo. For example, in the labeling process, regions can be labeled as depicting
the same objects, even if the visual features of these regions are very different.
In the selection process, photos with visual features that usually indicate that
a photo is of low quality (e.g., a blurry photo or bad lighting condition) can be
selected because a user is interested in it.

9.1 Lessons Learned
The main challenge in the analysis of gaze data is that on the one hand, the
data can be inaccurate because of technical limitations. On the other hand, the
gaze paths are not strictly focused. They can be rather spread over a stimulus
because of anatomical impossibility to fixate the eyes at one static point for a
longer time. In addition, the gaze paths also included the scanning process.
The information on which areas are interesting in a photo when looking for a
specific object gets much more stable when the data of several user is aggregated
and eye tracking measures are applied to the aggregated data. In Section 4, it
has been shown that the aggregation led to an improvement of 152% compared
with non aggregated data. The Internet and the big number of users who share
and view photos support the aggregation of gaze paths. The inaccuracy of gaze
data that usually occurs in the dimension of a few pixels can be handled by
assigning a fixation to all objects in a certain radius around the fixation itself.
This region extension was used in the gaze analysis performed in the context of
this work.

The experiments have shown that the success of the gaze-based labeling
and selection approach strongly depends on the viewed stimuli. The random
measures and baseline measures in this work showed the level of difficulty of the
labeling and selection tasks. The comparison of the results for these measures
and the gaze-based measures was analyzed and interpreted but the comparison
of results for different data sets from different experiments was difficult because
of the different characteristics of the data, that is, photos and object names.
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The variances between the users were also strong in some cases. This is caused
by different personalities (e.g., is a decision made fast or does a user scan a photo
several times before deciding?) and diverse other factors (e.g., is a participant
looking for an object that is randomly fixated very fast?). A detailed analysis of
these factors was not possible within the scope because of the big diversity and
the high number of these possible factors. The goal was not to consider these
details but to evaluate the potential of gaze data over all users and randomly
selected stimuli.

During the conduction of the experiments, it became apparent that many
participants were fascinated by eye tracking technology as an unusual input
device. The technical limitations such as a limited freedom of movements or
potential problems caused by the lighting situation did not have a strong in-
fluence on the wellbeing of the participants as questionnaires and observations
during the experiments showed. The fascination of eye tracking is not only
based on the unknown technology but also on the fact that the user does not
have the feeling to explicitly control a software (because the hands as most
important body part when usually controlling a computer does not have to be
moved).

9.2 Outlook
Some potential future research directions arise from the work done in this thesis.

The steps forward in the development of eye tracking hardware are big, and
state-of-the-art open-source solutions are developing rapidly (see 2.2.2). One
interesting next step in the research on exploitative usage of gaze data is to
use devices based on low-cost hardware or even hardware already integrated in
devices such as webcams, for the recording of the eye movements. Another step
further is the stronger use of image content information. This combination can
be promising, as the information gained from gaze and from low-level features
are very different and can potentially augment the information gain.

As mentioned before, one advantage of the introduced method of gaze-based
region labeling is that the visual appearance of an object is not of importance
and even unusual objects can be labeled as long as they can be identified by
the users. An extension of this advantage is the assignment of more abstract
concepts such as “speed” and “love,” which can be represented by various objects
and depicted scenes. This kind of labels are extremely challenging for automatic
labeling algorithms as “emotional semantics of an image lies on the highest level
of the abstraction”[JHL11].

The possibility to identify personal preferences from gaze information can
also be adapted to other domains. One application could be the recommen-
dation of products based on previous fixations on photos or objects in photos.
An example would be the suggestion of products with specific characteristics to
user who fixated on these characteristics before (e.g., specific carrying straps of
hand bags). In social media content, it could be possible to identify persons that
are important to the user and provide specific information about these users.
Frohlich et al. [FWK13] showed that the forgetting of photos is becoming a
serious problem because of the size of digital photo collections. Gaze-based
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selections could support users in refinding photos they viewed in the past. An
application could be a viewing history, which highlights the mostly viewed pho-
tos or photo parts. A browsing history as a browser extension could also sup-
port users in organizing photos they have seen before. The eye tracking data
delivers more information than which photos are interesting. For example, the
information on which parts are interesting. This information could be used in
the creation of slide shows and photo books, where photos not only have to
be selected but also combined, cropped, or scaled down. The interest in photo
book creations is still increasing.

When including gaze support to applications, it could be important to allow
the users to decide how much support he/she wishes. For the photo selection,
an application could provide a ranked list, facilitating the selection but avoiding
a dictation by the software on which photos are important to the user.

I hope that the results of my research can support users in their photo tasks
and management and that it allows them to find more meaningful photos during
the image search and to spend more time on the pleasurable aspects of viewing
photos and creating photo products such as slide shows or collages.

140



Bibliography

[ABD06] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web
search ranking by incorporating user behavior information. In
Proceedings of the 29th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages
19–26. ACM, 2006.

[AMFM11] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra
Malik. Contour detection and hierarchical image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 33(5):898–916, May
2011.

[Bar04] Jeffrey M Bartelma. Flycatcher: Fusion of gaze with hierarchi-
cal image segmentation for robust object detection. PhD thesis,
Massachusetts Institute of Technology, 2004.

[BBD10] R. Biedert, G. Buscher, and A. Dengel. The eyebook - using eye
tracking to enhance the reading experience. Informatik-Spektrum,
33(3):272–281, June 2010.

[BBS+10a] R. Biedert, G. Buscher, S. Schwarz, J. Hees, and A. Dengel. Text
2.0. In CHI ’10 extended abstracts on human factors in computing
systems, pages 4003–4008, New York, NY, USA, 2010. ACM Press.

[BBS+10b] R. Biedert, G. Buscher, S. Schwarz, M. Möller, A. Dengel, and
T. Lottermann. The text 2.0 framework – writing web-based
gaze-controlled realtime applications quickly and easily. In Pro-
ceedings of the International Workshop on Eye Gaze in Intelligent
Human Machine Interaction (EGIHMI) held in conjunction with
IUI 2010, 2010.

[BDC10] Georg Buscher, Susan T Dumais, and Edward Cutrell. The good,
the bad, and the random: an eye-tracking study of ad quality in
web search. In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information retrieval,
pages 42–49. ACM, 2010.

[BDEM08] G. Buscher, A. Dengel, L. Elst, and F. Mittag. Generating and
using gaze-based document annotations. In CHI’08 extended ab-
stracts on Human factors in computing systems, pages 3045–3050,
2008.

141



BIBLIOGRAPHY

[BDvE08] Georg Buscher, Andreas Dengel, and Ludger van Elst. Eye move-
ments as implicit relevance feedback. In CHI’08 Extended Ab-
stracts on Human Factors in Computing Systems, pages 2991–
2996. ACM, 2008.

[BMEL08] Margaret M Bradley, Laura Miccoli, Miguel A Escrig, and Peter J
Lang. The pupil as a measure of emotional arousal and autonomic
activation. Psychophysiology, 45(4):602–607, 2008.

[Boj09] Agnieszka Aga Bojko. Informative or misleading? heatmaps de-
constructed. In Human-Computer Interaction. New Trends, pages
30–39. Springer, 2009.

[BR11] Andreas Bulling and Daniel Roggen. Recognition of visual mem-
ory recall processes using eye movement analysis. In UbiComp,
pages 455–464, 2011.

[BSM02] D. Bruneau, M.A. Sasse, and J.D. McCarthy. The eyes never lie:
The use of eye tracking data in HCI research. In Proceedings of
the CHI, volume 2, 2002.

[BSST07] Susanne Boll, Philipp Sandhaus, Ansgar Scherp, and Sabine
Thieme. Metaxa - context- and content-driven metadata enhance-
ment for personal photo books. In Advances in Multimedia Mod-
eling, 13th International Multimedia Modeling Conference, MMM
2007, Singapore, January 9-12, 2007. Proceedings, Part I, pages
332–343. Springer, 2007.

[BWG13] Andreas Bulling, Christian Weichel, and Hans Gellersen. Eyecon-
text: recognition of high-level contextual cues from human visual
behaviour. In CHI, pages 305–308, 2013.

[BWGT09] Andreas Bulling, Jamie A Ward, Hans Gellersen, and Gerhard
Tröster. Eye movement analysis for activity recognition. In Pro-
ceedings of the 11th international conference on Ubiquitous com-
puting, pages 41–50. ACM, 2009.

[CF01] Richard J. Campbell and Patrick J. Flynn. A survey of free-
form object representation and recognition techniques. CVIU,
81(2):166–210, 2001.

[CG07] Edward Cutrell and Zhiwei Guan. What are you looking for?: an
eye-tracking study of information usage in web search. In Proceed-
ings of the SIGCHI conference on Human factors in computing
systems, pages 407–416. ACM, 2007.

[CJP10] S. Castagnos, N. Jones, and P. Pu. Eye-tracking product recom-
menders’ usage. In Proceedings of the fourth ACM conference on
Recommender systems, pages 29–36. ACM, 2010.

[CL04] MG Calvo and PJ Lang. Gaze Patterns When Looking at Emo-
tional Pictures : Motivationally Biased Attention. Motivation and
Emotion, 28(3), 2004.

142



BIBLIOGRAPHY

[CL08] Wei-Ta Chu and Chia-Hung Lin. Automatic selection of represen-
tative photo and smart thumbnailing using near-duplicate detec-
tion. ACM Multimedia, page 829, 2008.

[CLWB01] Mark Claypool, Phong Le, Makoto Wased, and David Brown.
Implicit interest indicators. In Proceedings of the 6th international
conference on Intelligent user interfaces, pages 33–40. ACM, 2001.

[CZ07] Ondrej Chum and Andrew Zisserman. An exemplar model for
learning object classes. In Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007.

[DBDFF06] P. Duygulu, K. Barnard, J. De Freitas, and D. Forsyth. Object
recognition as machine translation: Learning a lexicon for a fixed
image vocabulary. Computer Vision–ECCV 2002, pages 349–354,
2006.

[DP11] Geoffrey B Duggan and Stephen J Payne. Skim reading by
satisficing: evidence from eye tracking. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
pages 1141–1150. ACM, 2011.

[DS02] Doug DeCarlo and Anthony Santella. Stylization and abstrac-
tion of photographs. In ACM Transactions on Graphics (TOG),
volume 21, pages 769–776. ACM, 2002.

[DS07] Heiko Drewes and Albrecht Schmidt. Interacting with the com-
puter using gaze gestures. In Human-Computer Interaction–
INTERACT 2007, pages 475–488. Springer, 2007.

[Duc07] A.T. Duchowski. Eye tracking methodology: Theory and practice.
Springer-Verlag New York Inc, 2007.

[DVSC05] C. Dickie, R. Vertegaal, C. Sohn, and D. Cheng. eyeLook: using
attention to facilitate mobile media consumption. In Proceedings
of the 18th annual ACM symposium on User interface software
and technology, page 106. ACM, 2005.

[ERK08] W. Einhäuser, U. Rutishauser, and C. Koch. Task-demands can
immediately reverse the effects of sensory-driven saliency in com-
plex visual stimuli. Journal of Vision, 8(2), 2008.

[Ess08] Kai Essig. Vision-based image retrieval (vbir)-a new approach for
natural and intuitive image retrieval. 2008.

[EVGW+] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

143



BIBLIOGRAPHY

[FCH+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. LIBLINEAR: A library for large linear classi-
fication. JMLR, 9:1871–1874, 2008.

[FK13] Tom Foulsham and Alan Kingstone. Optimal and preferred eye
landing positions in objects and scenes. The Quarterly Journal of
Experimental Psychology, pages 1–22, 2013.

[FKP+02] David Frohlich, Allan Kuchinsky, Celine Pering, Abbe Don, and
Steven Ariss. Requirements for photoware. In Computer supported
cooperative work, pages 166–175. ACM, 2002.

[Fre07] M. Freeman. The Photographer’s Eye: Composition and Design
for Better Digital Photos. Focal Press, 2007.

[FWK13] David M. Frohlich, Steven Wall, and Graham Kiddle. Rediscovery
of forgotten images in domestic photo collections. Personal and
Ubiquitous Computing, 17(4):729–740, 2013.

[GGVG11] H. Grabner, J. Gall, and L. Van Gool. What makes a chair a
chair? In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1529–1536. IEEE, 2011.

[GNDVG13] Helmut Grabner, Fabian Nater, Michel Druey, and Luc Van Gool.
Visual interestingness in image sequences. In Proceedings of the
21st ACM international conference on Multimedia, pages 1017–
1026. ACM, 2013.

[Gol13] E Bruce Goldstein. Sensation and perception. Cengage Learning,
2013.

[GSL+02] Joseph H Goldberg, Mark J Stimson, Marion Lewenstein, Neil
Scott, and Anna M Wichansky. Eye tracking in web search tasks:
design implications. In Proceedings of the 2002 symposium on Eye
tracking research & applications, pages 51–58. ACM, 2002.

[HBCM07] J.M. Henderson, J.R. Brockmole, M.S. Castelhano, and M. Mack.
Visual saliency does not account for eye movements during visual
search in real-world scenes. Eye movements: A window on mind
and brain, pages 537–562, 2007.

[HC05] Anthony J Hornof and Anna Cavender. Eyedraw: enabling chil-
dren with severe motor impairments to draw with their eyes. In
Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 161–170. ACM, 2005.

[HCC09] T.H. Huang, K.Y. Cheng, and Y.Y. Chuang. A collaborative
benchmark for region of interest detection algorithms. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 296–303. IEEE, 2009.

144



BIBLIOGRAPHY

[Hei13] Henna Heikkilä. Tools for a gaze-controlled drawing
application–comparing gaze gestures against dwell buttons. In
Human-Computer Interaction–INTERACT 2013, pages 187–201.
Springer, 2013.

[HI10] S.N. Hajimirza and E. Izquierdo. Gaze movement inference for
implicit image annotation. In International Workshop on Image
Analysis for Multimedia Interactive Services (WIAMIS), 2010.

[HMPI11] S Navid H Haji Mirza, Michael Proulx, and Ebroul Izquierdo.
Gaze movement inference for user adapted image annotation and
retrieval. In Proceedings of the 2011 ACM workshop on Social and
behavioural networked media access, pages 27–32. ACM, 2011.

[HNA+11] Kenneth Holmqvist, Marcus Nyström, Richard Andersson,
Richard Dewhurst, Halszka Jarodzka, and Joost Van de Weijer.
Eye tracking: A comprehensive guide to methods and measures.
Oxford University Press, 2011.

[HPI12] S Navid Hajimirza, Michael J Proulx, and Ebroul Izquierdo. Read-
ing users’ minds from their eyes: A method for implicit image
annotation. Multimedia, IEEE Transactions on, 14(3):805–815,
2012.

[HPS10] D. Hardoon, K. Pasupa, and S. Szedmak. Image ranking with
implicit feedback from eye movements. In In Proceedings of the
6th Biennial Symposium on Eye Tracking Research & Applications
(ETRA’2010), 2010.

[IK00] L. Itti and C. Koch. A saliency-based search mechanism for
overt and covert shifts of visual attention. Vision research, 40(10-
12):1489–1506, 2000.

[IK01] L. Itti and C. Koch. Computational modeling of visual attention.
Nature reviews neuroscience, 2(3):194–203, 2001.

[IKN98] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(11):1254–1259, Nov 1998.

[Itt03] L. Itti. Modeling primate visual attention. In J. Feng, editor,
Computational Neuroscience: A Comprehensive Approach, pages
635–655. CRC Press, Boca Raton, 2003.

[Jac91] Robert JK Jacob. The use of eye movements in human-computer
interaction techniques: what you look at is what you get. ACM
Transactions on Information Systems (TOIS), 9(2):152–169, 1991.

[Jai01] Alejandro Jaimes. Using human observer eye movements in auto-
matic image classifiers. SPIE, 2001.

145



BIBLIOGRAPHY

[JEDT09] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to
predict where humans look. In IEEE International Conference on
Computer Vision (ICCV). Citeseer, 2009.

[JGP+05] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke,
and Geri Gay. Accurately interpreting clickthrough data as im-
plicit feedback. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 154–161. ACM, 2005.

[JHL11] Jin-Woo Jeong, Hyun-Ki Hong, and Dong-Ho Lee. Exploiting of
flickr note and its applications for social image sharing and search.
In Multimedia (ISM), 2011 IEEE International Symposium on,
pages 165–170. IEEE, 2011.

[JHW07] Seikyung Jung, Jonathan L Herlocker, and Janet Webster. Click
data as implicit relevance feedback in web search. Information
Processing & Management, 43(3):791–807, 2007.

[JNTD06] Alexandar Jaffe, Mor Naaman, Tamir Tassa, and Marc Davis.
Generating summaries and visualization for large collections of
geo-referenced photographs. Proceedings of the 8th ACM interna-
tional workshop on Multimedia information retrieval - MIR ’06,
page 89, 2006.

[KKK09] L. Kozma, A. Klami, and S. Kaski. GaZIR: gaze-based zooming
interface for image retrieval. InMultimodal interfaces. ACM, 2009.

[Kla10] A. Klami. Inferring task-relevant image regions from gaze data.
In Workshop on Machine Learning for Signal Processing. IEEE,
2010.

[KPW07] Manu Kumar, Andreas Paepcke, and Terry Winograd. Eyepoint:
practical pointing and selection using gaze and keyboard. In Pro-
ceedings of the SIGCHI conference on Human factors in computing
systems, pages 421–430. ACM, 2007.

[KSDK08] A. Klami, C. Saunders, T.E. De Campos, and S. Kaski. Can rele-
vance of images be inferred from eye movements? In Multimedia
information retrieval. ACM, 2008.

[KSRW06] David Kirk, Abigail Sellen, Carsten Rother, and Ken Wood. Un-
derstanding photowork. In CHI, pages 761–770. ACM, 2006.

[KTS01] Ioannis Kompatsiaris, Evangelia Triantafyllou, and Michael G
Strintzis. A world wide web region-based image search engine.
In Image Analysis and Processing, 2001. Proceedings. 11th Inter-
national Conference on, pages 392–397. IEEE, 2001.

[KUS+13] Kai Kunze, Yuzuko Utsumi, Yuki Shiga, Koichi Kise, and Andreas
Bulling. I know what you are reading: recognition of document
types using mobile eye tracking. In Proceedings of the 17th annual

146



BIBLIOGRAPHY

international symposium on International symposium on wearable
computers, pages 113–116. ACM, 2013.

[KY08] D.H. Kim and S.H. Yu. A new region filtering and region weighting
approach to relevance feedback in content-based image retrieval.
Journal of Systems and Software, 81(9):1525–1538, 2008.

[LAGA14] Dmitry Lagun, Mikhail Ageev, Qi Guo, and Eugene Agichtein.
Discovering common motifs in cursor movement data for improv-
ing web search. In Proceedings of the 7th ACM international con-
ference on Web search and data mining, pages 183–192. ACM,
2014.

[LBS07] S. Laqua, S.U. Bandara, and M.A. Sasse. GazeSpace: eye gaze
controlled content spaces. In Proceedings of the 21st British HCI
Group Annual Conference on HCI 2008: People and Computers
XXI: HCI... but not as we know it-Volume 2, pages 55–58. British
Computer Society, 2007.

[LCY+09] Xiaobai Liu, Bin Cheng, Shuicheng Yan, Jinhui Tang, Tat Seng
Chua, and Hai Jin. Label to region by bi-layer sparsity priors. In
Proceedings of the 17th ACM international conference on Multi-
media, pages 115–124. ACM, 2009.

[LJCM13] Kristian Lukander, Sharman Jagadeesan, Huageng Chi, and Kiti
Müller. Omg!: A new robust, wearable and affordable open source
mobile gaze tracker. In Proceedings of the 15th international con-
ference on Human-computer interaction with mobile devices and
services, pages 408–411. ACM, 2013.

[LLLL12] Yu-Tzu Lin, Ruei-Yan Lin, Yu-Chih Lin, and Greg C. Lee. Real-
time eye-gaze estimation using a low-resolution webcam. Multi-
media Tools and Applications, 65(3):543–568, August 2012.

[LLT03] Jun Li, Joo Hwee Lim, and Qi Tian. Automatic summarization for
personal digital photos. In Information, Communications and Sig-
nal Processing, 2003 and Fourth Pacific Rim Conference on Mul-
timedia. Proceedings of the 2003 Joint Conference of the Fourth
International Conference on, volume 3, pages 1536–1540. IEEE,
2003.

[LSW09] Xirong Li, Cees G. M. Snoek, and Marcel Worring. Annotating
images by harnessing worldwide user-tagged photos. In Acoustics,
Speech, and Signal Processing, pages 3717–3720. IEEE, 2009.

[LYL+10] Xiaobai Liu, Shuicheng Yan, Jiebo Luo, Jinhui Tang, Zhongyang
Huango, and Hai Jin. Nonparametric label-to-region by search.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 3320–3327. IEEE, 2010.

147



BIBLIOGRAPHY

[MAŠ09] P. Majaranta, U.K. Ahola, and O. Špakov. Fast gaze typing with
an adjustable dwell time. In Proceedings of the 27th international
conference on Human factors in computing systems, pages 357–
360. ACM, 2009.

[MGA14] Pascual Martínez-Gómez and Akiko Aizawa. Recognition of un-
derstanding level and language skill using measurements of read-
ing behavior. In Proceedings of the 19th international conference
on Intelligent User Interfaces, pages 95–104. ACM, 2014.

[Mil03] Slavko Milekic. The more you look the more you get: Intention-
based interface using gaze-tracking. In Museums and the Web,
pages 57–72, 2003.

[MNST12] Mari-Carmen Marcos, David F Nettleton, and Diego Sáez-
Trumper. A user study of web search session behaviour using
eye tracking data. In Proceedings of the 26th Annual BCS In-
teraction Specialist Group Conference on People and Computers,
pages 262–267. British Computer Society, 2012.

[MR98] Arien Mack and Irvin Rock. Inattentional blindness. The MIT
Press, 1998.

[MSH08] E. Mollenbach, T. Stefansson, and J.P. Hansen. All eyes on
the monitor: gaze based interaction in zoomable, multi-scaled
information-spaces. In Proceedings of the 13th international con-
ference on Intelligent user interfaces, pages 373–376, Gran Ca-
naria, Spain, 2008. ACM.

[NDFY12] Yuzhao Ni, Jian Dong, Jiashi Feng, and Shuicheng Yan. Purposive
Hidden-Object-Game: Embedding Human Computation in Pop-
ular Game. IEEE Transactions on Multimedia, 14(5):1496–1507,
October 2012.

[NF09] Carman Neustaedter and Elena Fedorovskaya. Understanding and
improving flow in digital photo ecosystems. In Proceedings of
Graphics Interface 2009, pages 191–198. Canadian Information
Processing Society, 2009.

[NH10] Antje Nuthmann and John M Henderson. Object-based atten-
tional selection in scene viewing. Journal of vision, 10(8), 2010.

[NI05] V. Navalpakkam and L. Itti. Modeling the influence of task on
attention. Vision research, 45(2):205–231, 2005.

[NI10] Y.I. Nakano and R. Ishii. men conversations. Proceeding of the
14th international conference on Intelligent user interfaces, pages
139–148, 2010.

[NYGMP05] Mor Naaman, Ron B. Yeh, Hector Garcia-Molina, and Andreas
Paepcke. Leveraging context to resolve identity in photo albums.
In Mary Marlino, Tamara Sumner, and Frank M. Shipman III,
editors, JCDL, pages 178–187. ACM, 2005.

148



BIBLIOGRAPHY

[Ols07] Pontus Olsson. Real-time and Offline Filters for Eye Tracking.
KTH Royal Institute of Technology, (Msc thesis), 2007.

[PAD13] G. Papadopoulos, K. Apostolakis, and P. Daras. Gaze-based rel-
evance feedback for realizing region-based image retrieval. Multi-
media, IEEE Transactions on, PP(99):1–1, 2013.

[PHG+04] Bing Pan, Helene A Hembrooke, Geri K Gay, Laura A Granka,
Matthew K Feusner, and Jill K Newman. The determinants of
web page viewing behavior: an eye-tracking study. In Proceedings
of the 2004 symposium on Eye tracking research & applications,
pages 147–154. ACM, 2004.

[PHK+13] Felix Putze, Jutta Hild, Rainer Kärgel, Christian Herff, Alexan-
der Redmann, Jürgen Beyerer, and Tanja Schultz. Locating user
attention using eye tracking and eeg for spatio-temporal event se-
lection. In Proceedings of the 2013 international conference on
Intelligent user interfaces, pages 129–136. ACM, 2013.

[PIKI05] Robert J Peters, Asha Iyer, Christof Koch, and Laurent Itti. Com-
ponents of bottom-up gaze allocation in natural scenes. Journal
of Vision, 5(8):692–692, 2005.

[Pla00] John C Platt. Autoalbum: Clustering digital photographs using
probabilistic model merging. In Content-based Access of Image
and Video Libraries, 2000. Proceedings. IEEE Workshop on, pages
96–100. IEEE, 2000.

[Por08] M. Porta. Implementing eye-based user-aware e-learning. CHI’08
extended abstracts on Human factors in computing systems, pages
3087–3092, 2008.

[PS00] C. M Privitera and L. W Stark. Algorithms for defining visual
regions-of-interest: Comparison with eye fixations. IEEE Trans-
actions on pattern analysis and machine intelligence, 22(9):970–
982, 2000.

[PS03] T. Partala and V. Surakka. Pupil size variation as an indication
of affective processing. International Journal of Human-Computer
Studies, 59(1-2):185–198, 2003.

[PSS+09] K. Pasupa, C. Saunders, S. Szedmak, A. Klami, S. Kaski, and
S. Gunn. Learning to rank images from eye movements. In Work-
shops on Human-Computer Interaction, 2009.

[PTP06] M. Pivec, C. Trummer, and J. Pripfl. Eye-Tracking Adaptable
e-Learning and Content Authoring Support. Special Issue: Hot
Topics in European Agent, 3:83–86, 2006.

[QT09] A Quattoni and A Torralba. Recognizing indoor scenes. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 413–420. IEEE, 2009.

149



BIBLIOGRAPHY

[QZ05] P. Qvarfordt and S. Zhai. Conversing with the user based on
eye-gaze patterns. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 221–230. ACM, 2005.

[RKH+09] Subramanian Ramanathan, Harish Katti, Raymond Huang, Tat-
Seng Chua, and Mohan Kankanhalli. Automated localization of
affective objects and actions in images via caption text-cum-eye
gaze analysis. In Multimedia, New York, New York, USA, 2009.
ACM.

[RKS+10] S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.S.
Chua. An eye fixation database for saliency detection in images.
Computer Vision–ECCV 2010, pages 30–43, 2010.

[RO12] Kari-Jouko Räihä and Saila Ovaska. An exploratory study of
eye typing fundamentals: dwell time, text entry rate, errors, and
workload. In Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems, pages 3001–3010. ACM,
2012.

[Rod99] Kerry Rodden. How do people organise their photographs?. In
BCS-IRSG Annual Colloquium on IR Research. Citeseer, 1999.

[Row02] N.C. Rowe. Finding and labeling the subject of a captioned depic-
tive natural photograph. IEEE Transactions on Knowledge and
Data Engineering, pages 202–207, 2002.

[RSB11] Mohamad Rabbath, Philipp Sandhaus, and Susanne Boll. Auto-
matic creation of photo books from stories in social media. ACM
Transactions on Multimedia Computing, Communications, and
Applications (TOMCCAP), 7(1):27, 2011.

[RTMF08] B. C Russell, A. Torralba, K. P Murphy, and W. T Freeman.
LabelMe: a database and web-based tool for image annotation. J.
of Comp. Vision, 77(1):157–173, 2008.

[RW03] K. Rodden and K.R. Wood. How do people manage their digital
photographs? In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 409–416. ACM, 2003.

[SAD+06] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Co-
hen. Gaze-based interaction for semi-automatic photo cropping.
In ACM Human Factors in Computing Systems (CHI), pages 771–
780. ACM, 2006.

[SASHH09] J. San Agustin, H. Skovsgaard, J.P. Hansen, and D.W. Hansen.
Low-cost gaze interaction: ready to deliver the promises. In Pro-
ceedings of the 27th international conference extended abstracts
on Human factors in computing systems, pages 4453–4458. ACM,
2009.

150



BIBLIOGRAPHY

[SB11] Philipp Sandhaus and Susanne Boll. Social aspects of photobooks:
Improving photobook authoring from large-scale multimedia anal-
ysis. In Social Media Modeling and Computing, pages 257–277.
Springer, 2011.

[SBL+09] Line Sæther, Werner Van Belle, Bruno Laeng, Tim Brennen, and
Morten Øvervoll. Anchoring gaze when categorizing faces’ sex:
evidence from eye-tracking data. Vision research, 49(23):2870–
2880, 2009.

[SC99] Daniel J Simons and Christopher F Chabris. Gorillas in our midst:
Sustained inattentional blindness for dynamic events. Perception-
London, 28(9):1059–1074, 1999.

[SCGiN+13] Amaia Salvador, Axel Carlier, Xavier Giro-i Nieto, Oge Marques,
and Vincent Charvillat. Crowdsourced object segmentation with
a game. In Proceedings of the 2Nd ACM International Workshop
on Crowdsourcing for Multimedia, CrowdMM ’13, pages 15–20,
New York, NY, USA, 2013. ACM.

[SD02] Anthony Santella and Doug DeCarlo. Abstracted painterly ren-
derings using eye-tracking data. In Proceedings of the 2nd interna-
tional symposium on Non-photorealistic animation and rendering,
pages 75–ff. ACM, 2002.

[SEL00] Andreas E Savakis, Stephen P Etz, and Alexander CP Loui. Eval-
uation of image appeal in consumer photography. In Electronic
Imaging, pages 111–120. SPIE, 2000.

[SF03] Y. Sun and R. Fisher. Object-based visual attention for computer
vision. Artificial Intelligence, 146(1):77–123, 2003.

[SG06] J David Smith and TC Graham. Use of eye movements for video
game control. In Proceedings of the 2006 ACM SIGCHI interna-
tional conference on Advances in computer entertainment technol-
ogy, page 20. ACM, 2006.

[SJ00] Linda E Sibert and Robert JK Jacob. Evaluation of eye gaze
interaction. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 281–288. ACM, 2000.

[SJ11] P Sinha and R Jain. Extractive summarization of personal photos
from life events. Multimedia and Expo (ICME), 2011 IEEE, 2011.

[SK00] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. In Computer Vision
and Pattern Recognition, 2000. Proceedings. IEEE Conference on,
volume 1, pages 746–751. IEEE, 2000.

[SK10] W. Sewell and O. Komogortsev. Real-time eye gaze tracking with
an unmodified commodity webcam employing a neural network.
In Proceedings of the 28th of the international conference extended

151



BIBLIOGRAPHY

abstracts on Human factors in computing systems, pages 3739–
3744. ACM, 2010.

[SKP13] Mohammad Soleymani, Sebastian Kaltwang, and Maja Pantic.
Human behavior sensing for tag relevance assessment. In Pro-
ceedings of the 21st ACM international conference on Multimedia,
pages 657–660. ACM, 2013.

[SKSK03] Jarkko Salojärvi, Ilpo Kojo, Jaana Simola, and Samuel Kaski. Can
relevance be inferred from eye movements in information retrieval.
In Proceedings of WSOM, volume 3, pages 261–266, 2003.

[SMJ11] Pinaki Sinha, Sharad Mehrotra, and Ramesh Jain. Summarization
of personal photologs using multidimensional content and context.
Multimedia Retrieval, pages 1–8, 2011.

[SPK05] J. Salojärvi, K. Puolamäki, and S. Kaski. Implicit relevance feed-
back from eye movements. Artificial Neural Networks: Biological
Inspirations–ICANN 2005, pages 513–518, 2005.

[STM13] Tomoya Sawada, Masahiro Toyoura, and Xiaoyang Mao. Film
comic generation with eye tracking. In Advances in Multimedia
Modeling, pages 467–478. Springer, 2013.

[SWS+00] Arnold WM Smeulders, Marcel Worring, Simone Santini, Amar-
nath Gupta, and Ramesh Jain. Content-based image retrieval at
the end of the early years. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 22(12):1349–1380, 2000.

[TBHS03] J. Triesch, D.H. Ballard, M.M. Hayhoe, and B.T. Sullivan. What
you see is what you need. Journal of Vision, 3(1), 2003.

[TG80] A.M. Treisman and G. Gelade. A feature-integration theory of
attention. Cognitive psychology, 12(1):97–136, 1980.

[TJL+11] D. Tsai, Y. Jing, Y. Liu, H.A. Rowley, S. Ioffe, and J.M. Rehg.
Large-scale image annotation using visual synset. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages
611–618. IEEE, 2011.

[tob10] Tobii studio 2.x - user manual, 2010. http://www.tobii.com.

[TOCH06] Antonio Torralba, Aude Oliva, Monica S Castelhano, and John M
Henderson. Contextual guidance of eye movements and attention
in real-world scenes: The role of global features in object search.
Psychological review, 113(4):766–786, 2006.

[TS08] Dian Tjondronegoro and Amanda Spink. Web search engine mul-
timedia functionality. Inf. Process. Manage., 44(1):340–357, 2008.

[TSG+] Dereck Toker, Ben Steichen, Matthew Gingerich, Cristina Conati,
and Giuseppe Carenini. Towards facilitating user skill acquisition-
identifying untrained visualization users through eye tracking.
System, 16:19.

152



BIBLIOGRAPHY

[TYH+09] J. Tang, S. Yan, R. Hong, G.J. Qi, and T.S. Chua. Inferring
semantic concepts from community-contributed images and noisy
tags. In Proceedings of the 17th ACM international conference on
Multimedia, pages 223–232. ACM, 2009.

[VAD04] Luis Von Ahn and Laura Dabbish. Labeling images with a com-
puter game. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 319–326. ACM, 2004.

[vALB06] Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a
game for locating objects in images. In CHI. ACM, 2006.

[Ver02] Roel Vertegaal. Designing attentive interfaces. In Proceedings
of the 2002 symposium on Eye tracking research & applications,
pages 23–30. ACM, 2002.

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. In Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–511. IEEE, 2001.

[WCM05] J. Winn, A. Criminisi, and T. Minka. Object categorization by
learned universal visual dictionary. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on, volume 2,
pages 1800–1807. IEEE, 2005.

[WNS12] Tina Walber, Chantal Neuhaus, and Ansgar Scherp. Eyegrab: A
gaze-based game with a purpose to enrich image context infor-
mation [poster]. In EuroHCIR - Workshop on Human-Computer
Interaction and Information Retrieval, 2012.

[WNS+13] Tina Walber, C. Neuhaus, Steffen Staab, Ansgar Scherp, and
Ramesh Jain. Creation of individual photo selections: read prefer-
ences from the users’ eyes. In Proceedings of the 21st ACM inter-
national conference on Multimedia, pages 629–632. ACM, 2013.

[WNS14] Tina Walber, Chantal Neuhaus, and Ansgar Scherp. Tagging-by-
search: automatic image region labeling using gaze information
obtained from image search. In Proceedings of the 19th interna-
tional conference on Intelligent User Interfaces, pages 257–266.
ACM, 2014.

[WSS12] Tina Walber, Ansgar Scherp, and Steffen Staab. Identifying ob-
jects in images from analyzing the users’ gaze movements for pro-
vided tags. In Advances in Multimedia Modeling, pages 138–148.
Springer, 2012.

[WSS13a] Tina Walber, Ansgar Scherp, and Steffen Staab. Benefiting from
users’ gaze: selection of image regions from eye tracking informa-
tion for provided tags. Multimedia Tools and Applications, pages
1–28, 2013.

153



BIBLIOGRAPHY

[WSS13b] Tina Walber, Ansgar Scherp, and Steffen Staab. Can you see
it? two novel eye-tracking-based measures for assigning tags to
image regions. In Advances in Multimedia Modeling, pages 36–46.
Springer, 2013.

[WSS14a] Tina Walber, Ansgar Scherp, and Steffen Staab. Exploitation of
gaze data for photo region labeling in an immersive environment.
In MultiMedia Modeling, pages 424–435. Springer, 2014.

[WSS14b] Tina Walber, Ansgar Scherp, and Steffen Staab. Smart photo
selection: Interpret gaze as personal interest. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in Computing
Systems, CHI ’14, pages 2065–2074, New York, NY, USA, 2014.
ACM.

[XJL09] Songhua Xu, Hao Jiang, and Francis Lau. User-oriented document
summarization through vision-based eye-tracking. In Proceedings
of the 14th international conference on Intelligent user interfaces,
pages 7–16. ACM, 2009.

[XZC+08] Jun Xiao, Xuemei Zhang, Phil Cheatle, Yuli Gao, and C Brian
Atkins. Mixed-initiative photo collage authoring. In ACM Multi-
media, pages 509–518. ACM, 2008.

[Yar67] A.L. Yarbus. Eye movements and vision. Plenum press, 1967.

[YLZ07] Jinhui Yuan, Jianmin Li, and Bo Zhang. Exploiting spatial con-
text constraints for automatic image region annotation. In Pro-
ceedings of the 15th international conference on Multimedia, pages
595–604. ACM, 2007.

[YMNL13] Ting Yao, Tao Mei, Chong-Wah Ngo, and Shipeng Li. Annotation
for free: Video tagging by mining user search behavior. In Pro-
ceedings of the 21st ACM international conference on Multimedia,
pages 977–986. ACM, 2013.

[ZGS+10] Bangzuo Zhang, Yu Guan, Haichao Sun, Qingchao Liu, and Jun
Kong. Survey of user behaviors as implicit feedback. In Computer,
Mechatronics, Control and Electronic Engineering (CMCE), 2010
International Conference on, volume 6, pages 345–348. IEEE,
2010.

[ZK11] Q. Zhao and C. Koch. Learning a saliency map using fixated
locations in natural scenes. Journal of Vision, 11(3), 2011.

[ZMI99] Shumin Zhai, Carlos Morimoto, and Steven Ihde. Manual and gaze
input cascaded (magic) pointing. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 246–
253. ACM, 1999.

154



BIBLIOGRAPHY

[ZTL+06] Ming Zhao, Yong Wei Teo, Siliang Liu, Tat-Seng Chua, and
Ramesh Jain. Automatic person annotation of family photo al-
bum. In Image and Video Retrieval, pages 163–172. Springer,
2006.

155





Appendices

A.1 Nomenclatures

Eye tracker A device for recording the human eye movements and for cal-
culating fixated points on a computer screen

POR Point of regard
Fixation Part of a gaze path, when humans gaze at a stationary point
Saccade Fast eye movements between the fixations
Heat map Graphical representation of gaze data in a matrix with high-

lighting of intensively fixated areas
Gaze path Graphical representation of fixations (as circles) and saccades

(as lines connecting the fixations)
ROI Region of interest
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A.2 Glossary of Variables

Variable name Description

o Photo
r Photo region, consists of connected pixels
C Collection of photos
S Selection of photos, subset S ⊂ C

S[index] [index] shows how the selection was created (m = man-
ual, b = baseline approach, e = eye tracking data)

P Precision
G Gaze path, consists of fixations and saccades
F Set of fixations
f Fixation, f ∈ G, f ∈ F

fm(r) Eye tracking measure on region r
t Tag, keyword describing the content of a photo
tr Tag, describing a region r
sr Size of a region r
u Participant in an experiment
U All participants in an experiment, u ∈ U
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A.3 Product Specification Tobii X Series

320 mm

163 mm

85 mm

Overall dimensions

TheTobii X60&X120EyeTrackers allows youto experiencehowpeople look atphysical objects
orscenes.

TheTobiiX60andX120EyeTrackersarestand-aloneeyetrackingunitsdesignedforeyetrackingstud-
iesrelativetoanysurface.TheyenableavarietyofstimulisetupssuchasaTVorotherdisplays,aprojec-
tion screen or a physical object or scene.Theyare our most f exible eye trackers, recommended for
studiesthatrequireparticularsetups.

Tobii X Series Eye Trackers

Models X60/X120* X120*

Data rate 60 Hz 120Hz

Accuracy typical 0.5 degrees typical 0.5 degrees

Drift typical 0.1 degrees typical 0.1 degrees

Spatial resolution typical 0.2 degrees typical 0.3 degrees

Head movement error typical 0.2 degrees typical 0.2 degrees

Head movement box (width x hight) 44 x22 cmat70 cm 30 x22 cmat70 cm

Tracking distance 50-80 cm 50-80 cm

Max gaze angles 35 degrees 35 degrees

Top head-motion speed 25 cm/second 25 cm/second

Latency maximum33 ms maximum33 ms

Blink tracking recovery maximum17 ms maximum8 ms

Time to tracking recovery typical 300 ms typical 300 ms

Weight (excluding case) ~3 kg / 7 lbs

Eye tracking technique bothbrightand darkpupil tracking

Eye tracking server Embedded

Screen size -

Screen resolution (Max) -

Displaycolors -

Vertical sync frequency -

Horizontal sync frequency -

TFT response time -

User camera -

Speakers -

Connectors LAN, Power

Averagevalues over thescreenmeasuredatadistanceof 63 cminacontrolledoff ceenvironment.

*TheTobii X120 EyeTrackercanberunin60 or120 Hzmode.
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