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Zusammenfassung

Diese Doktorarbeit beschéftigt sich mit dem Problem der Terrainklassifikation
im unstrukturierten Aufengelénde. Die Terrainklassifikation umfasst dabei das
Erkennen von Hindernissen und flachen Bereichen mit der einhergehenden Anal-
yse der Bodenoberfliche. Ein 3D Laser-Entfernungsmesser wurde als primérer
Sensor verwendet, um das Umfeld des Roboters zu vermessen. Zunéchst wird eine
Gitterstruktur zur Reduktion der Daten eingefiihrt. Diese Datenreprisentation
ermdglicht die Integration mehrerer Sensoren, z.B. Kameras fiir Farb- und Textur-
informationen oder weitere Laser-Entfernungsmesser, um die Datendichte zu er-
héhen. Anschlieffend werden fiir alle Terrainzellen des Gitters Merkmale berech-
net. Die Klassifikation erfolgt mithilfe eines Markov Zufallsfeldes fiir Kontextsen-
sitivitdt um Sensorrauschen und variierender Datendichte entgegenzuwirken. Ein
Gibbs-Sampling Ansatz wird zur Optimierung eingesetzt und auf der CPU sowie
der auf GPU parallelisiert um Ergebnisse in Echtzeit zu berechnen. Weiterhin
werden dynamische Hindernisse unter Verwendung verschiedener State-of-the-Art
Techniken erkannt und iiber die Zeit verfolgt. Die berechneten Informationen,
wohin sich andere Verkehrsteilnehmer bewegen und in Zukunft hinbewegen kon-
nten, werden verwendet, um Riickschliisse auf Bodenoberflichen zu ziehen die
teilweise oder vollstdndig unsichtbar fiir die Sensoren sind. Die Algorithmen
wurden auf unterschiedlichen autonomen Roboter-Plattformen getestet und eine
Evaluation gegen von Menschen annotierte Grundwahrheiten von Karten aus
mehreren Millionen Messungen wird présentiert. Der in dieser Arbeit entwick-
elte Ansatz zur Terrainklassifikation hat sich in allen Anwendungsbereichen be-
wahrt und neue Erkenntnisse geliefert. Kombiniert mit einem Pfadplanungsal-
gorithmus ermdglicht die Terrain Klassifikation die vollstandige Autonomie fiir
radgetriebene Roboter in natiirlichem Aufsengelénde.






Abstract

This thesis addresses the problem of terrain classification in unstructured outdoor
environments. Terrain classification includes the detection of obstacles and pass-
able areas as well as the analysis of ground surfaces. A 3D laser range finder is
used as primary sensor for perceiving the surroundings of the robot. First of all,
a grid structure is introduced for data reduction. The chosen data representation
allows for multi-sensor integration, e.g., cameras for color and texture information
or further laser range finders for improved data density. Subsequently, features
are computed for each terrain cell within the grid. Classification is performed
with a Markov random field for context-sensitivity and to compensate for sensor
noise and varying data density within the grid. A Gibbs sampler is used for opti-
mization and is parallelized on the CPU and GPU in order to achieve real-time
performance. Dynamic obstacles are detected and tracked using different state-of-
the-art approaches. The resulting information — where other traffic participants
move and are going to move to — is used to perform inference in regions where
the terrain surface is partially or completely invisible for the sensors. Algorithms
are tested and validated on different autonomous robot platforms and the eval-
uation is carried out with human-annotated ground truth maps of millions of
measurements. The terrain classification approach of this thesis proved reliable
in all real-time scenarios and domains and yielded new insights. Furthermore, if
combined with a path planning algorithm, it enables full autonomy for all kinds
of wheeled outdoor robots in natural outdoor environments.






Acknowledgments

A thesis is a complex project over a long period of one’s life. Mine covered almost
half a decade and I owe thanks to a lot of people who accompanied and supported
me during that time. I was only able to reach my goal with their support.

First of all my thanks goes to the person who made all this possible, my
supervisor Prof. Dr.-Ing. Dietrich Paulus. He granted me all the freedom I needed
to perform my research while his advice and ideas were equally of great help for
this thesis.

Secondly, I would like to thank Prof. Dr.-Ing. Marcin Grzegorzek for his will-
ingness to mentor my work. Never will I forget that one week in Poland, my first
scientific excursion ever, where the Markov random fields idea was forged in the
first place.

I would also like to express my sincere thanks to all my colleagues. Most
notably Frank Neuhaus and Nicolai Wojke who suffered the most from my life-
long struggle with cmake and my proclivity for making the same mistakes again.
Christian Winkens for sharpening the idea of integrating dynamic obstacles into
terrain classification during a workshop in France. Detlev Droege for letting us
turn his car into a robot so many times. And of course Dagmar Lang, for her
critical eye and excellent reviewing skills. I would like to thank Nicolai a second
time, this time for his great work in car detection and tracking. I as well owe a
lot of thanks to students that contributed to this thesis: Denis Dillenberger and
Frank Neuhaus for putting all the sensors and the platform into operation, and
preparing all the stuff I used so frequently later on. Marc Arends for his pioneering
work with Markov random fields. Nikolay Handzhiyski and Laura Haraké for their
contribution to the robot’s path planning. René Bing for creating the calibration
pattern and the useful calibration graphical user interface. Michael Klostermann,
Martin Prinzen, and Benedikt Jobgen for their contribution to the pedestrian
detection and tracking system. Furthermore, I would like to thank the employees
of the Wehrtechnische Dienststelle 51 in Koblenz for the long-lasting research and
development cooperation.

Also, my thanks go to Simon Eggert and Benjamin Knopp for always keeping
the coffee flowing when fatigue threatened to overwhelm me.

And of course my parents: studying computer sciences would not have been
possible without their support and financial assistance.

Finally, I am grateful to my wife Sabrina, for giving birth to our two wonderful
children. Thank you for all the support you gave me and for enduring my moods
before important deadlines.






CONTENTS

1 Introduction

1.1 Motivation . . . . . . . . .,
1.2 Own Contribution . . . . . . . . . . . .
1.3 Outline. . . . . . . . s,

Fundamentals of Markov Random Fields

2.1 Sitesand Labels . . . . . . ... ...
2.2 The Labeling Problem . . . . .. ... .. ... ... .......
2.3 Neighborhoods and Cliques . . . . ... ... ... ... .....
2.4 Markov Random Fields . . . . . . ... ... ... .........
2.5 Gibbs Random Fields . . . . . . ... ... ... ... .......
2.6 The Hammersley-Clifford Theorem . . . . . ... ... ... ...
2.7 The Ising and Potts Models . . . . . . . ... ... ... ... ..
2.8 Probabilistic Graphical Models . . . . . . ... ... ... ....
2.9 Optimization and Gibbs Sampling . . . . . . .. .. .. ... ...
2.10 The Mahalanobis Distance . . . . . . . .. ... .. ... .....

Software Architecture

Markov Random Field Classification

4.1 Related Work . . . . . . . .

4.2 Camera and Laser Data Fusion . . . . . ... ... ... .....
4.2.1 Related Work . . . . . . . ... ...
4.2.2 Camera Calibration and Camera to Laser Calibration . . .

4.3 Markov Random Field Application . . . .. ... ... ... ...
4.3.1 Terrain Data Representation . . . . . . . .. ... ... ..
4.3.2 Terrain Features . . . . . . . . . . ... ... ... ...
4.3.3 Acquisition of Terrain Features . . . . ... ... .. ...
4.3.4 Markov Model of the Terrain . . . . . . . ... ... ...



10

CONTENTS

4.4  Evaluation and Optimization . . . . .. .. .. ... ... ....

4.4.1 Gibbs Sampler Optimization . . . . . . . ... .. .. ...
4.5 Egomotion Estimation . . . .. ... ... . o000
4.6 Evaluation on 3D Maps . . . . ... .. ...
4.7 Spline Templates as Proof of Concept . . . . . . .. .. ... ...

Detection and Tracking of Moving Objects

5.1 Detection and Tracking of Vehicles . . . . . ... ... ... ...
5.1.1 Related Work . . . . . .. ... oo
5.1.2  Sensor Data Interpretation . . . . . . . ... .. ... ...
5.1.3 Foreground Separation . . . . . .. .. ... ... ...
5.1.4  Vehicle Detection and Tracking . . . . ... ... ... ..
5.1.5  Egomotion Estimation . . . . ... . ... ... ... ...
5.1.6 Evaluation . . . . . ... ..o

5.2 Detection and Tracking of Pedestrians . . . . . .. ... .. ...
5.2.1 Related Work . . . . .. ... ...
5.2.2  Pedestrian Detection in Camera Images . . . . . . . . . ..
5.2.3 Pedestrian Detection and Tracking in Laser Data . . . . .

Integration of Dynamic Obstacles

6.1 Trails and Extrapolation . . . . . ... .. ... ... ... ...
6.2 Integration into the Markov Random Field . . . . . . .. . . . ..
6.3 Experiments . . . . . . .. .o

7 Conclusion

Appendices

A Data Sheet of the Velodyne HDL-64E
B Data Sheet of the Velodyne HDL-32E
C Notation Similarities and Differences
D Haralick Features

List of Abbreviations

List of Notations

List of Tables

List of Figures

Own Publications

103
104
107
109

113

117

117

121

125

127

129

131

133

135

137



CONTENTS 11

Bibliography 139

Internet resources 159






CHAPTER 1

INTRODUCTION

Autonomous navigation and exploration in unstructured environments is a major
challenge in robotics and an active field of research. In order to fulfill complex
outdoor tasks, a robot needs enhanced sensing and interpreting abilities to detect
drivable regions and to avoid collisions.

For an autonomous outdoor system, the ideal world is fully observable and
every constraint is known. All properties and observations are deterministic and
static and the robot possesses unlimited resources and time. The real world
scenario addressed in this work embodies the exact opposite of such an ideal
world: with its sensors, a robot perceives only excerpts of an unknown world.
These sensor readings cannot even be trusted due to sensor noise or vibrations
caused by egomotion on rough terrain. On top of that, obstacles can be dynamic
and change over time or behave differently depending on their own unknown tasks
or goals. Although the environment is continuous and the number of actions is
infinite, the robot only possesses a limited amount of computing power. Results
have to be available in real-time, e.g., to be able to avoid a collision with a tree
or a car.

Advances in robotic platform robustness and especially the fast development
and progression of new and improved sensors allow robots to proceed more and
more to rough terrain. Over the past decade, a number of competitions have been
initiated to demonstrate, evaluate, and expedite the capabilities of outdoor robots.
In the RoboCup Rescue competition [15]!, for example, autonomous robots are
instructed to navigate in a simulated disaster scenario to detect victims and
create maps for rescue workers. The DARPA Grand Challenges [6] in 2004 and
2005, as well as the DARPA Urban Challenge 7] in 2007 also generated great
improvements and grabbed public attention. The Grand Challenges required an
autonomous robot to navigate safely through unstructured terrain with the aid

!Quotes in this work are separated into three different types. Works of other au-
thors are referred to by [AEST08|, for example. My own publications are referred to by
[H&selich et al., 2011a] and [20] is an example of an internet source.
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of Global Positioning System (GPS) waypoints. For the Urban Challenge, the
scope was broadened by adding traffic and traffic rules in an urban scenario.

The requirements of an unstructured environment reach far beyond simply
detecting and following a road. Unstructured objects like bushes or trees surround
the robot and the road may only consist of dirt and grass or there may not even be
a road. Hence, the terrain surface needs to be analyzed very thoroughly since the
algorithms have to decide where the robot can drive next. This leads to the terrain
classification problem in which the environment needs to be classified on the basis
of available sensor data. The classification result can contain impassable regions
which the robot has to avoid or passable regions where navigation is possible.
Passable regions should in turn underlie a further differentiation considering the
terrain surface in those regions. Thereby, the robot’s path planning algorithm
can choose to navigate either with longer trajectories over smooth terrain or take
shortcuts over rough terrain surfaces. Both the terrain classification results and
navigating from them have to meet a strict real-time criterion: for the terrain
classification approach, this means that all computations have to be done in real-
time. The resulting environment representation needs to be efficient enough so
that a path planning algorithm can create trajectories on it in real-time, too.

Another research domain is the development of roadworthy, self-driving cars.
In contrast to the scenario addressed in this work, automotive manufacturers
are working on robot cars that will be able to autonomously navigate in traffic
and urban scenarios. First projects in this area deal with selected applications.
Piloted parking (cf. see |1, 2|), for example, is a scenario in which car owners
are able to leave their car outside a car park. Once the vehicle is empty and
the track is free of humans, the vehicle navigates autonomously to a specific
parking space. From July to October, 2010, a convoy of four vehicles drove
from Parma, Italy to Shanghai, China [21]|. The cars followed a predefined route,
used GPS for orientation, and large parts of the route were driven autonomously
with few incidents. Other vehicles use 3D laser range finders (LRFs) to navigate
in road scenarios [16, 18, 19]|. A prefabricated 3D map, for example, created
from a previous trip on the same route, is commonly used for these applications.
In contrast to mapping approaches, terrain classification is directly coupled to
the path planning domain. In addition, the goals of mapping algorithms are
the creation, expansion, and maintenance of persistent environment maps. The
situation is different with terrain classification where the classification result is
discarded immediately or at least after a couple of seconds.

Algorithms and approaches developed in this work focus on wheeled outdoor
robots. Two different platforms with widely varying properties are used to exper-
iment, evaluate, and validate the algorithms. The first robot is a heavyweight
500kg robot with all-wheel steering and all-wheel drive, the Mustang MK IA.
Equipped with four powerful motors, the Mustang MK IA can be directed by
steering angle and velocity, and achieves a top speed of up to 14km/h. This
platform was provided by the Bundeswehr Technical Center for Engineer and



General Field Equipment for developmental and research experiments. An image
of the Mustang MK IA is shown at the upper part of Figure1.1.

The second robot is a lightweight and agile robot called Roach with an all-
wheel drive. Roach is constructed on a FORBOT chassis build by the manufac-
turer Roboterwerk [13]. Its motors accelerate the three wheels on each side via
chain links enabling Roach to achieve a top speed of up to 20 km/h. This type
of locomotion allows rotations and turns while staying on the same spot. The
robot platform was acquired by the Deutsche Forschungsgemeinschaft (DFG) and
provided to the Active Vision Group of Prof. Dr.-Ing. Dietrich Paulus under re-
search contract PA 599/11-1. An image of Roach is shown in the lower part of
Figure1.1.

Both robots are equipped with multiple sensors. Light Detection And Ranging
(LIDAR, in military context often referred to as LADAR) is frequently used in
robotic systems. Modern LRFs deliver fast point measurement of most solid
objects in their environment up to a range of several hundred meters, depending
on the sensor. Localization and mapping approaches often make use of 2D LRFs,
which are cheap, small, and well-suited for most indoor scenarios. Especially after
the first DARPA, 3D LRFs started to conquer the market. Self-built rotating
devices or 2D LRFs on pan-tilt units are able to gather a whole 3D point cloud
instead of a single plane. The sound-system manufacturer Velodyne built a 3D
LRF, the Velodyne HDL-64F [20]. It consists of 64 lasers rotating around the
upright axis, gathering data at a frequency of up to 15Hz. An image of the
Velodyne HDL-64E is shown in Figure 1.2 at the center. A Velodyne HDL-64E is
mounted on top of the Mustang MK TA. The data sheet of the Velodyne HDL-64E
is given in Appendix A.

Later, due to customer demand, Velodyne developed and sold the Velodyne
HDL-32E. The HDL-32E is a smaller and lighter version of the HDL-64E, con-
sisting of only 32 lasers and rotating at a higher frequency of 20 Hz. An image
of the Velodyne HDL-64E is shown in Figure 1.2 at the very left. A HDL-32E is
mounted on top of Roach and was purchased and provided by the DFG, like the
FORBOT. The data sheet of the Velodyne HDL-32E is given in Appendix B.

Since LRFs provide only distance measurements resulting in 3D points with
intensity values, the robots are additionally equipped with different camera sys-
tems. One of the cameras that has been attached to the front is the Logitech
HD Pro Webcam €910 (10|, allowing Full High Definition video capturing (up
to 1920x 1080 pixels). Another camera is the Philips SPC1300NC, of which two
were deployed on the left and the right side of the robot, respectively. The two
Philips SPC1300NC cameras allow a native video resolution of 640x480 pixels.

For pose determination, an inertial measurement unit (IMU), the zSens MTi
[23], and an GPS receiver, the Navilock NL-302U GPS [17|, were used. Fur-
thermore, the radar-based ground sensor Speed Wedge SW01 [11] is used for
egomotion estimation.
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Figure 1.1: The autonomous robots Mustang MK IA (top) and Roach (bottom).
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Figure 1.2: Overview of the different deployed sensors. From the left to the right:
Velodyne HDL-32E and Velodyne HDL-64E (images: [20]), Logitech HD Pro Webcam
C910 (image: [10]), Philips SPC1300NC (image: [12]). And in the bottom row: xSens
MTi (image: [23]) and Navilock NL-302U GPS (image: [17]).

1.1 Motivation

The scenario described so far can be summarized as complex and fault-prone and
requires a fast processing and decision-making time. Due to the egomotion of
the robot and possible sensor misreadings or occlusions, locations exist where the
sensor data are far from perfect. Hence, an approach is sought that is fast enough
to process the sensor data in time and that is able to cover for missing or flawed
data.

Markov random fields (MRFs) allow a context sensitive classification of the
terrain and, combined with a sophisticated data representation, a real-time clas-
sification can be implemented. Modern 3D LRFs provide a rich and thorough
interpretation of the environment — if a system is able to process their data with
the necessary efficiency. An example of the sensor data is shown in Figure1.3.
As illustrated in the image, the point clouds gathered by the sensor are large
and detailed. Combined with the information available from the neighbors, it is
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Figure 1.3: Sample data of a camera and a Velodyne HDL-64E. The upper part shows
a camera image of a rural environment with trees and a pedestrian. In the lower part,
the data of the Velodyne HDL-64E of the same scene is shown. The 3D points are
colored according to their height values, as illustrated in the legend on the lower right.
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exiting to see if the MRF will be able to yield improved classification results in
adequate time.

The terrain classification can hence be divided into two different tasks: in
the first part, an algorithm is sought that is able to realize the classification in a
robust way given the available sensor data. And in the second part, this algorithm
needs to be accelerated or improved in a way that it becomes fast enough to be
used on any mobile robot platform without the necessity of overmuch hardware
equipment.

Besides terrain surface and static obstacles, dynamic obstacles also need to be
regarded. The detection and tracking of dynamic obstacles not only allows the
avoidance of present obstacles, but also a prediction of where other objects might
be in the future. Therefore, tracking is necessary to predict trajectories which
leads towards advanced understanding and correct behavior in traffic situations.
Furthermore, the decisions other moving objects make planning their trajectories
imply regions with good terrain surface conditions.

1.2 Own Contribution

Scenario, hardware, and motivation were described in the last sections. The
novelty and uniqueness of my own contribution is explained in the following
paragraphs.

I developed a holistic approach for combined terrain classification on fused
sensor data with a Markov random field and the detection and tracking of dy-
namic obstacles within the vicinity of the robot. Hence, I created the basis for
autonomous navigation in complex, unstructured outdoor scenarios.

My own contribution can be split up into three different topics as visualized
in Figure 1.4. As indicated in the image, the two topics terrain classification and
dynamic obstacles yield a third one by combining their results. To the best of my
knowledge, the last topic integration of dynamic obstacles into terrain classifica-
tion has not been addressed before by other researchers.

Markov Random Field Terrain Classification of Fused Sensor Data

In this area, I created a novel approach that applies Markov random field theory
to a new domain. A model successfully used in image segmentation was adapted
to a modern 3D LRF fused with camera images of three color cameras and pre-
sented in [Héselich et al., 2011a]. A prerequisite for this fusion is the calibration
of the cameras to the LRF. Here, I had a minor contribution in the form of a new
calibration pattern combined with an existing approach from another domain (cf.
[Héselich et al., 2012a]). Experiments revealed that the limitations of the sensor
technology include a blindness in the area close to the robot. This is caused
by the operating range of the Velodyne LRFs. Another major contribution of
my work was the integration of sensor data over time which was presented in a
journal article [Héselich et al., 2013a]. In addition, runtime was identified as a
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Integration of dynamic
obstacles into
terrain classification

Detection and tracking
of dynamic obstacles

Terrain classification with
Markov random fields

Figure 1.4: Research topics of this thesis.

crucial part of the system, especially w.r.t. path planning and collision avoidance.
Therefore, I developed and compared different acceleration approaches, for exam-
ple, parallelization strategies using the graphics card, in [Héselich et al., 2012b].
Overall, my contributions to this field can be seen as pioneering work and are
an inspiration to others (e.g., Laible et al. [LKZ13| adapted my approach and
modified it).

Detection and Tracking of Dynamic Obstacles

During my work, early experiments already revealed the importance of dynamic
obstacles. Unlike static obstacles, especially the tracking of dynamic obstacles
is a necessity for collision-free navigation. Vehicles were identified as primary
threats for an autonomous robot and an approach to reliably track vehicles was
presented in [Wojke and Héselich, 2012]. In this work, an existing approach cre-
ated for urban scenarios was adapted, accelerated, and extended for unstructured
environments. Pedestrians are also important obstacles for collision-free driving.
In [Héselich et al., 2013b], an approach for pedestrian detection in color-camera
images was presented. Computation time was identified as problematic part of
camera-based detection and acceleration techniques did not yield adequate run-
times. Hence, focus was put on laser-based detection and tracking of pedestrians.
This had the advantage that techniques from vehicle detection and tracking could
be re-used and that both approaches (for vehicles and pedestrians) work on a sin-
gle sensor. For the laser-based approach, existing techniques were modified and
augmented for unstructured environments as presented in [Héselich et al., 2014].
Here, my work was application-driven as my major interest was not a precise
detection and tracking system but rather the results of the tracking in order to
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integrate them into terrain classification.

Integration of Dynamic Obstacles into Terrain Classification

A completely new domain emerged during my research. The parallel development
of algorithms for terrain classification and dynamic obstacles eventually resulted
in the combination of both. The idea was born soon after the first autonomous
test drives. In [Héselich et al., 2011b| for example, I presented a novel approach
to path planning primarily designed to demonstrate the efficiency of my terrain
classification approach. Generic trajectory-templates were used to accelerate the
planning process by directly using terrain cells for navigation. This, in the end, re-
sulted in the idea to project trajectories from other obstacles into the terrain grid.
Since the combination of both domains was only possible towards the end of my
work, no publications were submitted so far but are planned for the near future.
Furthermore, research in this new area seems highly promising and additional
exploration of the topic will surely follow.

1.3 Outline

This thesis is structured as follows. Chapter 2 contains the basics of Markov ran-
dom fields and specifies the notation used in the subsequent chapters. Related
work reviews for the respective domains are given in the corresponding chapters.
The same applies to the experiments conducted, which will explained and pictured
in the respective sections. Chapter 3 provides a short overview on the underlying
software framework and explains the interaction possibilities of the software mod-
ules. The application of the Markov random field theory and my approach solving
the terrain classification problem is presented in Chapter4. Dynamic obstacles
and their special role for safe navigation are addressed in Chapter 5. Integration
of dynamic obstacles into terrain classification is described in Chapter6. My
thesis concludes in Chapter 7 with a summary and new possible perspectives.






CHAPTER 2

FUNDAMENTALS OF
MARKOV RANDOM FIELDS

Markov random fields, named after the Russian mathematician Andrei Andrejew-
itsch Markow (%1856, +1922), provide the possibility to model context-dependent
relationships for versatile data representations and structures. Especially in im-
age processing, MRF applications yield consistent solutions to various problems
like denoising, data fusion, or segmentation. Stereo vision and optical flow are fur-
ther examples where the value or assignment of an image pixel normally depends
more on closer neighbors than on those further away.

Within the domain of terrain classification, a set of sites needs to be analyzed
and classified based on the sensor data available at these sites. Sensor data are
gathered from a moving vehicle by different sensor modalities in outdoor scenarios
under varying lighting, weather, and surface conditions. Hence, they are noisy,
incomplete due to occlusions or sensor errors, and difficult to interpret in a short
period of time. Moreover, it is more likely to find another piece of road at a
site surrounded by neighbors that are mainly road segments according to their
associated sensor readings. Considering these conditions and the fact that terrain
cells can be modeled in an equidistant grid, MRF theory provides an excellent
solution to approach the terrain classification problem.

The following chapter specifies MRF notation based on the book of Stan Z.
Li [Li09]. Identifiers, definitions, descriptions, and formulas are taken from Li’s
book and have been adapted to the domain of terrain classification. An overview
on the similarities and the few differences between the notations from Section 2.1
to Section2.7 and Li’s notations is given in Appendix C. Thus, a consistent
terminology and comparability with similar works is made possible. The content
following has been modified and extended with examples and provides the basis
for the contribution of my own work in the subsequent chapters.

11
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2.1 Sites and Labels

Image pixels or grid cells are common data representations in vision and robotics.
The terrain classification problem can be formulated as a labeling problem in
which the solution is the assignment of a label to each terrain cell.

A site specifies a site in the terrain. As a simplification, the general definition
of S often uses a one-dimensional indexing. Let & index a discrete set of m sites
as

S={1,....m} (2.1)

in which 1,...,m are indices. A squared, equidistant, and finite grid for a 2D
data representation of size n x n (n-n = m) is called a regular grid and is defined
as

S={Gj)1<ij<n} . (2:2)

A label can be linked to each site. Let £ be a set of labels. In the discrete
case, a label assumes a discrete value in a set of M labels according to

Ediscrete == {lla ) lM} . (23)

For example, a label set could be £ = { Obstacle, Non-obstacle}. It can either be
ordered (e.g., roughness values) or unordered (e.g., terrain classes). In the latter
case, the similarity of “equal” or “unequal” is defined between any two labels.

2.2 The Labeling Problem

The labeling problem is to assign a label from £ to each site in S. The set
F=A{f1,....f,} (2.4)

is called a labeling of sites S in terms of labels £. The function f is a mapping
from S to L, that is,
f:S—L . (2.5)

In the terminology of random fields, a labeling is called a configuration. Since all
sites in the terrain grid have the same label set £, the set of all possible labelings,
the configuration space, is the Cartesian product

F=LXxLx---xL=L" . (2.6)

m times

For m regular sites and M discrete labels, a total number of M™ possible
configurations in [F exists.

An objective function maps a configuration to a real number, measuring the
quality in terms of some goodness or cost. The formulation of this function defines
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the criteria for the optimal solution. Within configuration space, one solution F*
exists that receives either the best score or is tied for it: the optimal configuration.

In the context of a grid with regular sites and discrete labels, the objective
function is an energy function that needs to be minimized. An energy function is
defined by its form and its parameters. The form depends on assumptions about
the solution F and the observed data D as well as the parameters 7. Since
the parameters are part of the definition of the energy function E(F | D, T), the
optimal solution F* is

F* =argmin E(F|D,T) . (2.7)
F

2.3 Neighborhoods and Cliques

The sites in S are related to one another via a neighborhood system that is
defined as

N ={N;|Vie §,N; C S} (2.8)
where N is the set of sites neighboring i. A site is not neighboring to itself
i ¢ N; (2.9)
and the relationship is mutual
ieNy & eN, . (2.10)

A cell ¢, = (i,j) indexes a position in a grid of size n x n with k = n-i + j. For
a regular grid with sites S, the set of neighbors of 7 is defined as the set of sites
with a radius of y/r from i

N; = {i' € 8| [d(cy, ;)] < /r, i # i} (2.11)

where d(A, B) denotes the Euclidean distance between A and B. Given an
equidistant grid, the orders {first,second, third, fourth, fifth,...} correspond to
the distances {1, V2,2,V5,V8, .. } Examples are shown in Figure 2.1.

Since the terrain grid is regular, the ordering of the elements in § is specified.
When the sites S = {(i,7)|1 < i,j7 < n} correspond to the cells of an n x n
terrain grid, an internal site (4, 7) has four neighbors given as

Nig={G=1,7),+1,7), 6,5 = 1), (i, +1)} (2.12)
for the first-order neighborhood system, and

M,j = {('L— ]-7] - 1)7(2_ 17])7(1_ 17j+1)7(17] - 1)7

(i, +1),(i+ 1,5 = 1), (i+1,5), (i + 1,5+ 1)} (2.13)
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(d) (e)

Figure 2.1: Neighborhoods of a site x; on a regular grid. The image (a) shows
the first-order neighborhood system, (b) the second-order, (c) the third-order, (d) the
fourth-order, and (e) the fifth-order.

for the second-order neighborhood system, respectively.

The pair (S,N') = G constitutes a graph in which S contains the nodes and
N defines the links between them according to the neighboring relationship. A
clique C for (S, N') is a subset in S where the sites are fully connected. A mazimal
clique is a clique that cannot be extended by including any more adjacent elements
of §. Hence, it cannot be a subset of a larger clique and has the maximum
extent. For a regular grid with a first- or second-order neighborhood, it consists
either of a single-site {i} (cf. Figure2.2(a)), a pair of neighboring sites {i,4'} (cf.
Figure2.2(b) and 2.2(c)), a triple of neighboring sites {i,7',:"} (cf. Figure 2.2(d)),
or a quadruple-sites {i,4,4”,i"} (cf. Figure 2.2(e)). Figure 2.2 shows all cliques up
to the second-order neighborhood in all orientations, but they can be translated
according to the capabilities of the underlying neighborhood system. Collections
of these cliques are denoted by C;, Cs, C3, and C, as

¢ ={ilieS} , (2.14)
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(d) (e)

Figure 2.2: Cliques on a regular grid. Cliques for the first-order neighborhood system
are shown in (a) and (b), cliques for the second-order neighborhood are shown in (c),
(d) and (e).

Co={{s,i'}|ieS,ieN;} , (2.15)
Cs = {{i,i,i"}|i,7,7" € S are neighbors to one another} | (2.16)
Cy = {{i,i',i",i"}|4,¢,i",i" € S are neighbors to one another} .  (2.17)

Regarding a first-order neighborhood, C; and Cy form the clique C as
Coirst = C1UCy . (2.18)

For a regular grid with a second-order neighborhood, the clique additionally con-
tains diagonal, triple, and quadruple sites

Coccond = C1U CoU C3U Cy . (2.19)

2.4 Markov Random Fields

Let R={r1,...,mm} be a family (cf. [Sch09]) of random variables defined on the
set S in which each random variable r; takes a value f; in £. Here, R contains m
random variables, one for each site in S. As the random variables are unordered
and may contain repetitions, they are indexed by the set of sites S as every
random variable corresponds to exactly one site. This can be expressed as (7;);es,
where 7; is a member of the family R, an element of the indexed set, and ¢ is
an index from the index set S (also referred to as index area). The family R is
called a random field and r; = f; denotes the event that r; takes the value {;. The
notation (ry = fj,...,r, = f,,) denotes the joint event, abbreviated as R = F,
where F = (fi,...,f,) is a configuration of R corresponding to a realization of
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() (b)

Figure 2.3: Illustration of the Markovianity. Given its neighborhood (depicted with
blue sites in the images), a random variable at site @; is independent from all remaining
random variables. The left hand image (a) shows a neighborhood of four and the right
hand image (b) a neighborhood of eight sites.

the field. In the case of a discrete set of labels, the probability that random
variable r; takes the value f; is denoted by P(r; = f;), abbreviated P(f;) and the
joint probability is denoted as P(R = F) = P(ry = fi,..., 7, = f,,), abbreviated
P(F).

R is said to be an MRF on S w.r.t. a neighborhood system N if and only if
the following two conditions are satisfied:

P(F)>0, VFeF (Positivity) (2.20)
P(fi | fg\{i}) = P(fi | fM) (Markovianity) (2.21)

where F is the set of all possible configurations (cf. Equation2.6), S\ {i} is the
set. difference, fs\(;) denotes the set of labels at the sites in S\ {4}, and

fnv, = {fo |i' € Ni} (2.22)

stands for the set of labels at sites neighboring 7. Figure 2.3 illustrates this for a
regular grid with a neighborhood of four and eight neighbors.

The two possible approaches for specifying an MRF are either in terms of the
conditional probabilities P(f;|fy;) or in terms of the joint probability P(F). In
Li’s book, he promotes the following three reasons argued by Besag [Bes74]| for
the joint probability approach:

1. No obvious method is available for deducing the joint probability from the
associated conditional probabilities.
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2. The conditional probabilities themselves are subject to some non-obvious
and highly restrictive consistency conditions.

3. The natural specifications of an equilibrium of a statistical process is in
terms of the joint probability rather than the conditional distribution of
the variables.

The joint probability approach leads to the equivalence between Markov Random
Fields and Gibbs distributions as stated by the famous but remarkably unpub-
lished Hammersley-Clifford theorem [HCT1| (or [Bes74, Cli90]).

2.5 Gibbs Random Fields

A set of random variables R is said to be a Gibbs random field (GRF) on S
w.r.t. A if and only if its configurations obey a Gibbs distribution (also called the
Boltzmann distribution [LL96|). A Gibbs distribution takes the form

_1U®

P(F)=7Z"'.eT (2.23)

where

Z=Y e U0 (2.24)

feF

is a normalizing constant called the partition function, T is a constant called the
temperature, which is usually 1 unless otherwise stated, and U(F) is the energy
function. The energy

U(F) =D V(F) (2.25)

ceC

is a sum of clique potentials V.(F) over all possible cliques C. The value of V.(F)
depends on the local configuration on the clique c.

A GRF is said to be homogeneous if V.(F) is independent of the relative
position of a clique ¢ in § (cf. Figure 2.2). Furthermore, it is said to be isotropic
if V. is independent of the orientation of c.

To calculate the Gibbs distribution, it is necessary to evaluate the partition
function Z, which is the sum over all possible configurations in F. Since a large
number of elements in F exists for the combination of discrete £ and S (cf.
Equation 2.6), evaluation is prohibitive even for problems of moderate size. For
m regular sites and M discrete labels, a total number of M™ configurations exists.

P(F) measures the probability of the occurrence of a particular configuration
F. The more probable configurations are those with lower energies. The tem-
perature 1" controls the sharpness of the distribution. When the temperature is
high, all configurations tend to be equally distributed. Near zero temperature,
the distribution concentrates around the global energy minimum. Given T and
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U(F), it is possible to sample from the configuration space F according to P(F)
(cf. Section2.9).

For discrete labeling problems such as the terrain classification problem, a
clique potential V.(F) can be specified by a number of parameters. For example,
letting F. = {f;, s, f;»} be the local configuration on a triple clique ¢ = {i,4’,7"},
F. takes a finite number of states and therefore V.(F) takes a finite number of
values.

2.6 The Hammersley-Clifford Theorem

An MRF is characterized by its local property (the Markovianity) whereas a GRF
is characterized by its global property (the Gibbs distribution). The Hammersley-
Clifford Theorem |[HCT1] establishes the equivalence between those two types of
properties. The theorem states that R is an MRF on S w.r.t. A if and only if R
is a GRF on S w.r.t. N. Many proofs of the theorem exist [Bes74, Mou74, KS80]
and Li conducts the proof in two parts. The first is as follows:

Let P(F) be a Gibbs distribution on & w.r.t. the neighborhood system N.
Consider the conditional probability

Plls\y | 5)P(6) P(fi, fs\11) P(F)

P(f; | fs\qiy) = = = ~ (2.26)
\{i} Bayes P(fS\{i}) Product rule P(fg\{i}) Zf{el: P(./—" )

where 7' = {fi,... fi_1,1

iy

sites except possibly i. Writing out P(F) = Z~! - e~ 2cec Ve(¥) gives

C fm} is any configuration that agrees with F at all

e_ ZCGC VC(‘F)

Zf.’ e 2eec Ve(F")

P(t;[fs\iy) = (2.27)

Divide C into two sets A and B with A consisting of cliques containing ¢ and B
cliques not containing ¢. Then Equation 2.27 can be written as

[e* ZceA VC(]:)] [e* ZceB Vc(}—)]

P(f;[fs\@y) = S ([ B Vo] [ SV} (2.28)

Because V¢(F) = Ve(F') for any clique ¢ that does not contain i, e~ 2ces V)
cancels from both the numerator and the denominator. This probability depends
only on the potentials of the cliques containing ¢,

o= Leea VelF)

Zf’ e_ ZCEA V('(]:/)

and therefore, it depends on labels at the neighborhood of 7. This proves that a
GRF is an MRF.
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For the proof that an MRF is a GRF, Li refers to the uniqueness of the GRF
representation [Gri76, KSK76|, which provides such a proof. Li conducts the
second part of the proof as follows:

The choice of clique potential functions for a specific MRF is not unique and
many equivalent choices exist that specify the same Gibbs distribution. However,
a unique normalized potential, called the canonical potential, exists for every
MRF [Gri76].

Let £ be a countable label set. Whenever for some ¢ € ¢, f; takes a particular
value [ € L, a clique potential function V.(f) is said to be normalized if V.(f) =
0. Griffeath [Gri76] established the mathematical relationship between an MRF
distribution P(F) and the unique canonical representation of clique potentials
V. in the corresponding Gibbs distribution [Gri76, KS80] as follows:

Let R be arandom field on a finite set S with local characteristics P(f; | fs\(i1) =
P(f; | fy;) and b C ¢. Then R is a Gibbs field with canonical potential function
defined by

0 c=10
e {zb@<—1>'c\blnp<fb> c£0

where () denotes the empty set, |¢\ b| is the number of elements in the set ¢\ b,

and
£, ifieb
£ = { e (2.31)

(2.30)

’ 0 otherwise

is the configuration that agrees with F on set b but assigns the value 0 to all sites
outside of b. For non-empty ¢, the potential can also be obtained as

Vo(F) = (=) P (£ | £),) (2.32)
bCc
where ¢ is any element in b. Such a canonical potential function is unique for the
corresponding MRF. Using this result, the canonical V.(F) can be computed if
P(F) is known. Given V.(F), the energy of the GRF (cf. Equation 2.25) can be
computed. This proves that an MRF is a GRF.

2.7 The Ising and Potts Models

The Hammersley-Clifford theorem provides the basis for the specification of MRF
joint distribution functions. Contextual constraints can be formulated on mul-
tiple labels, but the most efficient and commonly used form are pair-site clique
potentials. Let C; be the collection of first-order sites (cf. Equation2.14) and
let Cy be the collection of second-order sites (cf. Equation2.15). With clique
potential of up to two sites, the energy takes the form

U(F) = Z Vi(f) + Z Vo(fi, f) (2.33)

{i}eC1 {3,i’ }€Ca
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Figure 2.4: Example of a ferromagnetic field. Iron filings (depicted as black dashes)
tend to align to magnetic poles with respect to their neighborhood.

where Vi (f;) is the clique potential at site i and Va(f;, /) the clique potential of
the two sites 7,7 with i' € N;. Let Vi (f;) = £;G;({;) for an arbitrary function G;(-)
and let Vy(f;, fi) = B;fify for a constant f5;; reflecting the pair-site interaction
between i and i’. The energy then takes the form

U(F) = £;Gi(f;) + Biotify . (2.34)

Models in this general form are termed auto-models by Besag [Bes74]. An auto-
model is said to be an auto-logistic model if every f; takes a value in the discrete
label set £ = {0,1} (or L = {—1,+1}). The corresponding energy takes the form

U(F) = Z aif; + Z Biatity (2.35)

{i}eC1 {3,i’}€Co

where §; #f;f; can be seen as the interaction coefficient between neighboring ter-
rain cells. When N is the nearest neighborhood system on a grid (4 neighbors in
the terrain grid), the auto-logistic model is reduced to the Ising model. The Ising
model is named after the German mathematician and physicist Ernst Ising (x1900,
+1998). It is given to Ising as research topic by his doctorate supervisor Wilhelm
Lenz (x1888, +1957), who invented it. Therefore, the model is sometimes referred
to as the Lenz-Ising model. Ising uses the model to describe ferromagnetism in
statistical mechanics to explain the coexistence and competition of ferromagnetic
and anti-ferromagnetic interactions (cf. Figure2.4) in solid bodies. The energy
of the model is defined as Hamiltonian

Hlsing = - Z JZ]SZS] - HZ SZ (236)
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Figure 2.5: Examples of different smoothness cost functions. The basic Potts model
is shown in (a), the Truncated linear model in (b), and the Truncated quadratic model
is depicted in (c).

where S; = #£1 is an Ising spin variable located at the ¢-th site and H is an
external field intensity (a magnetic field). The identifiers ¢ and j refer to sites
and the sum over ij is taken over all nearest-neighbors J;; on all sites of the grid,
referred to as coupling constant in physics. Theoretical studies about the model
are concerned with magnetic equilibrium called spin glasses. A spin glass is a
disordered magnet where the signs are present equally often, which is called spin
symmetry. The Ising model and the spin glass theory are active research topics (cf.
[Kaw10, MG10]). Furthermore, the ideas and models regarding ferromagnetic to
cooperative phenomena are applied to various other fields like biology or computer
sciences (cf. [Mat81, SS12]).

In case of the terrain classification problem, the Ising model is not sufficient
since the neighborhood interactions require more than the binary class relation-
ship of £1. Therefore, the Potts model forms an extension of the Ising model for
n-ary states. Several variations of the Potts model possess different properties,
some of which are shown in Figure2.5. The basic Potts model is defined as

-1 ifli =1
0(l1,l2) = {—1—1 olse (2.37)

for two arbitrary labels [;,ls € £ and is visualized in Figure2.5(a). Its bi-
nary differentiation between being equal to label [; or not allows fast compu-
tations and makes it suitable for equally similar or dissimilar classes such as £ =
{Building, Car, Tree}. The Truncated linear model shown in Figure 2.5(b) is well
suited for classes that possess similarities like £ = { House, Cottage, Palm, Tree}
or for disparity values. It is called truncated since the maximum allowed positive
return value is usually capped to control the penalty for very dissimilar classes.
The Truncated quadratic model (cf. Figure 2.5(c)) has almost the same properties
but behaves more tolerant of deviations between congruent classes.
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Figure 2.6: Examples of three different Probabilistic Graphical Models with five nodes.
A Bayes network is shown on the left side next to a Markov random field in the middle.
An example of a Factor graph is on the right side.

2.8 Probabilistic Graphical Models

MRFs belong to the framework of Probabilistic Graphical Models (PGMs) which
arises from the combination of probability theory and graph theory. The frame-
work spans famous methods such as Bayes networks, Markov random fields, and
Conditional random fields. An example of different PGMs is shown in Figure 2.6.
In the terminology of PGMs, a site is referred to as node N (e.g., N1, Ny, ...) and
represents a random variable (e.g., z1, xa, . .. ) or a vector of random variables (e.g.,
&1, T3, ...). PGMs allow insights about dependence and independence within the
graph by inspection. Bayes networks, for example, are also known as probabilis-
tic directed acyclic graphical models and the presence of cycles can be directly
spotted from the graph visualization. A Bayes network is suitable for modeling
causal relationships between random variables, whereas an MRF' is more suited
to model loose neighborhood relations. Both PGMs can be transformed into a
factor graph which is often used to model Conditional random fields. The factor
graph representation allows a more detailed partitioning and enables a generalized
representation by introducing additional factor nodes (depicted as black squares
along the solid connecting lines in Figure2.6(c)). For the modeling of an MRF
as a factor graph, the factors would all be equal in the general case. MRFs also
constitute a graph of multiple layers as shown in Figure2.7. Nodes depicted in
red represent the labels and are hidden variables. Their value, a terrain class, de-
pends on the neighboring nodes which are directly linked to each other via a solid
line and the corresponding observation node. Observation nodes are depicted in
blue and represent terrain features computed from sensor data at the site they
are connected to with a dotted line. The representation of an MRF as a graphical
model provides an intuitive possibility to understand and model the properties
of the random field. In the case of an MRF based on an equidistant regular grid,
the modeling is feasible in a straightforward manner. Each site in the grid cor-
responds to a node in the graph and neighborhood relations are available from
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*.9.9.

Figure 2.7: Markov Random Field visualization as a Probabilistic Graphical Model.
Red nodes represent hidden variables (e.g., disparity values or terrain classes) and blue
nodes represent observations (e.g., intensity values or terrain features). The connection
of the observations to a site is illustrated by dashed lines and the neighborhood inter-
action is drawn as solid lines. A further extension of the field is indicated by the dots
next to the nodes.

adjacent cells. While the MRF model using the grid structure is convenient and
intuitive, the optimization is complex and needs to be well designed.

2.9 Optimization and Gibbs Sampling

Once the MRF is specified and data D are available, the optimal configuration
F* can be found according to Equation2.7. As already stated before, a number
of M™ configurations exists. Let m = 40,000 (e.g., a terrain grid of 100 m x 100 m
with a resolution of 50 cm x 50 cm per terrain cell) and let M = 5 (e.g., some
terrain classes). For data arriving at an exemplary frequency of 10 Hz, a brute
force approach needs to compare 5% configurations in 100ms. Each of these
configurations is calculated w.r.t. a cost function and the data D usually consists
of features which need to be extracted within the same period of time.

A number of acceleration and sampling techniques exist to approach such com-
plex optimization tasks. These approaches try to find the optimal configuration,
for example, by changing a large number of labels simultaneously or utilizing so-
phisticated sampling techniques. This can be done by computing a minimal cut
though a graph to achieve a maximal flow (max-flow min-cut theorem). Graph
cuts [GPS89| provide an approach to this task for a source and a sink, which
limits the algorithm to binary classification tasks. Approaches that extend graph
cuts for more than two labels are e.g., the alpha expansion or the alpha-beta swap
algorithms [BVRO1]. The idea of these algorithms is to swap the labels of large
homogeneous regions at once, yielding an acceleration of runtime.

Sampling strategies are another widespread approach to the optimization
problem. A number of samples is drawn under an algorithm-specific set of rules
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Algorithm 1 Gibbs sampling

1: initialize sq,..., S

2: for 7 =1, ..., MaxlIteration do

3:  Sample SYH) ~ p(s | ng), 32(,,7), . 352))

4:  Sample sgﬂ) ~ p(sg | s§T+1), 32(,,7), . SSZ))

5:

6:  Sample 3§T+1) ~ p(s; | ngH), . sg-il), 35-?1, - s%))
7 :

8. Sample s ~ p(sp | sTTY SSTD L s

9: end for

10: return F

to determine the outcome of configurations that are (almost) impossible to cal-
culate. Various approaches exist that introduce genuine sampling strategies, e.g.,
by discarding unusable but quickly calculable calculate samples or by learning
from past samples. Another way to accelerate the process is to interrupt the opti-
mization algorithm and to accept a solution that is close to the optimal solution
but not yet entirely correct.

Another very interesting sampling strategy is the Gibbs sampling, named after
the American physicist Josiah Willard Gibbs (%1839, +1903), and is described by
Stuart and Donald Geman in 1984 [GGS84|. Gibbs sampling is applicable for
problems with at least two dimensions and preferably used for high-dimensional
problem spaces. Josiah Gibbs’ idea, generally speaking, is based on the divide-
and-conquer principle. Instead of sampling the next state all at once for the entire
problem, the algorithm divides the problem space and samples each dimension
separately. In textbooks, the behavior of the algorithm is sometimes illustrated
as a snake or spiral which approaches the optimal configuration with steps from
different courses, getting closer and closer with every new iteration. Let 7 denote
the current iteration of the algorithm and m is the amount of sites (Equation 2.1).
For each 7 during each iteration, each sample that is drawn is either from the
previous iteration or from the current iteration. Considering the order during each
iteration, arbitrary (e.g., random) or particular (e.g., sequential) drawings are
possible. The example shown in Algorithm 1 follows a straightforward sequential
order. During this process, new values for variables are used as soon as they are

obtained. Here, s\ denotes a sample drawn at site 7 from the previous iteration

j
(an old sample), respectively the initialization, and SE»TH) denotes a sample from

the current iteration (a new sample). For the example in Figure 2.8 one iteration
from 7 to 7 + 1 consists of the following steps:

(a) Initialization of sq ..., so.
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Figure 2.8: Exemplary iteration of Gibbs sampling. A set of nine labels is linked
to a 3 x 3 grid with a second-order neighborhood system (cf. Figure2.1(b)). The
initialization of sq ..., sg is shown in (a) and the single iteration steps are depicted in
(b)-(j). A grid cell shaded in red means that this is the current sample which is drawn
and grid cells shaded in blue represent cells that belong to the neighborhood of this
cell.
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A new sample is drawn for sq as séTH) ~ p(sg| s, ng), séT), sg), 5(97)). For
(T+1)

the given second-order neighborhood system, s is drawn w.r.t. five
neighbors from the initial respectively the previous iteration.

A new sample is drawn for s; according to s ~ p(s; | s{7, 07, st

A new sample is drawn for sg as sgﬂ) ~ p(ss| sy),sg),sgﬂ),s?),séT)).
Note that four neighbors are from the previous iteration and one neighbor,
séTH), is already from the new iteration meaning that is has been sampled

shortly before and is immediately used in the same iteration.

A new sample is drawn for s; according to ngH) ~ p(s7| sé(f), séT), sgﬂ)).

(T 1)

Samples i and s{” are old and s is newly sampled.

A new sample is drawn for s; w.r.t. eight neighbors, which would be the

. . . 1
common case for a larger grids. The sample is drawn according to séTJr ) ~

p(s1 | SYH),SS),ng),sy),séT+1),ngH),ng),sg)). Four old and four new

samples are taken into account.

A new sample is drawn for s3 according to s{ T ~ p(sz | s5”, sTT s,

sg) is from the last iteration, the other two are already newly sampled.

A new sample is drawn for s, w.r.t. five neighbors according to sfﬂ) ~

p(sa] s 857 s ST STHY)

from the previous iteration.

. From these five neighbors, only one is

) 9

A new sample is drawn for s according to s§ ) ~ p(sg | sV, s s,

For the first time in this sampling iteration, all samples in the neighborhood
are from the current iteration.

(74+1)

A new sample is drawn for sy w.r.t. five neighbors according to s, ~
plsg | s T ST gt Gy U Phig is the last sample for the cur-

rent iteration. Depending on the overall progress, the resulting samples may
either be the final configuration due to some abortion criterion or because
the optimal configuration is found or resulting samples serve as initialization
for the next iteration.

The principle of the algorithm and it’s effectiveness make it an attractive
problem-solving approach for many application domains. Other advantages of the
algorithm are its flexibility, as the sample drawing can be manipulated in many
ways, and a lot of useful abortion criteria exist for this algorithm: maximum
number of iterations; thresholding in advance between two iterations; desired
closeness to optimal configuration, etc. Besides all its advantages, the algorithm
also suffers from a so-called burn-in phase. This phase describes the first iterations
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of the algorithm before samples are drawn from the stationary distribution. All
applications have to pass through this phase which yields a negative impact on
the runtime of the algorithm. Furthermore, samples from a late iteration may be
contaminated by the values of early samples (from the burn-in phase), which is
why in some cases it might be expedient to discard values from early iterations
later and to re-sample them. For example, a burn-in threshold can be applied
which takes effect after a certain number of iterations and discards all old samples
to prevent contamination.

At this point, all basic requirements for understanding and solving the terrain
classification problem have been explained and several examples in this section
already introduced solutions for small grids. Additional literature exists on almost
any of the presented basics, enhancing them or viewing them from another point
of view. For example, Li [Li09] also describes the basics for continuous cases and
presents the derivations of some of the statements described here for the discrete
cases. A multitude of solutions is available for optimization. Bishop, for example,
covers a variety of approaches in his book [Bis06] but algorithm collections also
exist and are published in the web, in the form of software libraries (e.g., cf. [14]).

2.10 The Mahalanobis Distance

Another basic for this thesis is the Mahalanobis distance. Although it is not
directly related to MRF theory, it will be frequently used in the successive chap-
ters and provides a powerful tool for outdoor sensor data interpretation. The
Mahalanobis distance is named after the Indian physicist Prasanta Chandra
Mahalanobis (x1893, +1972). It measures the effect size (the statistical relative
size) of unknown samples to a known set. The Mahalanobis distance D? is a
unitless measure, scale-invariant, and is defined as

D= (D-p)'S ' (D-p) . (2.38)

where D is the vector of data, p is the vector of mean values, and X is the
covariance matrix.

For a simple example, consider a multivariate matrix X of multiple observa-
tions as

-1.1 1 02 -015 -1 =03 04 03 0.1 0.8 —-0.5
-08 1 023 -05 04 —-0.23 051 04 —-15 09 -—-0.7
09 -01 001 =02 032 -031 -1 05 —-043 —-0.2
-0.3 -0.21 0.12 -0.1 -0.13 -0.01 —-1.1 0.5 —0.35 0.6)

X —

where the two rows represent two independent variables and the columns
represent 21 observations of these. Observations are visualized as red dots in
Figure2.9 (a) in a two-dimensional plot, one axis for each variable.
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Figure 2.9: Example for the Mahalanobis distance. A set of random 2D samples
is shown as red points in (a). The centroid of the samples is shown as a blue cross
together with the two primary axes at (b). An example of a dashed blue ellipse for a
Mahalanobis distance of 0.4 is shown in (c).

Given these data, the first step is to compute the mean vector and the covari-
ance matrix (variance-covariance matrix). The mean vector p for X is

= ( __00'90366 ) : (2.39)

Covariance of two variables x and y is given by

S T T (2.40)

i=1

cov =
n—1

where g, and p, denote the means of x and y respectively and yields the covari-
ance matrix 3

5 _ ( 0.858 114 1.065 1 ) (2.41)

1.065 1 1.851 86

The mean vector consists of the means of each variable and forms the centroid
of the samples. In Figure2.9 (b), the centroid is shown as a blue cross and the
primary axis as dotted lines. The covariance matrix consists of the variances of
the variables along the main diagonal. Covariances between each pair of variables
populate the matrix at the other positions. In this simple 2D example, regions
of constant Mahalanobis distances form a 2D ellipse around the centroid as illus-
trated by the dashed blue ellipse in Figure 2.9 (c¢) for a fixed Mahalanobis distance
of 0.4. For more complex data, ellipsoids or hyperellipsoids replace ellipses.

Since the Mahalanobis distance is a unitless and scale-invariant similarity
measure for multivariate data, it is very useful in robotics and can be applied to
multiple problems in the following parts of this thesis.
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The next chapter presents the software architecture, the underlying system,
and how the terrain classification module interacts with other modules before the
MREF terrain classification is described in Chapter 4.






CHAPTER 3

SOFTWARE ARCHITECTURE

In order to understand how the software components that will be described in the
following chapters interact with each other, this chapter gives a brief overview
of the underlying software architecture. The architecture used for this thesis
was developed over several years and the following descriptions were previoulsy
presented as joint work in [Thierfelder et al., 2011a], mainly written by Susanne
Thierfelder and Viktor Seib. The software was designed and improved in previ-
ous robot projects to fulfill various complex tasks for heterogeneous autonomous
robots. Robots find their way into numerous of application domains, most of
them requiring a sophisticated software in order to fulfill different complex tasks
in short periods of time. Many different robot architectures which focus on vari-
ous scenarios have emerged over the past decade.

The OROCOS project ([Bru01],[4]) wishes to become an open and general-
purpose robot control software package. Within the project, code is divided into
different types of modules to manage the complexity of big software projects. The
success of OROCOS will depend on the contributing researchers and engineers.

Miro [USEKO02] is an object-oriented robot middleware for mobile robot ap-
plications. It was designed with the focus on multi-platform support and inter-
operability and can be applied to heterogeneous robot platforms.

An open-source component-based software engineering framework called Orca
is proposed for mobile robotics by Brooks et al. [BKM™05|. The framework fo-
cuses on reusable components for mobile robotic systems in indoor and outdoor
scenarios.

Farinelli et al. present SPQR-RDK [FGIO05], a robot programming environ-
ment specifically designed for multi-platform usage. SPQR-RDK provides an
integrated framework with technical prerequisites for remote control, inspection,
and information sharing.

Player [CMGO05] is a robotic framework introduced by Collett et al. The frame-
work is an open source project and focuses on simplicity and flexibility.

31
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Figure 3.1: The architecture concept. Modules act as glue code and communicate
with each other via messages distributed by an application independent system core.
Further components such as devices or workers are attached to these modules to include
hardware and algorithms. Image after [Thierfelder et al., 2011a).

Ando et al. propose the OpenRTM-aist [ASK*05] middleware as a software
platform for robot system integration. Within OpenRTM-aist, components can
be combined and handled as black boxes in order to construct complex systems.

A middleware framework called MARIE that uses a generic communication
framework is presented in [CBL106]. MARIE aims to create a flexible distributed
component system that allows developers to design and share prototypes rapidly.

The robotic software framework CLARAty [Nes07| has been primarily devel-
oped by the Mars Technology Program for integrating robotic technologies from
different programs and for deployment on NASA’s research rover fleet.

A modular framework called OpenRDK focuses on rapid development of dis-
tributed robotic systems and is presented in [CCINO8]. OpenRDK'’s features
include a multi-threaded multi-processes structure and a blackboard-type inter-
module communication and data sharing.

A Robot Operating System (ROS,|22]) is presented by Quigley et al. [QCG109].
ROS aims at simplifying robot software development by proving a modular, tools-
based development environment.

The strong proliferation and progress of robotic middleware and framework
architectures over the past decade proves the importance of these topic. Espe-
cially ROS and other projects show that the research in these areas is alive and
progressing in various directions.
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Figure 3.2: Data flow and overview of the different modules. Sensor data are processed
by different modules which in turn deliver data for other modules. Arrows indicate
message flow in the software.

The underlying software architecture for this thesis has been developed and
advanced by the Active Vision Group and follows a strictly message-based soft-
ware design. Source code is distributed over various independent modules that
are connected to the system. Concurrency is achieved by executing every mod-
ule in its own thread with isolated program blocks encapsulating a specific task.
The center of the architecture is a generic, application-independent system core
that serves as a dispatcher between connected components. Inter-module com-
munication is realized via this system core by subscribing to messages relevant
to their specific task, keeping modules independent from each other. All data
that needs to be transferred between modules is encapsulated into messages. If a
module wants to share information with another module, it has to send a message
to the system core which delegates it to all subscribers of the message, follow-
ing a loosely coupled design. The concept of the system [Pelll] is illustrated in
Figure3.1 and has its origins in the Quasar windmill [Sie02]. As indicated in
the image, modules connect devices (hardware) and workers (algorithms) with
the system core and thus act as glue code. Devices communicate with a certain
piece of hardware of the robot and workers are small sets of program code which
implement specific algorithms. Another invaluable property is the capability of
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messages to serialize and deserialize themselves, allowing algorithm development
and evaluation on recorded sensor data.

An overview of the different components of this thesis is given in Figure 3.2.
As illustrated in the image, the 3D point clouds of the LRF are used for terrain
classification, egomotion estimation, and dynamic obstacle detection and track-
ing. Camera images are used for terrain classification only and GPS and IMU
data are subscribed by the egomotion estimation module. The terrain classifica-
tion module receives incoming data from the sensors as well as from the modules
responsible for the egomotion estimation and the detection and tracking of dy-
namic obstacles. Furthermore, the path planning module regards static obstacles
and the terrain surface as well as trajectories of other dynamic obstacles as it
operates on the data delivered by these two modules.

The architecture proved its reliability and robustness on different robotic plat-
forms (cf. [Vetter et al., 2010, Thierfelder et al., 2011a, Lang et al., 2011]) and
in a large number of scenarios (cf. [Thierfelder et al., 2011b, Hahn et al., 2011,
Lang et al., 2012]). A more detailed description of the design and the underlying
decision-making process is depicted in [Pelll] and a precise description of this
architecture is published in [Thierfelder et al., 2011b|. In the next chapters, the
contents and algorithms of the specific modules relevant for terrain classification
will be described in detail.



CHAPTER 4

MARKOV RANDOM FIELD
TERRAIN CLASSIFICATION

Mobile autonomous systems need a detailed interpretation of the surrounding
terrain in order to avoid obstacles and to judge the drivability of the surface.
The task of a terrain classification algorithm is to provide a data representation
and classification that satisfies these requirements in real-time. 3D point clouds
produced by modern LRFs like the Velodyne HDL-64E and HDL-32E provide a
rich and thorough picture of the environment in the form of 3D distance measure-
ments. The vast amount of data of 3D LRFs cannot be directly used for path
planning algorithms. Therefore, as a first step, a reduction of the huge point
cloud is necessary and an efficient data representation is essential. Laser range
measurements alone allow no differentiation between similar surfaces; therefore,
color cameras are calibrated to the 3D LRF. Cameras allow for the determination
of color and texture of the 3D points in the field of view of each camera and allow
access to fused data in one coordinate system in case all sensors are calibrated to
each other. The goal of the terrain classification is to determine the drivability
of the surrounding terrain with an MRF in real-time based on the fused sensor
data.

The following chapter starts with a discussion of related work in the field of
terrain classification and MRFs in Section4.1. Fusion of camera and LRF data
is described in Section 4.2, followed by the application of the MRF in Section4.3.
Experimental results are presented in Section4.4. Integration of egomotion is
briefly explained in Section4.5. An additional and elaborate evaluation in another
domain, the 3D mapping, is demonstrated in Section4.6. The chapter concludes
in Section4.7 with a proof of concept in the form of a path planning algorithm
operating on the results of the terrain classification.
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4.1 Related Work

MRFs are frequently used in the field of image segmentation, especially for seg-
mentation tasks. Szirdnyi et al. [SZCT00] address the problem of the large amount
of computing power required for Markovian approaches. They introduce a paral-
lel architecture for MRF segmentation of images and show that the Markovian
labeling approach can be implemented in fully parallel cellular network architec-
tures.

Meas-Yedid et al. [MYTOMO2| use an MRF clustering approach for color
segmentation based upon color and spatial information. Their approach proves
to be robust against noise, color changes, illumination changes, and blurring
during the performed experiments.

An MRF image segmentation model that combines color and texture features
is presented by Kato and Pong [KP06|. Segmentation is obtained by classifying
pixels into different pixel classes, which are represented by multi-variate Gaussian
distributions either computed from training data or estimated from the input
image.

Qazi et al. [QABT11] present a segmentation methodology with robust para-
metric approximations proposed for multichannel linear prediction error distribu-
tion. They use an energy term based on region size with the conventional Potts
energy model (cf. Section2.7) and present improved results in terms of percent-
age errors of color texture segmentation for high-resolution multispectral satellite
images.

D‘Angelo and Dugelay [dD10] provide an MRF' description of an unsupervised
color image segmentation algorithm. Their system is based on a color quantiza-
tion of the image in the Lab color space and uses a fuzzy k-nearest neighbors
algorithm.

Besides color images, RGB-D sensors such as the Microsoft Kinect allow us
to record color, texture, and depth information in one data set. Herbst et al.
[HRF11] use an RGB-D camera and apply a multi-scene MRF model to detect
objects that moved between multiple visits to the same scene. By combining
shape, visibility, and color cues they are able to detect objects without texture
within the scenes.

An MRF that integrated high-resolution image data into low-resolution range
data is presented by Diebel and Thrun [DT05b|. Their MRF exploits the fact
that discontinuities in range and coloring tend to co-align and recovers the range
data at the same resolution as the image data.

Various approaches exist to classify the terrain surrounding an autonomous
mobile robot platform. Especially image- or laser-based strategies are often used
when terrain drivability information is needed.

Image-based strategies either use a single, stereo or combined setup of digital
and infrared cameras. Konolige et al. [KABT06] and Alberts et al. [AEST08]
both use stereo vision approaches to maneuver a vehicle through unstructured
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environments. Stereo vision allows them to extract drivable regions from the
camera video streams. Furthermore, Vernaza et al. [VTLO8| present a camera-
based terrain classification approach for the DARPA LAGR program. Their
approach uses an MRF that classifies image data of a stereo system into obstacles
or ground regions for an autonomous robot. Khan et al. [KKBZ11| present a
comparison of multiple approaches to using color-cameras for terrain classification
for outdoor mobile robots based on local features. Their approach uses random
forests for classification and is able to perform in various weather conditions.

A negative obstacle is a non-drivable region underneath the ground level and
represents a difficult challenge in non-urban environments. Thermal infrared
images have the characteristic that negative obstacles remain warmer than the
surrounding terrain in the night. Rankin et al. [RHMO03| therefore combine ther-
mal signatures and stereo range data in order to determine the terrain drivability.
Morton and Olson [MO11] describe a terrain classifier for detecting both positive
and negative obstacles. Their classifier utilizes the change in height and the dis-
tance between observations from adjacent surfaces as well as the point density in
discretized cells.

Laser-based approaches either work with a 2D LRF, a 2D LRF on stepper
motors, or a 3D LRF. Wurm et al. [WKSB09| use the laser remission values of a
2D LRF on a pan-tilt unit to classify the surface terrain based on the resulting
3D scans. In this way, they detect grass-like vegetation but prefer paved routes
with their robot. Another approach for terrain classification is presented by
Wolf et al. [WSFBO05|. Their robot uses a 2D LRF which is oriented to the
ground, records data while driving, and produces 3D maps using hidden Markov
models. The authors are able to differentiate flat areas from grass, gravel, or other
obstacles. In comparison to the approaches of Wurm et al. [WKSB09| and Wolf
et al. [WSFBO05|, the Velodyne HDL-64E and HDL-32E produce substantially
larger point clouds that need an even faster processing.

Vandapel et al. [VHKHO04| segment 3D distance measurements and classify the
segments into three different classes: terrain surface, clutter, and wires. Their
approach works with a stationary 3D sensor, which returns detailed data, as well
as on a mobile platform with a rotating 2D scanning mount.

Ye and Borenstein [YB03, YB04| present an algorithm for terrain mapping
with a 2D LRF. Their LRF is mounted at a fixed angle to the ground in front of
their robot and creates an elevation map while driving.

A color stereo camera and a 2D LRF are used by Manduchi et al. [MCTMO04|
to detect obstacles. The authors present a color-based classification system and
an algorithm that analyses the laser data in order to discriminate between grass
and obstacles.

Schenk and Csatho [SCO7] fuse aerial images with 3D point clouds to construct
surfaces of urban scenes. Surfaces are represented in a 3D object space coordinate
system by patches that store the shape and the boundary of the corresponding
surface region.



38 CHAPTER 4. MARKOV RANDOM FIELD CLASSIFICATION

A stereo pair of digital cameras, an infrared camera, and two 2D LRFs on
scanning mounts are used by Wellington et al. [WCS05]. The authors apply
multiple MRFs that interact through a hidden semi-Markov model that enforces
a prior on vertical structures. Their results show that including the neighborhood
structure significantly improves obstacle classification.

Another approach to terrain classification is based on judging surface condi-
tions from the vibrations caused by driving on different surfaces. Brooks et al.
[BIDO5] present a method to classify terrain based on vibrations measured by an
accelerometer. Their algorithm is able to distinguish between sand, gravel, and
clay in real-time.

A Bayes filter is employed by Komma et al. [KWZ09] to predict terrain classes
from a history of vibration signals. The authors observe that only an adaptive
approach which automatically adjusts its parameters is reactive enough to detect
both, high-frequent and low-frequent terrain class changes.

Coyle et al. [CCR11]| present another approach to reaction-based terrain classi-
fication for the detection of sand, grass, gravel and asphalt. The authors present
a method of interpolating point clouds that uses singular value decomposition
(SVD), matrix logarithms, and Catmull-Rom splines to reduce the need to col-
lect large data sets for algorithm training.

In contrast to vibration-based approaches, the terrain classification algorithm
described in the subsequent chapters is able to perceive the surface conditions
before the robot actually drives on the terrain. Considering regions like fields
or grasslands with potholes, rain grooves, and rough surfaces, this is a major
advantage over vibration-based approaches.

Another research topic covers the simultaneous localization and mapping
(SLAM) problem, where LRFs are used to process the 2D and 3D distance mea-
surements to build maps [GNB00, MT06] of the environment. In contrast to
mapping, terrain classification needs to process the sensor data as fast as pos-
sible in real-time on the robot for a path planning algorithm to directly access
data and perform tasks autonomously.

Many approaches related to autonomous navigation need precise pose pre-
dictions in order to produce accurate and robust results. Cameras, LRFs, GPS
receivers and IMUs are, among others, commonly used for egomotion estimation.

Lu and Milios [LM97]| present two iterative algorithms to register a 2D range
scan in relation to a previous scan to compute relative robot positions in unknown
environments. Their first algorithm matches data points with tangent directions
in two scans and minimizes a distance function. Their second algorithm estab-
lishes correspondences between points in the two scans and then solves the point-
to-point least-squares problem to compute the relative transformation between
the two scans.

Eggert et al. [ELF97| presented a comparative analysis of four algorithms that
compute the 3D rigid body transformation aligning two sets of 3D points. The
four algorithms are evaluated in terms of accuracy and robustness, stability with
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respect to degenerate data sets, and relative computation time under different
conditions.

Droeschel et al. [DMH'09] present an approach to estimate the egomotion of a
robot while moving. Their approach uses the coherence of depth and reflectance
data of a Time-of-Flight camera and fuses the resulting motion estimate with
data from an IMU in order to improve accuracy and robustness against distorted
measurements.

Ohno et al. [OTST03] are concerned with map-based outdoor navigation near
buildings and use an extended Kalman filter to fuse odometry and Differential
Global Positioning System (DGPS) measurement data. The authors present two
correction methods to correct DGPS position and odometry errors.

Kim et al. [KKOOO7] present a localization method using different sensors
with bias data. An extended Kalman filter integrates odometry and DGPS data
from their robot in a global coordinate frame.

An adaptive Kalman filter for GPS data processing based on the observation of
residuals in real-time outdoor applications is presented by Reina et al. [RVNY07].
Their approach is based on a fuzzy indicator to define a scale factor for the
predicted covariance matrix by observing the size of the residuals.

A sigma-point Kalman filter is used for integrated navigation by van der
Merwe and Wan [vdMWO04] and fuses GPS and IMU data.

Lamon and Siegwart [L.S04| present a method for combining dead reckoning
sensor information in order to provide an initial estimate of the six degrees of
freedom of a rough terrain rover. The rover’s wheel encoders and an inertial
navigation system are fused in an extended information filter.

An extended Kalman filter presented by Voigt et al. [VNH" 11| fuses binocu-
lar visual measurements and inertial cues for egomotion estimation of an aerial
vehicle. Their approach relies on inertial data if visual feature constellation is
degenerate and enables pose estimation at high frame rates.

Terrain classification in outdoor environments comprises multiple research
areas that represent active research topics. The research areas described in this
section are only a selective choice of publications and approaches. A successful
terrain classifier needs to regard all aspects of these topics in order to perform a
precise and fast classification. As a first step, a calibration is necessary to provide
fused color camera and 3D LRF data in the same coordinate system.

4.2 Camera and Laser Data Fusion

Before the MRF is described, the fusion of the camera and laser data is explained
in this section. Fusing these two sensor modalities requires all attached sensors
to be registered in a joint reference frame. Position and orientation information
is acquired using an extrinsic calibration.
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4.2.1 Related Work

Calibration of cameras with LRFs is another active research topic in robotics.
These approaches are distinguished by the type of the camera, e.g., pinhole or
omnidirectional cameras, and the type of the LRF, e.g., 2D or 3D LRFs.

A comparison of four different calibration techniques for 3D range data and
camera images is given by Cobzag et al. [CZJ02]. The techniques cover point
and line based retrieval of the rigid transformations and image based mapping
between the data sets.

Zhang and Pless [ZP04] present a method for manually calibrating a 2D LRF
with a camera from multiple views. Their approach registers the laser points on
a planar checkerboard pattern with the camera image of the pattern.

Unnikrishnan and Herbert [UHO5| extend the approach of Zhang and Pless
for the calibration of a 3D LRF with a camera. They extract a plane from four
manually selected vertices on the checkerboard pattern and register it with the
automatically detected pattern of the image.

The method of Unnikrishnan and Herbert works similarly to the approach
presented by Andreasson et al. [ATL07|. Andreasson et al. design a new calibra-
tion pattern that consists of a common checkerboard framed by gray duct tape
which makes the frame detectable in the intensity values of their LRF.

Leonard et al. [LBH*07] present a method for multi-sensor calibration in their
technical report of the DARPA Urban Challenge. Besides various other sensors,
cameras and LRFs are also calibrated. They use a calibration object in the form
of a pyramid with an attached camera that can detect fiducials on their vehicle to
determine the position of the pyramid. The result is validated with a Computer-
aided design (CAD) model of the vehicle.

A method to calibrate a camera to a 2D LRF is described by Caglioti et al.
[CGMOS8|. Their calibration is based on the algorithm introduced by Colombo
et al. [CCdB06| and uses coaxial circles. A calibration object is not required, but
the laser beams need to be visible in the camera images.

Nufiez et al. [NDJRDO09| present a camera to 3D LRF calibration based on the
approach of Horaud and Dornaika [HD95]. The authors use a squared checker-
board rotated by 45 ° and move their sensor platform around it. Inferences about
the motion is extracted from an IMU.

A stereo camera is calibrated to a 2D LRF by Li et al. [LLD*07]. Their
specially built calibration pattern is a black triangle which they use to find cor-
responding lines in the camera image and in the laser data.

Aliakbarpour et al. [ANP*09| propose a method to calibrate a stereo camera
with a 2D LRF with the help of an IMU. The approach is based on the calibration
of Svoboda et al. [SMP05]|, where calibration is performed with a moving light
source. Aliakbarpour et al. use a common laser pointer as the light source and
retrieve the orientation of the LRF from the IMU.



4.2. CAMERA AND LASER DATA FUSION 41

Mei and Rives [MRO6] present several methods for calibrating a 2D LRF with
an omnidirectional camera. In order to estimate the position of the camera in
relation to the LRF, the laser beam needs to be visible in the camera image. The
authors consider LRFs with invisible laser beams and extend the approach of
Zhang and Pless [ZP04] for omnidirectional cameras.

A calibration of an omnidirectional camera to a 3D LRF without a calibration
pattern is presented by Scaramuzza et al. [SHS07|. Manual selection of correspon-
dences in the laser data and camera image allows the computation of the rigid
transformations between the selected points.

The calibration method introduced by Pandey et al. [PMSE10] uses a Velo-
dyne HDL-64E with an omnidirectional camera. Therefore, the authors also ex-
tend the approach of Zhang and Pless [ZP04] and use calibration patterns affixed
to floors and walls.

4.2.2 Camera Calibration and Camera to Laser Calibration

Calibration of multiple color cameras to a 3D LRF is a complex task. For the
MREF terrain classification, calibration represents an expedient to realize a fused
sensor reference frame. The data of the three color cameras of the robot, mounted
on the left, right, and front sides of the robot, needs to be fused into the coordinate
system of the LRF. Therefore, a C++ implementation of the approach presented
by Unnikrishnan and Herbert [UHO05| has been used for this thesis.

In the context of this fusion approach, multiple different calibration processes
need to be performed subsequently to acquire the desired result. Initially, it is
necessary to perform an intrinsic calibration separately for each sensor. This is
a prerequisite so that the correctness of the particular sensor data is guaranteed
for the following joint calibration.

Since the manufacturer Velodyne delivers calibrated 3D LRFs, a calibration
by the customer is not required at the beginning. In the course of time, a re-
calibration of the sensor might become necessary. Vibrations to the sensor (e.g.,
caused by the robot driving over rough surfaces) are a plausible cause for a re-
calibration as well as different weather conditions, especially extreme heat and
cold. The manufacturer offers the opportunity to send in the sensor for a recali-
bration at no charge. Since this requires shipping the sensor to the United States
of America and the resulting absence of the sensor for multiple weeks, scientists
and owners of a Velodyne LRF have developed their own intrinsic 3D LRF cali-
brations [GL10, PMSE10, AJGBHR"11, CCH"12, MKR12|.Within the context
of this thesis, the Velodyne HDL-64F was recalibrated by the manufacturer once,
and the Velodyne HDL-32E was also been sent in once for a software update
including advanced features. In addition, four lasers of the Velodyne HDL-64E
became inoperative over time and have been disabled. Besides these hardware-
related issues, a further recalibration of the intrinsic parameters of the 3D LRFs
has not been necessary.
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Intrinsic calibration of the cameras can be viewed with a few exceptions as
a solved task. For the extraction of the camera parameters, the implementation
of the camera calibration from Zhang [Zha00] and Bouguet [3] available in the
Open Source Computer Vision [8] library is used.

After the application of the OpenCV camera calibration, intrinsic camera pa-
rameters are determined and calibration of the cameras to the 3D LRF is possible.
The approach of Unnikrishnan and Herbert [UHO5| provides a fast and feasible
calibration. It enables a simultaneous calibration of the intrinsic camera param-
eters as well as the rigid transformation of the camera in relation to the LRF.
For the calibration, a checkerboard is required and needs to be selected manually
from the 3D data. Manual selection of the vertices for all three cameras takes
several minutes since approximately 15 laser data/image pairs are required for a
precise calibration. The approach requires an object that is both visible in the
LRF and the camera data. On the one hand, Andreasson et al. [ATL07| point
out that gray duct tape made their calibration frame detectable in the LRF data.
On the other hand, teams of the DARPA challenges report that black vehicles
disappear completely in the laser data. Based on these reports, various experi-
ments with different material, surface structures, and colors, have been conducted.
Grey duct tape and matt black metallic surfaces almost completely absorb the
intensity data of the Velodyne HDL-64E and HDL-32E. Therefore, a calibration
object made of a DIN Al (841 mmx594 mm) aluminum plate with a matt black
checkerboard fixed attached to a camera tripod was designed. The matt black
checkerboard has the advantage that all calibration steps can be performed with
a single checkerboard. For the calibration of the cameras to the 3D LRF, a large
distance of at least 20 m from each camera to the LRF is necessary which is why a
smaller checkerboard would be too small. A DIN A2 (594 mmx420mm) checker-
board for example would yield an insufficient amount of distance measurements
from the LRF and result in problematic detections for cameras with lower resolu-
tions. The aluminum plate is weather resistant (e.g., against moisture humidity,
extreme heat) and is easy to transport. A matt black surface has the advan-
tage of being less susceptible against sunlight and other illumination influences
in outdoor scenarios. Regarding the Velodyne HDL-64E and HDL-32E measure-
ments, matt surfaces are distinguishable from white patches. This simplifies the
calibration and lays the foundation for a completely automatic calibration based
on reflectance values. Patch size and number can be estimated for the desired
scenario w.r.t. the cameras or the desired maximum range of vision, respectively.
Larger patches can be detected more easily farther away or with lower resolution
cameras. The larger the patches, the lower the total amount of patches. A Larger
number of detected patches yields a preciser calibration resulting in a quality loss
if an insufficient number of patches is provided.

An image of the calibration object developed for this thesis is shown in Fig-
ure4.1. It is dimensioned 841 mm X 594 mm and divided into 9 x 7 patches.
While the calibration object is usable for both the intrinsic calibration of the
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Figure 4.1: Views of the calibration object. The calibration pattern with the tripod is
shown in (a). Camera readings with activated checkerboard detection from the point of
view of one of the robots cameras is visualized in (b). Laser readings from the Velodyne
HDL-64E are shown in (c) (after projection). The image (c) further depicts the typical
missing horizontal readings on the calibration pattern where the two arrays of 32 lasers
each of the Velodyne HDL-64E meet.

cameras and the camera to laser calibration, it turned out to be too small for
some cameras. Especially for cameras with a low resolution, it is recommended
to use an even larger calibration pattern of size DIN A0 (1189 mm x 841mm) in
order to achieve the desired precision at larger distances. Another possibility is
a modification of the calibration pattern’s margin with a reflective surface. As
observed by Andreasson [ATLO07|, reflective tape is visible to the LRF. During
the experiments conducted with the calibration pattern developed for this thesis,
it has been observed that reflectance values from gray duct tape are differentiable
from other intensity values. A margin of gray duct tape therefore allows a margin
extraction in the LRF measurements. Once the calibration object is available,
the calibration is performed as follows.

Each camera requires an extrinsic calibration to assign it a position in the
coordinate system of the LRF w.r.t. the coordinate system where the LRF is
registered. The extrinsic parameters of each camera are given by the rotation
matrix R and the transformation vector ¢ w.r.t. a reference coordinate system.
Under the premise that the 3D LRF is the center of the coordinate system, R
and t of a point P, from camera to laser coordinates are given by

PP=RP.+t . (4.1)

Let J be the set of pairs of laser scan and corresponding camera image. For each
J; € J one needs to find the orientation (6.;,0;;) and the distance (d.;,d;;) of
the planes 6., — d.; = 0 and 0, ;& — d;; = 0 to the camera w.r.t. the LRF.
The values 6.; and d.; are extracted from the extrinsic calibration of the
camera with the help of OpenCV. In order to retrieve 6;; and d; ;, one has to locate
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Figure 4.2: Visualization of the calibration process in the GUI. At the upper left side
the camera image of the calibration pattern is shown and at the lower left side the scene
from the LRF perspective. The control elements described in the text are numbered
and shown on the right side.

the calibration pattern in the LRF data. The black patches create a checkerboard
that is visible in the 3D intensity values (see Figure4.1 (c)) as the LRF returns no
values at these spots. Depending on which side of the LRF a camera is mounted,
50% of the points on the averted side are discarded. Additionally, points that
are too close to the LRF or which exceed the maximum range for calibration are
culled. Afterwards, all remaining points are projected to a plane by discarding
the depth value in the direction of the camera (front, left, right). This results in
a depth-image from the point of view of the camera on the laser data where the
checkerboard is visible. Once the vertices of the calibration pattern are available,
projection is reversed to retrieve the corresponding points in the 3D data.

Now, one has to find the transformation that minimizes the discrepancy be-
tween position and orientation of the calibration pattern in the camera and laser
data as

n m(i)
argmin Y Y (|05 (Ra;; +t) — degl| (4.2)
Rt =12

where n is the number of elements in J and m(¢) is the number of inliers (3D
measurements on the calibration pattern) in the LRF data. At least 15 pairs
of J; are necessary for the calibration, which takes around six minutes for each
camera. Since the calibration object can be folded (flexible tripod), it is very
portable and the sensor platform can easily be mounted on different vehicles.
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Figure 4.3: Example data of camera and Velodyne HDL-64E fusion. The upper part
shows a camera image of a forest environment with trees and a road crossing. The 3D
points are colored according to their height values, as illustrated in the legend on the
upper right. In the lower part, the data of the Velodyne HDL-64E of the same scene
are shown with the camera images projected into the same coordinate system.

The user can steer the single steps of the calibration process with the help of
a graphical user interface (GUI). The calibration process is described with the
aid of image Figure4.2 which shows the calibration GUI.

The camera to be calibrated is selected in (1.) and automatically updates the
camera image (7.) and the LRF data visualization (8.). The calibration pattern
is automatically detected in the camera image and the LRF data visualization
is projected and culled in the viewing direction of the camera. The Refresh-
button (2.) generates the two visualizations and renewed detection but has no
further influence on the calibration procedure. The detection of the calibration
pattern in the LRF data visualization is performed by the user by selecting the
four corners of the checkerboard pattern manually (8.). This step has to be
repeated several times while moving the calibration pattern to different locations
and updating the process using the Nezt-button. Each camera image with a
set of LRF measurements forms a J;, is saved, and will be used to compute the
extrinsic parameters. A progress bar (3.) indicates the calibration progress. The
Save-button (5.) stores the current .J;, e.g., to compare the results for different
setups and the Abort-button (6.) discards everything. Once the progress bar
reaches 100 %, the extrinsic parameters are calculated and printed out. The
whole process takes around 20 minutes to calibrate all three cameras to the 3D
LRF, including their intrinsic (re-)calibrations.
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The results of the calibration and the developed calibration pattern are pub-
lished in [Héselich et al., 2012a] and an example of the resulting fusion is pre-
sented in Figure4.3. Calibration yields the foundation for an MRF terrain clas-
sification based on fused data.

Test drives with the robot on rough terrain revealed that the calibration needs
to be repeated once in a while, probably caused by the vibrations while driving.
After longer drives over rough terrain, a recalibration of all cameras to the LRF
becomes necessary.

4.3 MRF Application

(Classification of unstructured environments is a challenging task: sensor noise,
manifold and complex vegetation, rough terrain, and vibrations while driving
require a solid approach in order to realize an adequate terrain classification. Re-
garding these circumstances, a statistical approach can handle sensor noise and
uncertainties quite well and for this reason an MRF on fused camera and LRF
data is chosen, which will be described in the following. Since the developed al-
gorithms will be used on different robot platforms, the availability of the cameras
is optional. Hence, a greater versatility is achieved w.r.t. the robot platform and
the available sensors as only a 3D LRF is required. Application of the MRF for
terrain classification is separated into several subsections. First of all, data repre-
sentation for the terrain is depicted in Section4.3.1. Features for different terrain
labels are described in Section 4.3.2 followed by the description of the annotation
necessary for their estimation in Section4.3.3. Finally, the Markov model of the
terrain is explained in Section 4.3.4.

4.3.1 Terrain Data Representation

There are three requirements that need to be fulfilled when selecting the appro-
priate data representation for the terrain. The data representation has to be
efficient so that the robot’s algorithms are able to perceive the surrounding ter-
rain in real-time. In addition, the data reduction needs to be precise enough to
avoid any obstacle and does not unnecessarily block narrow passages. Finally,
the drivability of the terrain should be considered in order to obtain the ability
to prefer flat terrain segments like roads over rough terrain surfaces like fields.
Therefore, a 2D grid is chosen with a resolution of 51.282 cm x 51.282 cm for each
terrain cell as data representation. The size of the grid is set from 40 m x 40 m up
to 100m x 00m to achieve an optimal balance between computational effort of
the MRF, information density of the 3D distance measurements, and the range
of the LRFs. Since the grid is centered around the origin of the data, the LRF
used, this data representation is feasible for the Velodyne HDL-64FE and HDL-
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32E. Considering collision avoidance and terrain drivability, a classification of the
terrain cells is necessary. For the MRF approach, the following labels are used:

Street (gray) A terrain cell with an optimal surface in even ground, e.g., a
street or a road segment.

Rough (brown) A terrain cell with a less preferable surface in rough terrain,
e.g., a field or meadow. The autonomous system should avoid these regions
as long as there is an alternative route on cells labeled Street which lead to
the destination in adequate time.

Obstacle (red) A terrain cell that represents an impassable obstacle for the
robot. A safety distance to these cells should be kept to guarantee collision-
free navigation.

Unknown (black) A terrain cell with insufficient information, e.g., a region no
sensor captured (rejection label).

A description of the features used for discrimination of the introduced labels
follows in the next section.

4.3.2 Terrain Features

Features are essential for classification tasks. The following set of features de-
scribes the properties of the chosen terrain labels. Features are selected according
to their low computational effort and their capability to separate the labels.

Laser-based features (L) The roughness f, of a terrain cell describes it’s sur-
face structure and is, for example, suitable to distinguish between roads,
meadows, or fields. Roughness is calculated by the local height disturbance
[NDPP09|. Height difference fi, enables an efficient distinction between
passable and impassable cells because a threshold can specify the maxi-
mal drivable height for each robot platform. According to Happold et al.
[HOJO06], the distance between the lowest and highest 3D laser point within
the cell is used for classification. This feature is based on the assumption
that the main characteristic of an obstacle is its height.

Haralick features (H) Texture of different terrain labels varies and allows a
differentiation. Computation of image features can easily become computa-
tionally expensive. Therefore, only three out of the 14 texture calculations
proposed by Haralick et al. [HSD73| are used: Angular Second Moment
fasm, Sum of Squares: Variance f, and Inverse Difference Moment fiqm (cf.
Appendix D).
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Homogeneity (FH) Another fast calculating feature is proposed by Knauer
and Meffert [KM10] and expresses the texture homogeneity fg, of a terrain
cell. Based on the assumption that rough terrain surfaces of the label Rough
possess a more heterogeneous texture than the terrain surface of label Street,
this feature is incorporated in the terrain classification process.

Color (C) In addition to the distance and height measurements of the LRF and
the texture features of the camera images, the color f. is used to classify
terrain cells.

This set of features can be divided into two categories. The first type is acquired
from data gained by the LRF and contains the laser-based features (L). The
second type consists of features computed from the camera images of the terrain
and contains image-based features (H, FH and C). Algorithms are implemented
in a way that if one or even all of the cameras fail (front-lighting, darkness, etc.)
or are missing (e.g., change of robot platform), autonomous driving exclusively
on the LRF data is still possible. Combination of all features yields the feature
vector f = (fr, fu, fasm, fv, fiam, fm, fe) that integrates in the terrain classification
process.

4.3.3 Acquisition of Terrain Features

In order to estimate feature parameters for the different labels, an annotation
mode has been implemented. This mode allows computation of feature parame-
ters from a manual classification of a user. Figure 4.4 shows the annotation mode
in the software. A user selects a class label he wants to assign to a terrain cell
(yellow rectangle in the lower image) and paints directly in the visualized data to
classify it. In the lower image, an example annotation for the three labels Street
(gray), Rough (brown), and Obstacle (red) is shown. Regarding data observabil-
ity, the user annotation includes regions with incomplete data. Those region
have two origins: missing sensor data (e.g., in regions where the cameras do not
overlap or the two blocks of the 32 lasers of the Velodyne HDL-64E meet (cf.
Figure 4.3)) or occlusions and hidden spots in the natural terrain (e.g., caused by
opaque obstacles like trees or bushes). The result of the manual classification is
extracted and saved in addition to previously made classifications. This has the
advantage that the estimated parameters are based on real data acquired from
the environment which are carefully classified by a human expert.

4.3.4 Markov Model of the Terrain

Selecting an appropriate Markov model of the terrain requires the examination
of the underlying data representation for that terrain. Since the representation
of the terrain is realized with a two-dimensional grid, the application of a two-
dimensional MRF seems natural. The two-dimensional MRF on terrain cells
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Figure 4.4: User interface of the annotation software with activated classification in
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eters for visualization (red rectangle), selection of terrain label (yellow rectangle), and
visualization frame (green rectangle) in which the users annotates the data.
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behaves similar to a two-dimensional MRF used for image segmentation based
on neighborhood relationships. A Markov model of the terrain should also respect
the context-sensitivity of neighboring cells and the acquired features. Therefore,
the MRF does not exclusively regard neighborhood relationships, like e.g., the
model described by Wolf et al. [WSFB05, WS08], but also available features. For
this reason, an MRF model is chosen that prove reliable in image segmentation
tasks, as described by Deng and Clausi [DC04|. Such a model is able to fulfill
both requirements and can easily be adapted to the terrain classification problem
by regarding each terrain cell as random state in the MRF. Here, the energy E
of a GRF is calculated piece-wise by splitting it up into a component E,s that
models the relationship of the neighboring cells and another component E; which
models the computed features of a cell. Equivalence of MRFs and GRFs is given
by the Hammersley-Clifford Theorem, cf. Section 2.6.
The neighborhood component Ey; ; of a cell ¢;; at position (4,7) in a grid is
defined as
E/\/z',j = Z B 5(li7j>l)\) ) (43)

AEN;

where [; ; is the terrain label assigned to the cell ¢;; and [y is the terrain label
assigned to a cell ¢y, which is part of the neighborhood of ¢; ;. The function
d(-) returns a value of —1 for [;; = I\ and +1 for [; ; # [, (cf. the Potts Model
Section 2.7). [ is used to weight a neighbor’s impact according to its distance to
the cell.

The corresponding feature component Ey, - of a cell ¢;; is based on the as-
sumption that the features of a cell follow a Gaussian distribution. As an energy
its computation is defined as

2
Er, = (mza—z’”) +log (@m)) : (4.4)
k Ik
where f;;, is the k-th feature of ¢;; and p;;, and oy, are the mean and the
standard deviation respectively of the k-th feature of the label [; ; assigned to a
cell Cij-

Combining the two calculations, the complete energy E; ; of a cell ¢; ; can be
calculated as

Ei,j = E/\/z',j + Q- Efi,j (45)

where « is a weighting constant used to control the influence of the different
energy types.

For classification, the sum of all computed energies E; ; needs to be minimized.
This leads to a maximization of the posterior probability of the labeling of the
terrain. The energy can be minimized by finding a label for each cell which fits
best for the computed features and the labels of the neighbor cells (cf. the optimal
solution from Equation 2.7). Optimization needs to be performed in real-time and
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is described together with the experimental results in the next section since it is
strongly coupled to the runtime of the algorithms.

4.4 Evaluation and Optimization

The conducted experiments compare the MRF terrain classification results with a
ground truth. Ground truth is acquired by human experts, who annotate terrain
cells per hand with the tool described in Section4.3.3. By comparing results
with their respective ground truth, true positive and false positive rates for each
terrain label are computed. Classification is evaluated for different scenarios
where the relative appearances of the terrain labels differs. The system used for
all computations is a single laptop, an Intel(R) Core(TM) i7 QM with 1.73 GHz
and 8 GB RAM, which is the computer that is used on the autonomous robots.
An example is shown in Figure 4.5, where 3D data, fused data, and MRF results
are visualized.

Table4.1 shows the result for a scenario where the robot drives on a road
through fields and small to medium sized vegetation. Table4.2 shows the results
for a forest scenario where the label Rough appears only in single terrain cells and
not in larger regions. In both tables the use of laser-based features is denoted by
L, selected Haralick features by H, the homogeneity feature by FH and color by
C. Furthermore, TPR is the true positive rate and FPR the corresponding false
positive rate. For both scenarios, the corresponding receiver operating character-
istics (ROC curves) are shown in Figure4.6. In all tested scenarios, results for
detecting streets and obstacles are equally good. In case of Table4.2, the results
show that the detection of the less appearing label Rough does not work properly.
The reason is the modeling of the terrain, in which it is assumed that terrain cells
of one label show a tendency to group and not to exist as single cells. Hence,
those rare Rough cells are overruled by the neighborhood component (cf. « in
Equation 4.5 which remained unchanged for all the experiments). Furthermore,
the use of image features does not significantly improve the quality of the results
as expected. One reason for this may be that texture and color vary more than
assumed, which leads to high values for the standard deviations of these features.
Thus a high deviation from the mean value of such a feature does not change the
computed energy value sufficiently to have impact on the classification. During
the evaluation it could be observed that color values are able to improve classifica-
tion results but suffer from various outdoor-specific effects. For example, weather
conditions play an important role as wet surfaces change their color and clouds
influence illumination. Front-lighting and changes in viewing angles of the cam-
eras are also problematic, especially for low-cost camera solutions (cf. cameras
presented in Section1). In conclusion, color information from cameras provides
no real benefit if used according to the presented approach. Hardware solutions
are available as advanced camera systems, e.g., like high-dynamic-range or multi-
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Figure 4.5: Example of an unstructured environment with three different representa-
tions. The images from the left, front and right camera are shown in the upper part
of each representation. The upper representation shows the 3D point cloud provided
by the Velodyne HDL-64E. The color of a point is determined by its height. On the
representation in the middle, the LRF data are fused with all three cameras. This
way color, texture, and 3D position are available in one coordinate system. The lower
representation shows the result of the MRF application: classified terrain cells with
drivability information. The labels Unknown, Road, Rough, and Obstacle are visualized
in black, gray, brown, and red, respectively.



4.4. EVALUATION AND OPTIMIZATION 93

Label /value L L+ H L +FH L+C
Road/TPR 91.0% 91.9% 90.4 % 91.0%
Road/FPR 1.5% 1.2% 1.2% 1.4%
Rough/TPR 74.6 % 73.8% 75.2% 75.3%
Rough/FPR 1.2% 1.1% 1.3% 1.4%
Obstacle/TPR 92.8% 91.8% 92.9% 92.6 %
Obstacle/FPR 3.6 % 4.4 % 3.2% 3.1%

Table 4.1: Performance of the MRF terrain classification algorithm in a rural envi-
ronment. True positive rate (TPR) and false positive rate (FPR) are presented for the
three labels Road, Rough and Obstacle. Columns are separated by the features used:
laser-based features (L), Haralick features (H), the homogeneity feature (FH), and the
color information (C).

Label /value L L+ H L +FH L+C
Road/TPR 95.2% 91.7% 95.0% 95.0 %
Road/FPR 13% 5.6% 13% 15%
Rough/TPR 5.7% 0.4% 2.8% 3.9%
Rough/FPR 0.3% 0.1% 0.3% 0.3%
Obstacle/TPR 96.2 % 95.4 % 96.1 % 96.3 %
Obstacle/FPR 6.9 % 6.7 % 7.3% 6.8 %

Table 4.2: Performance of the MRF terrain classification algorithm in a forest envi-
ronment. Labels and features are used analogous to Table4.1 and true positive and
false positive rates are shown. This scenario is specified by very few cells of label Rough,
which are further suppressed by the neighborhood relations within the MRF.

Mode Mean Std. dev. Max Min
L 62.7 ms 7.4ms 82.2ms 48.8 ms
L+H 744.9 ms 131.5ms 994.0 ms 421.5ms
L-+FH 141.4ms 11.2ms 188.4ms 121.7ms
L+C 144.4 ms 12.6 ms 187.0 ms 117.3ms

Table 4.3: Runtime results for the MRF application with different features from single
sensor and fused sensor data within an area of 40m x 40 m. All values represent long-
term measurements and result from the direct application to real sensor data, without
preprocessing or any form of data reduction. The terms L, H, FH, and C are equivalent
to Table4.1 and Table4.2.
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Figure 4.6: ROC curves corresponding to the values of Table4.1 (upper figure) and
Table4.2 (lower figure). The three curves in both figures show the true positive rate in
relation to the false positive rate for the three labels Road, Rough and Obstacle.
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spectral cameras, or as software solutions by having a color checkerboard visible
all the time or by calibrating color values before each operation of the robot.

Evaluation of the runtime, shown in Table 4.3, shows that using of image
features multiplies the required calculation time. The table compares averages
and standard deviations as well as maxima and minima of runtime for different
configurations of the terrain classification. Using laser features exclusively leads
to a fast runtime and good classification results. In all experiments the fixed
values o and /3 were respectively set to 0.4 and 0.8 (cf. Equation 4.5 and 4.3) and
the terrain was limited to 40 m x 40 m. Results of the MRF terrain classification
are published in [Héselich et al., 2011a].

4.4.1 Gibbs Sampler Optimization

Configuration space is given by the number of labels to the power of the number
of sites, cf. Equation 2.6. For a terrain grid of 40 m x 40 m up to 100m x 100 m, a
terrain cell resolution of 51.282cm x 51.282 cm, and 4 different labels, this leads
to a total number of 4(78*™) respectively 419°%19) possible configurations. Of
course, these large numbers represent only theoretical maxima since occlusion
and regions without measurements significantly reduce the number of plausible
solutions.

The terrain classification results presented in Section4.4 and Table4.3 are
limited to a terrain of 40m x 40 m. This means that the maximum range of the
sensor data is decreased to 20 m in each direction (28.28 m diagonal). Considering
the Velodyne HDL-64E LRF, a larger distance of up to 100m x 100 m allows a
more predictable path planning. Although the Velodyne HDL-64E and HDL-
32E have a range of more than 50m in each direction, the point cloud becomes
too sparse at larger distances, especially w.r.t. the ground readings which are
essential for surface classification. In order to further increase the processable
area, system performance is optimized using multi-core CPU and general-purpose
graphics processing unit (GPGPU) hardware. For each point cloud, the MRF
needs around 63 ms (max.82ms) for a 40m x 40m grid (cf. Table4.3). Most of
this time is consumed by the optimization step in which the optimal labeling of
the terrain regions is determined. Considering these properties, a grid size of
100m x 100m is desirable. The Velodyne HDL-64E has a frequency of up to
15Hz that corresponds to a minimal update time of 67 ms for each point cloud
gathered in a full rotation of the sensor. For the Velodyne HDL-32E, the same
acceleration techniques can be used since the frequency of 20 Hz is in fact faster,
but the point clouds are sparser. Therefore, it is necessary to accelerate the energy
minimization in order to increase the size of the terrain covered and to ensure
a terrain classification with the MRF in real-time. A longer range results in a
more predictive behavior for a path planning algorithm and an improved runtime
makes collision avoidance faster and therefore more secure at higher speeds. This
section describes the runtime optimizations used to achieve this specific goal.
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Energy minimization of an MRF can be done with a variety of algorithms with
different advantages and disadvantages. In graph theory, the min-cut/max-flow
problem [FF56, FF62] is often solved by Graph Cuts [GPS89] or Swendsen-Wang
Cuts [SW8T|. Those algorithms solve the problem for binary classification prob-
lems and hence realize the Ising model (cf. Section2.7). The Wolff algorithm
[WolI89| represents an extended version of the Swendsen-Wang Cuts and allows
multiple labels to swap simultaneously. Approaches that extend Graph Cuts
for more than two labels are e.g., the alpha expansion or the alpha-beta swap
algorithms [BVRO1]. Those algorithms mainly accelerate classification by chang-
ing clusters of labels simultaneously (neighboring spins technique). Unlike image
segmentation, it is essential in the terrain classification domain to be able to main-
tain certain terrain cells even if they are an antipode to their whole neighborhood.
Typical examples for such terrain cells in a natural environment are single small
trees, separate tall but thin rocks, or poles on a field. When approaching these
obstacles, it is essential for an autonomously navigating robot that these single
terrain cells remain obstacles during the energy minimization in order to guar-
antee a collision-free navigation. For this reason the Gibbs sampler [GG84] (cf.
Section 2.9) is chosen to minimize the energy of the MRF. Its sampling strategy
allows it to influence the weight of the particular terrain labels separately w.r.t.
the observed sensor measurements.

Considering an acceleration of the MRF energy minimization, Gonzalez et al.
[GLGG11] propose two methods to construct parallel Gibbs samplers. One
method uses graph coloring to construct a direct parallelization of the sequen-
tial Gibbs sampler and the other method is a complementary strategy which can
be used when variables are tightly coupled.

Martens and Sutskever [MS10| introduce a Markov chain transition opera-
tor that updates all variables of a pairwise MRF in parallel by using auxiliary
Gaussian variables. Their experiments show that the results are comparable to
the sequential Gibbs sampler in terms of mixing speed, while being simple to
implement and parallelize.

Pock et al. [PCBC09| propose a convex relaxation approach for the Potts
model. Their approach uses an efficient primal dual projected gradient algorithm
which also allows a fast implementation on parallel hardware but does not guar-
antee to find global minimizers of the Potts model.

Kato et al. [KBZ96] present a multi-scale MRF model that consists of a label
pyramid in which the optimization is first performed at higher scales by a parallel
relaxation algorithm. Then, the next lower scale is initialized by a projection of
the result. On the one hand, the authors introduce an interaction scheme between
two neighbor grids in this label pyramid and show that these connections allow
for propagating local interactions more efficiently, yielding faster convergence in
some cases. On the other hand, these interactions make the model more complex,
requiring computationally more demanding algorithms.
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A comparative study of further energy minimization methods for MRFs is
given in detail by Szeliski et al. [SZST08].

Two main strategies exist to accelerate the Gibbs sampler. The first one is a
modification of the sampling algorithm itself, as proposed by other authors (see
[MS10, PCBCO09]). Secondly, the terrain grid representation allows a subdivision
into smaller terrain pieces, which can then be processed by an unmodified Gibbs
sampler. Though each of the sub-grids will suffer from the burn-in phase of the
sampling process, the parallelization opportunity — especially on the graphics
card — makes this approach very interesting.

The unmodified algorithm takes the initial grid and a temperature as input
values and runs in a loop until convergence. It iterates over the width and height
of the terrain according to the number of terrain cells in each direction. Within
the loop, it computes the neighborhood and feature energies according to Equa-
tion 4.3 and Equation 4.4, and computes the energy of a possible label change for
each label. This computation uses the exponential function of the negative en-
ergy (cf. [DCO04]) divided by the current temperature value, which is decreased at
the end of each iteration. Afterwards, random numbers are used to sample from
the target distributions and a new label is chosen for each cell with respect to
its energy value in case it yields to a minimization of the energy (cf. Section 2.9).
This is exactly the approach which is used in Table4.3 and will be evaluated as
Basic-algorithm in the following subsection.

The first optimization concerns the energy computation step on the part of
the feature energy. According to Equation4.5, energy is computed as sum of
the neighborhood and the feature energy and both energy values of a cell are
computed during runtime. In contrast to the neighbors, features extracted from
the 3D points contained in a cell will not change within the loop (within one
sensor point cloud). Hence, it is more efficient to compute the features in advance
and to access results during runtime. This improvement will be evaluated as
Feature-algorithm in the following subsection. For example, for a terrain grid of
100m x 100m and a cell size of around 50 cm x 50 cm, this results in a memory
usage of 40,000 floating point values. In addition, this acceleration is independent
of available hardware. In order to take advantage of multiple CPUs, the terrain is
split into slices. Hence, a number of slices is created corresponding to the number
of terrain rows divided by the number of available threads. Each thread handles
the number of terrain cells in each row assigned to it; for example, for the terrain
of 100m x 100m and a CPU with eight cores, eight threads are created each
handling 25 terrain rows with 200 cells of 50 cm x 50 cm in each row. This way,
the whole terrain grid is processed at once by the multi-core processor. In order
to avoid accessing neighbors of different instants of time, the terrain is copied and
updated at the beginning of the loop and each thread retrieves the neighborhood
information from the current copy. For the implementation, the boost library [5]
is used. The CPU parallelization will be evaluated as Multicore-algorithm in the
following subsection.
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Graphics processing units (GPUs) are high-performance many-core processors
that can be used to efficiently accelerate applications. In contrast to CPU par-
allelization, various properties of the graphics card play an important role and
need to be considered carefully for an optimal implementation. In this work, the
OpenCL 1.1 framework [9] is used. To take advantage of the GPU, the terrain
grid is divided into squared work-groups. The work-groups are executed in clock
cycles, one work-group per cycle per GPU core. A large work-group size is able
to hide the memory latency while a small one decreases the amount of active
threads. The amount of work-items within one work-group is restricted for each
graphics card. Therefore, the optimal work-group size needs to be adjusted for
each GPU individually in order to achieve the best performance. The Gibbs sam-
pler is implemented as a GPU kernel that is executed for every work-item with
the exception that the loop and the control of the temperature remains on the
CPU. Since the graphics card limits the maximum number of work-items, the
GPUs will not be able to process the complete terrain in one cycle. In fact, a
total of four cycles are necessary to process all terrain cells, which results in an
interesting comparison, since the Multicore-algorithm is able to process the whole
terrain at once. Besides the splitting of the terrain into squared work-groups, the
local memory of each GPU core is used and relevant terrain cells are copied to
this fast GPU memory. This copying is done in parallel and the local memory of
the GPU allows faster computations during runtime. For example, for a terrain
of 100m x 100 m with an nVidia (R) Quadro (R) FX 830M, 256 work-groups are
used each with 144 work-items that are processed by 48 CUDA (TM) cores. This
general-purpose computing on the graphics processing unit will be evaluated as
GPGPU-algorithm in the following subsection.

4.4.1.1 Evaluation

Evaluation of the runtime optimizations is again performed on a single laptop with
an Intel(R) Core(TM) i7 QM with 1.73 GHz and 8 GB RAM and an nVidia(R)
Quadro(R) FX 830M. MRF classification is performed on real sensor data of
urban, rural, and forest scenarios. During the experiments, cell size and all pa-
rameters are fixed. Performance of the various algorithms is displayed in Table 4.4.
In the domain of terrain classification, it is desirable that nearly all laser scans
are processed in real-time. Therefore, the soft real-time criterion can be defined
over the mean runtime of the algorithm which guarantees that most of the scans
will be processed. In order to guarantee that all terrain classification will be pro-
cessed in real-time, the maximum runtime of the algorithm must never exceed a
threshold. The threshold is given by the maximum update frequency of the LRF,
which defines the hard real-time criterion. In the table, mean values that meet
the soft real-time criterion and maximum runtimes that meet the hard real-time
criterion, both at 67 ms (15 Hz), are denoted by an asterix.
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Algorithm Grid size | Mean Std.dev. Min Max
[mxm| | [ms] [ms] [ms]  [ms]
20x20 | 15.1%* 1.0 11.3  25.8*
40x40 | 51.2%* 2.1 40.2 116.9
Basic 60x60 |102.8 24 82.8 162.3
80x80 |165.2 3.0 140.5 282.0
100x100 | 248.3 3.4 219.3 387.7

20%20 8.1%* 0.7 5.8 14.4%*
40x40 32.6* 1.4 26.8 57.1%
Feature 60x60 75.6 1.9 66.1 123.5

80x80 |125.1 2.2 108.6 161.2
100x100 |206.2 3.1 185.1 307.8
20%20 3.4% 0.3 1.9 8.9*
40x40 13.6* 0.8 8.4 30.6*
60x60 28.1%* 1.2 18.3 46.2*
80x80 43.8%* 1.4 31.6 80.8
100x100 | 67.4 1.6 54.2 124.2

Multicore

(8 CPU cores)

20x20 4.1%* 0.2 3.5 12.0*
40x40 6.2%* 0.3 5.1 14.5*
GPGPU 60x60 11.0%* 0.3 9.7 27.7*

(48 CUDA (TM) cores) g 80 | 16.0% 0.6 141 30.5*

100x100 | 23.6* 0.9 20.5 43.0*

Table 4.4: Runtime results of the different optimizations. All values represent long-
term measurements and result from the direct application to real sensor data of urban,
rural, and forest scenarios. Dimensions of the grid are given in square meters. Mean,
standard deviation, minima and maxima are given in milliseconds. Mean values that
meet the soft real-time criterion and maxima that meet the hard real-time criterion are
denoted by an asterix.
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Figure 4.7: Representation of the mean runtimes as curves. The orange dashed line
indicates that both parallelizations (Multicore and GPGPU) are fast enough to process
the data of the Velodyne HDL-64E (mean update frequency of 12 Hz) for all grid sizes.
The magenta dashed line represents an update frequency of 15 Hz and shows that only
the GPGPU variant is fast enough for a hard real-time criterion on the 100m x 100 m
terrain.

A graphical comparison of the mean runtimes is given in Figure4.7. The or-
ange dashed line represents the measured mean update frequency of the Velodyne
HDL-64E and hence can be used as guideline for a soft real-time criterion. In
contrast to that, a hard real-time criterion defined by the maximum frequency of
67 ms can only be achieved by the GPGPU-algorithm with a maximum runtime
of 43.0ms. The magenta dashed line represents the maximum update frequency
of 15 Hz of the Velodyne HDL-64E. Considering the 20 Hz update frequency of
the Velodyne HDL-32E, each laser-scan contains much less 3D points so that
the criteria can be applied analogously. Though the Feature-algorithm yields the
weakest acceleration, it has the advantage of being hardware-independent and is
used by the two parallelization approaches. At this point it is observable that
even with a non-optimal configuration of work-items and terrain grid, the stan-
dard laptop GPU considerably outperforms the multi-core approach. Compared
to other results, where the Gibbs sampler itself or other energy minimizing al-
gorithms are parallelized, the GPGPU approach yields a sufficient acceleration,
too. Reservations for the terrain segmentation approach where that each thread
(either on the CPU or the GPU) has to deal with the burn-in phase of the sam-
pler. Thus, it is interesting to see, that a parallelization, without a manipulation
of the original Gibbs sampler, is able to process all data in real-time. Results of
the Gibbs sampler optimization are published in [Héselich et al., 2012b).
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4.5 Egomotion Estimation

In order to be able to integrate classification results over time, a local estimate
of the robot’s motion between different time steps is required. The software
(cf. Section3) already uses a simple extended Kalman filter to determine the
dynamic state of the robot in a global coordinate frame. The filter fuses the
information from the IMU with the measurements from the GPS receiver or, if
GPS information is unavailable, with speed measurements acquired directly from
the robot, using the radar-based speed sensor Speed Wedge SWO01. The following
Kalman state is used in order to encode the current state of the robot:

po=( y z v ¢ 9 )7 (4.6)

Here, (z,y, z) and v describe the current position and velocity of the robot. The
angles ¢, v, and 1 encode the robot’s current orientation in roll, pitch, and yaw
angles, respectively. All of these quantities are expressed in the NWU (north
west up) coordinate frame. In the Kalman prediction phase, the commonly used
assumption of a simple linear motion model with additive Gaussian noise ( is
made

Xy + v At cos ¥y cos Yy
Y + v At cos Yy sin iy

2 + v At sin 9,

Hip1 = Vodo + C . (47)
¢t + ¢odoAt
Uy + Voao At
wt + ’l/}odoAt

The values ¢odo, Yodo, Yodo are the angular velocities in roll, pitch, and yaw direc-
tion, respectively, as measured by the IMU. The amount of time in milliseconds
between two rotations of the 3D LRF is given by At. The scalar v,q, describes the
current velocity of the robot, as measured by the robot’s built-in speed sensors.

The next step would be to perform the Kalman update using the measure-
ments obtained by the GPS receiver. For this application however, it suffices to
have an estimate of the robot’s motion between two subsequent time steps. In
particular, it is not required to globally correct positioning information. While
the previous methodology to estimate the relative transformation between sub-
sequent robot poses yields very good guesses, it is generally not precise enough
to be used exclusively. Therefore, a variant of the Iterative Closest Point (ICP)
algorithm on a two-dimensional virtual scan was chosen to further refine these
estimates.

Petrovskaya and Thrun [PT09] describe the extraction of a two-dimensional
scan from data of a Velodyne HDL-64E using a piece-wise planar ground model.
All readings are projected into a 3D grid in polar coordinates around the vehicle
center (cf. Figure4.8). For filtering noise, a representative reading is chosen for
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Figure 4.8: Projection of Velodyne HDL-64E readings into a 3D grid in spherical
coordinates as described in [PT09]. Readings are illustrated as dots. Their height is
indicated by a line that projects readings into the horizontal plane.

each cell as the median of distances. A model of ground elevation is established
by comparing neighboring cells with the same horizontal bearing 6. If the slope is
smaller than a threshold, the point is classified as ground reading. The distance
to the closest obstacle in a target height of 50 cm to 200 cm is used as the entry in
the virtual scan. With only mid-height objects apparent in the scan, overhanging
foliage and small objects, such as curbs or small stones, are not considered for
egomotion estimation. While this method has been developed in the context
of vehicle detection and tracking (cf. Section5.1.1), it works equally well for
egomotion estimation.

In order to refine the results of the extended Kalman filter prediction, point
sets are registered as P = {P;} and ) = {Q;} that correspond to readings within
virtual scans acquired at the prior and the current time step. Therefore, a 2D
variant of the ICP algorithm [Niic09] is used that minimizes the error function

p(Rt)= > |IPi— (RQ; +t)[* , (4.8)
(3,7)eC

with rotation R and translation t. Here, C' is a set of corresponding point in-
dex pairs determined by the nearest neighbor search. The transformation (R, t)
that minimizes Equation 4.8 is computed using the direct method based on SVD.
Therefore, the correlation matrix is computed as

H= Y (P-P)(Q-Q" , (4.9)
(i,9)eC
where P and Q are the means of points in the correspondence set:
_ 1 ~ 1
P:mzpi QZWZQJ . (4'10)
(,5)eC (,5)eC

Next, rotation and translation are calculated separately. First, the rotation is
determined as
R=VU" | (4.11)
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Figure 4.9: MRF classification with and without Egomotion estimation. The image
on the left shows the MRF result on a single 3D scan while the image on the right shows
an interpolation of data gaps in the MRF by accessing the previous terrain classification.
Terrain cells in the direct neighborhood of the robot are included as well as previously
visible regions on the right side of the robot behind some obstacles.

where matrices V' and U are obtained using SVD H = UAV?". Then, the
translation is computed as
t=p,— Ru, . (4.12)

Using egomotion estimates, it is possible to transform the current grid structure
into a preceding coordinate frame by rotating and translating the center of each
cell. Therefore, the MRF is able to access previous classification results to ob-
tain an estimate of terrain conditions where insufficient sensor data are available.
Note that this methodology is analogous to the calibration approach presented in
Section 4.2.2 where multiple camera images were rotated and translated into the
coordinate frame of the 3D LRF. Here, multiple data sets from the same sensor
from different points in time are rotated and translated into the coordinate frame
of the latest data set. Results of this method are visualized in Figure4.9. Due to
self-occlusion and a minimum perceivable distance of approximately one meter,
the area close to the vehicle is imperceptible for the robot. Using egomotion, clas-
sification results are carried over from the previous time step and data is available
for continued navigation. This allows an interpolation in regions with few or no
sensor measurements over small time gaps while larger regions (e.g., like holes or
descents) are preserved. These results are published in [Héselich et al., 2013a| as
joint work with Frank Neuhaus and Nicolai Wojke, who are mainly responsible
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for the results presented in Section4.5. The integration of a couple of sensor
readings over time for the terrain classification task is strictly limited to a few
laser scans due to the real-time criterion. In contrast to mapping approaches,
a path planning algorithm needs the classified terrain grid as fast as possible.
Therefore, the following section describes an evaluation performed on whole 3D
maps, explicitly ignoring real-time criteria.

4.6 Evaluation on 3D Maps

Evaluation so far was carried out on single scans of around 120,000 3D points or
as long-term measurements of performance and runtime. 3D maps are another
research focus in outdoor robotics and provide an alternative to evaluate terrain
classification. Using maps enables a more precise and convenient generation of
ground truth and the evaluation can be performed on millions of points instead
of thousands. For the process, precision is calculated as

ision = —1 (4.13)
precision = TP + TP )
and recall is calculated as
TP
l=— . 4.14
reca TP T FN (4.14)

The following evaluation aims to highlight strengths and limitations of the
terrain classification algorithm by applying it to scenarios which diverge greatly
from each other. Therefore, correctness and robustness of the algorithm were
tested in the Koblenz city forest, on the Koblenz campus of the University of
Koblenz-Landau, and on a farm road outside of Koblenz. Three data sets together
with more than 137 million annotated 3D points were labeled by multiple human
experts over several weeks. The MRF terrain classification usually operates with
a configuration of cell size 0.51m x 0.51m and a grid size of 60m x 60m. For
evaluation, grid size was altered and results were compared w.r.t. the particular
data set. Configuration of MRF terrain classification itself remained fixed for all
experiments, e.g., without any variations of feature or neighborhood component
or the relation between the two (cf. Equation4.5).

Two different types of evaluation are conducted. The first one is a point-wise
evaluation, which means that every annotated point from the ground truth is
compared to the class of the terrain cell that includes it. Since the result of the
terrain classification is used for collision-free path planning, the algorithm should
classify a terrain cell as an Obstacle if any Obstacle point lies within that cell.
Any Obstacle point from the ground truth is considered a FP for the point-wise
classification if the terrain cell is not an Obstacle. Any non-Obstacle point from
the ground truth is in turn not considered a FP if the terrain cell is an Obstacle
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and contains at least one Obstacle point from the ground truth. For all other
cases, the class for the 3D point from the ground truth is compared to the class of
the terrain cell it lies in. The second evaluation takes all other 3D points within a
terrain cell into account and is therefore called the cell-wise evaluation. A terrain
cell is considered a TP if the majority (> 50 %) of points from the ground truth
share its class. The same exception for collision-free path planning from the point-
wise evaluation applies here. Any Obstacle terrain cell is considered a TP for the
cell-wise classification if the terrain cell contains at least one Obstacle point from
the ground truth. Any non-Obstacle terrain cell is in turn not considered a FP if
the terrain cell is an Obstacle and contains at least one Obstacle point from the
ground truth.

The first scenario is a forest road in the Koblenz city forest. It was recorded
on an uphill switchback road through a thick forest region where the class Rough
is highly under-represented. Trees are strung together and besides the main road,
only few patches of ground surfaces are visible to the sensors. Precision and recall
are very high for the classes Obstacle and Street for all grid sizes. Results for
the under-represented class Rough suffer from the mostly occluded forest surface.
Additionally, the class is mainly present next to trees and is mostly overruled
by the MRF neighborhood component; hence, recall values drop to 0.24 for the
point-wise and to 0.43 for the cell-wise comparisons. A visual comparison of the
ground truth against the result from the terrain classification algorithm is shown
in Figure4.10 and evaluation is presented in Table4.5.

The second scenario is the university campus in Koblenz which is characterized
by a semi-urban appearance. During map creation, several loops are successfully
closed and the map is very compact due to the repetitive visits of the locations.
This way, a change in the grid size not only influences the border regions of
the single scans but whole areas are affected by this modification because they
are observed from multiple directions. For example, the meadow marked with a
green bullet in Figure4.11 (b) shows this effect very clearly. Precision and recall
are again high for the classes Obstacle and Street for all grid sizes. Recall for
class Rough is around 0.45 for the point-wise and around 0.70 for the cell-wise
evaluation. Precision is always above 0.60 in all experiments. A visual comparison
is shown in Figure4.11 and evaluation is presented in Table 4.6. The two scenarios
indicate that the class Rough is the hardest to classify in regions with few fields,
meadows, etc., which are the structures this class has been created for.

Results of the two previous scenarios motivate an environment where the
class Rough is over-represented. Hence, the third and last scenario is a farm road
with a lot of fields, meadows, and vegetation. This scenario is the most complex
one due to rainy weather, puddles, translucent vegetation, and vibrations from
the dirt road. A visual comparison is shown in Figure4.12 and evaluation is
presented in Table4.7. The field in Figure4.12 (b) marked with a green X, for
example, is largely occluded by vegetation next to the road. Other difficulties
arise from wet surfaces as some rays from the LRF are reflected and yield false
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measurements. Overall, the MRF terrain classification approach performs well
in this scenario. Recall and precision remain very high for the class Obstacle
and the values for Street are good, too, with exception for precision in longer
distances (grid sizes > 60mx60m). Precision for class Rough is always above
0.92 and recall is comparable to the other two scenarios.

In conclusion, the MRF terrain classification approach performs very well.
Only the feature for the roughness classification requires enough points on the
surfaces of the terrain cells to yield a precise result. The value of the terrain
classification result for a path planning algorithm is described in the next section.

Figure 4.10: Visual comparison of the terrain classification on a forest road map. The
map consists of over 26 million sensor measurements and is characterized by many trees
along the sloped road and the ground surface is almost completely occluded. Human-
annotated ground truth is shown in the upper and the output of the terrain classification
algorithm is presented in the lower image. Evaluation is shown in Table4.5.



Name of data set: Wald1Map | Number of Scans: 263
Number of Annotated Points: | 26,288,749 | Number of Points: | 26,433,792

| Grid Size [mxm]: 30x30 Cell Size [mxm]: 0.51x0.51 Classified Points [No.J: 21,700,151 |

Point-wise Cell-wise
TP [No.| | FP [No.] | FN |No.] | Precision|Recall | TP [No.]|FP [No.]|FN |No.|| Precision | Recall

Obstacle | 14,950,332|1,199,927| 372,315| 0.93 0.98 | 333,438 21,493 6,035| 0.94 0.98
Street 3,984,321 293,956| 899,287 0.93 0.82 | 121,645 5,060 14,099| 0.96 0.90

Label

Rough 322,804 123,988|1,029,202| 0.72 0.24 19,626 10,314| 16,953 0.66 0.54

| Grid Size [mxm]: 60x60 Cell Size [mxm]: 0.51x0.51 Classified Points [No.J: 25,307,120 |
Point-wise Cell-wise

Label

TP [No.| | FP [No.] | FN |No.] | Precision|Recall | TP [No.]|FP [No.]|FN |No.|| Precision | Recall

Obstacle | 17,825,467|1,345,355| 494,975| 0.93 0.97 | 636,045| 47,435 10,206| 0.93 0.98
Street 4,354,376 327,368| 969,382 0.93 0.82 | 194,235| 10,767 27,949| 0.95 0.87

Rough 369,539 161,694|1,149,871| 0.70 0.24 30,169 18,080| 38,347| 0.63 0.44

| Grid Size [mxm]: 100x100 Cell Size [mxm]: 0.51x0.51 Classified Points [No.J: 26,165,412 |
Point-wise Cell-wise

Label

TP [No.| | FP [No.] | FN |No.] | Precision|Recall | TP [No.]|FP [No.]|FN |No.|| Precision | Recall
Obstacle | 18,413,8291,366,655| 651,715| 0.93 0.97 | 723,626| 053,347 11,782 0.93 0.98
Street 4,405,100 338,219(1,005,397| 0.93 0.81 | 212,397 12,136| 36,648 0.95 0.85
Rough 370,587 195,251|1,174,356| 0.65 0.24 32,109 25,220 42,493 0.56 0.43

Table 4.5: Evaluation of the terrain classification on a large forest road map. The map consists of over 26 million sensor

measurements and is characterized by many trees along the sloped road and the ground surface is almost completely occluded.

Human-annotated ground truth is compared to the output of the MRF terrain classification algorithm for different terrain grid
sizes.
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Figure 4.11: Visual comparison of the terrain classification on a campus map. The
map consists of over 64 million sensor measurements and is characterized by build-
ings, asphalt and road segments, some meadows, and small vegetated areas. Human-
annotated ground truth is shown in (a) and the output of the terrain classification
algorithm is presented in (b). Evaluation is shown in Table 4.6.



Name of data set: megal.oopCampus | Number of Scans: 644 N
Number of Annotated Points: 63,038,659 | Number of Points: | 64,134,528 =
=
| Grid Size [mxm]: 30x30 Cell Size [mxm]: 0.51x0.51 Classified Points [No.]: 52,066,300 | =
Label Point-wise Cell-wise §
TP [No.| | FP [No.] | FN [No.] | Precision|Recall | TP [No.]|FP [No.]|FN |[No.|| Precision | Recall 3
Obstacle | 24,310,875 | 3,204,860 | 1,658,402  0.88 0.94 | 346,671 56,938 30,879 0.86 0.92 S
Street 17,280,858 1,606,462 | 3,850,540 0.91 0.82 | 604,101| 39,133 94,417 0.94 0.86 i
Rough 1,589,828 | 983,717(2,287,426| 0.62 0.41 | 121,348| 75,559| 46,778 0.62 0.72 Z
Qo
| Grid Size [mxm]: 60x60 Cell Size [mxm]: 0.51x0.51 Classified Points [No.]: 60,486,169 | ;
Label Point-wise Cell-wise %
TP [No.] | FP [No.] | FN [No] | Precision | Recall | TP [No.||FP [No.]|FN [No.]|Precision | Recall N
Obstacle | 29,408,823 | 3,641,866 | 1,865,557 |  0.89 0.94 | 692,713| 124,771 50,980| 0.85 0.93
Street 19,102,630 |1,781,887|4,413,649| 0.91 0.81 | 983,515 78,095| 194,465| 0.93 0.83
Rough 2,070,151 (1,262,633 |2,535,066| 0.62 0.45 | 239,296| 140,748| 98,613| 0.63 0.71

| Grid Size [mxm]: 100x100

Cell Size [mxm]: 0.51x0.51

Classified Points [No.]: 63,001,171

Label Point-wise Cell-wise

TP [No.] | FP [No.] | FN [No] |Precision | Recall| TP [No.| |FP [No.]|FN [No.]|Precision | Recall
Obstacle | 31,146,895 |3,739,610{2,061,640| 0.89 0.94 | 901,388| 149,155 58,523| 0.86 0.94
Street 19,287,803 |1,846,793|4,629,425| 0.91 0.81 1,043,899 96,356| 248,088| 0.92 0.81
Rough 2,152,302 (1,383,994 |2,631,202| 0.61 0.45 269,038| 180,658 | 120,002 0.60 0.69

Table 4.6: Evaluation of the terrain classification on a large campus map. The map consists of over 64 million sensor measurements
and is characterized by buildings, asphalt and road segments, some meadows, and small vegetated areas. Human-annotated ground
truth is compared to the output of the MRF terrain classification algorithm for different terrain grid sizes. 2
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(b)

Figure 4.12: Visual comparison of the terrain classification on a farm road map. The
map consists of over 48 million sensor measurements and is characterized by rainy
weather, puddles, and translucent vegetation compromising the field of view. Human-
annotated ground truth is shown in (a) and the output of the terrain classification
algorithm is presented in (b). Evaluation is shown in Table4.7.



Name of data set: Feldweg2Map | Number of Scans: 426 N
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Rough 7,495,081 566,796|7,077,159| 0.93 0.51 |1,162,399| &83,640| 556,536 0.93 0.68
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Table 4.7: Evaluation of the terrain classification on a large farm road map. The map consists of over 48 million sensor measure-
ments and is characterized by rainy weather, puddles, and translucent vegetation compromising the field of view. Human-annotated
ground truth is compared to the output of the MRF terrain classification algorithm for different terrain grid sizes. -
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4.7 Spline Templates as Proof of Concept

Another way to evaluate the result of the MRF terrain classification algorithm
is to analyze the result w.r.t. their usefulness for a path planning algorithm. A
large number of navigation approaches have emerged over the past years that
are specialized in off-road scenarios and focus on path planning on rough terrain
surfaces [LMDM98, CMLLO00, YSS00, FPM*05, KABT06, ORMGO07, AES*08].
Generic approaches (e.g., [HK07]) and grid-based strategies (e.g., [YB04, PS05|)
also yield interesting results. Inspired by the success of the methods, the following
generic grid-based strategy was developed to maneuver a robot autonomously
through rough terrain based on the MRF terrain classification.

The data structure introduced in Section4.3.1 can be used by a path planning
algorithm to achieve fast runtimes. For this purpose, a structure element called
spline template has been invented for the path planning of the robot. A spline
template consists of a spline which represents a common approach to vehicle
trajectory generation and a safety distance d which defines a corridor. Within
this corridor, none of the terrain cells that share an overlapping area must be
obstacles. This situation is illustrated in Figure4.13 for two exemplary spline
templates. The current location of the robot is depicted as a blue dot and its
preliminary destination as a red dot. Terrain cells marked in green must be
free from obstacles in order to guarantee a collision-free navigation. Each spline
template can be connected to another, allowing a generic trajectory generation
over arbitrary distances. The selection of the preliminary destinations can be
realized using the Dijkstra’s algorithm [Dij59| or the A* Algorithm [HNRG8|, for
example. For the Mustang MK TA robot described in Section 1, a set of around
30 spline templates is used for three speed intervals, yielding around 100 different
templates. Therefore, the path planning algorithm can access spline templates
with different bends matching the robots current egomotion speed. The major
advantage of this method is that each spline template can be calculated in advance
w.r.t. the properties of each robot. The wheel base of each robot differs, allowing
different steering angles, and the size of the robot directly influences the safety
distance d, thus influences the corridor width. With all spline templates computed
in advance, runtime usage is reduced to efficient terrain cell inspections. Instead
of intersecting a trajectory with obstacles, only relevant cells are tested if the
corridor is free from terrain cells classified as Obstacle.

Table 4.8 shows the performance of the spline template-based path planning
approach in different outdoor tests. The measured computation times prove
the efficiency of the MRF terrain classification. Results on the spline template-
based path planning approach are presented in [Héselich et al., 2011b]. In the
next section, approaches to detect and track dynamic obstacles in unstructured
natural environments are presented.
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Figure 4.13: Example illustration of two spline templates for two different velocities.
A spline template consists of a feasible vehicle trajectory which is depicted as double
lines in the figure. Together with a safety distance d, it defines a corridor which has to be
free of obstacles. It is depicted as a surrounding shell in which all relevant terrain cells
are marked in green. The starting point is marked with a blue dot and the destination
is marked with a red dot. The spline template on the left side can be used for slower
velocities while the spline template on the right side is less curvy and can be used for
faster velocities. The dotted lines at the borders indicate that the spline template is
only applied to a small region within the whole terrain grid.

Preprocessing Path planning

Scenario  Duration Mean Std. Dev. Mean Std. Dev.
[min:sec]| [ms] [ms] [ms] [ms]
campus 5:39 36.69 4.59 1.11 0.38
asphalt road 20:40 40.10 5.89 1.65 0.92
forest 12:45 52.73 7.42 1.38 0.63
farm/dirt road|  11:34 43.93 7.56 1.61 0.92
city 26:53 39.62 5.59 2.42 1.71

Table 4.8: Computation time of a path planning algorithm using the terrain classifica-
tion result in different scenarios. The table shows the performance of the preprocessing
in form of the terrain classification and the path planning with spline templates on
different kinds of surfaces and in various scenarios.






CHAPTER 5

DETECTION AND TRACKING
OF MOVING OBJECTS

Besides static obstacles and different terrain conditions, there are also dynamic
obstacles in the environment of the robot which need to be detected as such. A
successfully detected and tracked dynamic obstacle allows a prediction in which
direction the object will move in order to prevent unintended behavior or even
accidents. Different types of dynamic obstacles exist of which vehicles and pedes-
trians play an important role in the terrain classification context. The following
section is divided into three parts. Section5.1 describes a detection and tracking
approach for dynamic vehicles in 3D LRF data. Pedestrian detection and track-
ing is split up into a camera-based (Section5.2.2) and a laser-based approach
(Section 5.2.3).

5.1 Detection and Tracking of Dynamic Vehicles
in 3D LRF Data

Detection and tracking of dynamic vehicles is an essential task for collision-free
autonomous navigation of outdoor robots. Unlike obstacles regarded in the ter-
rain classification problem, dynamic vehicles are characterized by their motion.
One aspect covers a reactive and foresightful path planning. Another less obvious
aspect deals with the fact that other vehicles drive on the best available surfaces,
too. Hence, it is possible to infer surface conditions from the trajectories of other
vehicles, which will be exploited later (cf. Section 6). Being able to perceive other
traffic participants is therefore a prerequisite for an advanced terrain classifica-
tion in this scenario. In urban areas, vehicle movement is restricted to areas
such as roads and parking lots. Generally, information about the road network
can be used for background separation and motion prediction. In contrast, such
information is not always available in unstructured environments, making vehicle
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detection and tracking more challenging. The approach to vehicle detection and
tracking developed for this thesis is independent of any prior knowledge of the
environment, in particular of the road network. It handles vehicles of various ap-
pearance, size, and speed as well as partial and full occlusions over short periods
of time. This approach uses the data of the Velodyne HDL-64E and is able to
detect and track vehicles within 360° in large distances around the robot. The
high frequency of the LRF allows algorithms to detect changes in a split second.
For this purpose, an existing approach of Petrovskaya and Thrun [PT09| that was
designed for the DARPA Urban Challenge in 2007 is extended. The approach
heavily relies on road network information for background subtraction in order to
reduce the number of false positive detections and to reduce the computational
load of continuing vehicle hypothesis verification. Existing work is advanced to
unstructured environments without limiting search space to areas of likely vehicle
occurrence. An overview on related work in this field is presented in Section 5.1.1.
In unstructured environments, potential candidates for dynamic objects occur
almost everywhere due to changes caused by inaccurate egomotion estimates as
well as leaves, bushes, etc. The applied sensor data interpretation is presented in
Section 5.1.2. Therefore, a foreground separation is executed using temporal and
geometric cues and described in Section 5.1.3. In order to deal with sensor noise
and sporadic range readings, the two-dimensional virtual scan of Petrovskaya and
Thrun [PT09] is extended to a Gaussian environment model that captures the
local point distribution in the neighborhood of each reading. Following previous
work [Vu09, ZT98|, line and corner features are used to guide vehicle localization
in areas of change. Vehicle tracking is briefly depicted in Section5.1.4 and is
carried out using a Rao-Blackwellized Particle Filter as described in [PT09]. The
approach is evaluated on publicly available and own data sets in Section 5.1.6.

5.1.1 Related Work

Over the past few decades, a large number of detection and tracking approaches
have been developed, especially for the DARPA Grand and Urban Challenges.
Existing approaches can be divided into appearance-based and motion-based
methods.

Appearance-based methods on the one hand allow an identification of dynamic
objects even if they are currently not moving. Sun et al. [SBMO06] give a survey
on vision-based vehicle detection and tracking over the last 15 years. Most vision-
based approaches locate potential vehicles based on visual cues. Hypothesis are
then validated using template-matching or binary classification.

During the Grand and Urban Challenges, Broggi et al. [BCC*10| use a wide
baseline trinocular camera system to generate range images of up to 50 m in front
of their robot. After filtering ground readings, remaining points are clustered
to generate object hypothesis. During the VisLab Intercontinental Challenge,
the robot “Porter” is equipped with two stereo camera systems [BBS*T10]. The
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cameras provide information for line marking as well as vehicle and pedestrian
detection. Both systems are supported by multiple LRFs for terrain analysis and
long range obstacle detection.

Wender and Dietmayer [WDO7| generate vehicle hypothesis in planar laser
scans by fitting corner features to point clusters. For verification in camera images,
two separate classifiers for lateral views and for frontal views of vehicles are
trained. Transformation is obtained from the candidate’s corner approximation
in the planar laser scan.

In an approach described by Miller et al. [MCH™09], the output of a commer-
cial vision-based vehicle tracking system is integrated into a multi-sensor envi-
ronment representation. Camera images are used for candidate generation rather
than for validation. However, vision is only a small fraction of the system that is
built around a core of multiple laser and radar sensors.

Dietmayer et al. [DSS01] use only LRF data to detect traffic participants
exclusively based on their geometry. The authors also fit oriented bounding
boxes to point clusters in planar laser scans in order to obtain geometric extends.

Morris et al. [MHMO8] use a combination of 2D and 3D scans to identify vehi-
cles in cluttered environments. The 2D scans are used for hypothesis generation
which are further examined in the 3D scans. A linear support vector machine
(SVM) is trained to discriminate vehicles from clutter.

Lai and Fox [LF10| use a SVM as well. They discriminate between multi-
ple classes of objects based on geometric features generated from the data of a
Velodyne HDL-64E.

Motion-based methods on the other hand create candidates in areas of change
and therefore only detect moving objects. Explicit discrimination based on ap-
pearance is avoided in order to to overcome high intra-class variance. Instead,
motion is used as a predominant feature for object detection.

Wang [Wan04| detects moving objects as a pre-filter for simultaneous local-
ization and mapping. The environment is represented by two distinct occupancy
grid maps: one for static and one for dynamic objects. In a related project, Wang
et al. [WTS03| use a motion-based approach to detect pedestrians and vehicles in
planar laser scans. For object tracking, an extended Kalman filter with Multiple
Hypothesis Tracking [CH96]| is used.

Coué et al. [CPL*T06] provide a Bayesian formulation of occupancy maps that
associates a velocity with each grid cell. Cell movements are predicted using a
linear velocity model. Gindele et al. [GBSDO09] formulate Bayesian Occupancy
Filter Using Prior Map Knowledge (BOFUM) to incorporate a priori knowledge
about the street layout. In order to reduce computational expenses for BOFUM,
Brechtel et al. [BGD10] introduce a probabilistic sampling-based solver.

A comprehensive collection of the scientific results obtained at the DARPA
Urban Challenge by participating finalist teams is given in [BIS09|. The robot
“Boss” of team Tartan Racing [UAB108] is equipped with a combination of in
total 18 laser and radar sensors, including a Velodyne HDL-64. Lasers are used
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to cluster points, whereas radars are used for speed estimations. In close and
medium range, line and corner features are fit to object clusters. Depending
on the geometric approximation, objects are tracked using the bicycle model
[KWSDO04] or a constant acceleration model.

Team MIT [LHT'08] uses a combination of 12 planar LRFs and a Velodyne
HDL-64E for environment perception. Additionally, 15 radar sensors cover the
area around the vehicle in order to obtain precise velocity estimates in long dis-
tances. Environment is represented by an array of cells where each cell stores
information about the occupancy of the area it represents.

The Stanford Racing Team [MBB™08| is another participant of the DARPA
Urban Challenge. Petrovskaya and Thrun [PT09] use a model-based approach for
vehicle detection and tracking from 3D laser data by extracting a two-dimensional
planar scan. Their model is used for precise motion estimation instead of vehicle
classification and their approach does not require data association.

5.1.2 Sensor Data Interpretation

The system presented here is based on the approach of Petrovskaya and Thrun
[PT09]. The authors introduce a measurement model for vehicle tracking with
planar LRF that allows direct interpretation of range data. This section describes
the measurement model as well as the method used to generate a two-dimensional
scan representation from data of a 3D LRF.

Vehicle tracking is a problem in two-dimensional space as vehicles always re-
main in contact with the ground. However, the 3D data of the Velodyne HDL-64E
can be used to filter ground readings as perceived by planar LRFSs in uneven ter-
rain. Petrovskaya and Thrun [PT09] describe the extraction of a two-dimensional
virtual scan from Velodyne HDL-64E data with a simple ground model. There-
fore, all readings are projected into a 3D grid in polar coordinates around the
vehicle center (cf. Figure4.8). To filter noise, a representative reading is chosen
for each cell as the median of distances. A model of ground elevation is estab-
lished by comparing neighboring cells with the same horizontal bearing 6. If the
slope is smaller than a threshold, the point is classified as ground reading. The
distance to the closest obstacle in a target height from 50 cm to 200 cm is used
as entry in the virtual scan (cf. Section4.5).

The measurement model [PT09] approximates vehicle geometry as a rectan-
gular shape of non-zero depth (cf. Figure5.1). The likelihood of range readings
is modeled as piece-wise constant function over the domain of range readings
[Tmin, Tmax ). Naturally, the likelihood of a reading falling onto the vehicle surface
is highest. Due to self-occlusion, there are at maximum two sides visible at a
time. Rays that extend through the visible vehicle surface into and beyond the
vehicle interior are assigned a low likelihood. Similarly, range readings that fall
short, but not in the close vicinity of the vehicle, receive a penalty. However,
the likelihood of short readings remains high, as occlusion is common in dynamic
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Figure 5.1: Geometric regions involved in measurement model computation as de-
scribed by Petrovskaya and Thrun [PT09].

environments, caused by objects such as road signs, pedestrians, or other vehicles.
By assigning a minimum likelihood to readings in the close vicinity of the vehicle,
the measurement model enforces a region of free space.

5.1.3 Foreground Separation

Natural unstructured environments are characterized by a low signal to noise ratio.
While LRFs provide precise geometric measurements in indoor environments, in
the outdoors, vegetation causes sporadic and large changes due to its scattered
appearance. Additionally, environmental factors such as wind cause small and
continuous changes. Errors in data reduction of full 3D point clouds to 2D virtual
scans reinforce the effect.

While Petrovskaya and Thrun [PT09| restrict vehicle detection to the area
close to the road, this approach explicitly does not use road network information
to reduce the number of false positive detections and to reduce the computa-
tional load of continuing vehicle hypothesis verification. Consequently, a fore-
ground model that incorporates geometric as well as temporal cues is introduced.
With interest only in moving vehicles (as static vehicles are already covered by
the terrain classification), the foreground is defined as all points that fall onto
approximate piece-wise planar object structures that exhibit motion.

Movement is perceived as change in the environment. To distinguish move-
ment from background noise, a model of Gaussian distributions is created. Let
z; be the range reading of the i-th ray in the virtual scan. Then z; is the median
of the set of readings C;; of the j-th cell in the i-th cone of the spherical grid,
where j is the index of the cell with the closest obstacle. The normal point dis-
tribution is computed from the set of readings C; ; and its eight-neighborhood in
the spherical grid to obtain samples X; ~ N (u,, 3;) at time ¢ for all rays in the
virtual scan.

At time steps t — 1 and ¢, samples X;_; and X; are compared to detect
change. If sample X;_; is classified as background and sample X, is classified as
foreground, a change in the environment is accepted. If both samples are classified
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Figure 5.2: A vehicle on a rural highway as perceived in the model of Gaussian distribu-
tions. Covariances of local point distributions are drawn as ellipses (blue: background;
green: foreground).

as foreground, their means are compared using the squared Mahalanobis distance
(cf. Equation 2.38). A change in the environment is accepted if D? is greater than
a threshold ¢4.

To account for situations where the normal point distribution is an impre-
cise approximation, the size of the largest eigenvalue of the covariance matrix
is thresholded. A sample is classified as background if the largest eigenvalue of
covariance 3, is larger than a threshold ¢,2. Hence, translucent and scattered
objects are not considered in vehicle detection.

Figure 5.2 shows a vehicle on a rural highway. The vehicle has a piece-wise
planar surface with high point density and is therefore considered as foreground.
Vegetation and clutter in the distance are classified as background due to their
scattered appearance. The Gaussian environment model is computed from the
data of the 3D spherical grid rather than the 2D virtual scan. Accordingly,
planar structures in the 2D virtual scan are not considered foreground if readings
sporadically hit the surface (e.g., a mid-height fence). A visualization of the
Mahalanobis distance for the scene displayed in Figure 5.2 is given in Figure5.3.

Line and corner features yield an accurate description of the local vehicle ge-
ometry. They support the underlying rectangular geometry of the measurement
model. To acquire local shape estimates, a region-growing segmentation is per-
formed in areas of change to obtain point clusters of local geometry. Then, line



5.1. DETECTION AND TRACKING OF VEHICLES 81

Figure 5.3: Illustration of the Mahalanobis distance of a virtual scan. The means
of two foreground samples from consecutive instants of time are compared. The Ma-
halanobis distance is illustrated for one exemplary point in the left image where the
point corresponds to a measurement on the surface of the vehicle on the right image
(indicated by the blue arrow).

and corner features are fitted using a random sample consensus (RANSAC)-based
[FB81] approach. The following two models are fit to data:

Two-sided model: Due to self-occlusion, there are at maximum two sides vis-
ible at a time. A set of two perpendicular lines is used to describe corner
configurations.

One-sided model: If there is only one side visible, a single line is used to de-
scribe all readings within the point cluster. The one-sided model is a de-
generate case of the two-sided model, where the position of the shorter side
is free.

If the data does not fit either of the two models, the point cluster is disregarded.
Fitting a line ! = (n,,n,, —d)T with normal n = (n,,n,)T and distance to
origin d requires two points. As error function, the absolute Euclidean distance

p(P.1) =P -1 (5.1)

between point P = (P, P,,1)T and line I is used. Corner estimation requires
three non-collinear points. The first two points define a line Iy and the third
point defines the position of the orthogonal line I, that passes through the point
and its perpendicular foot on l;. The error is computed as the minimum error
between P and lines (I,13) as

p(ﬁ, (l17 l2)) = min(p(ﬁ, ll)v p(ﬁ, l2)) : (52)
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Figure 5.4: Areas involved in motion evidence score computation [PT09].

The error threshold is configured to equal the vehicle surface width of the mea-
surement model. RANSAC is configured to terminate according to the adaptive
stopping criterion where the number of iterations is updated based on the highest
inlier ratio observed so far [HZ03|.

The framework of RANSAC for (quasi-)degenerate data (QDEGSAC) [FP06]
is used to deal with quasi-degenerate configurations where few readings fall onto
the shorter side. In a series of RANSAC runs, QDEGSAC identifies degenerate
configurations and selects the best fitting model based on the ratio of inliers to
outliers.

5.1.4 Vehicle Detection and Tracking

The success of previous studies encourages the use of motion as a predominant
feature for the detection of moving objects. Therefore, a motion-based approach
is used for vehicle detection and tracking in unstructured environments.

First, vehicle candidates are separated from background. Then, candidates
are localized that are not yet explained by an existing track. In two consecutive
frames, candidates are validated based on their motion pattern.

Given local shape estimates from the foreground test, vehicle localization is
necessary to handle partial occlusions where the object is split up into multiple
clusters. Similar to [PT09], the Scaling Series algorithm [PKTNO7] is used for
vehicle localization. In order to derive a more relaxed version of the measurement
model, vehicle surface width is inflated proportional to the sample radius.

With local shape estimates available, the vehicle pose is roughly known. For
corner configurations, the pose is known up to a 90° ambiguity in orientation.
Considering line configurations, an additional search for the position along the
given shape estimate is performed.

Search space is defined by two spheres that resolve the 90° ambiguity in ori-
entation. With an approximation of shape available, it is not necessary to con-
sume the entire free space in early iterations, because position and orientation
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Figure 5.5: Camera view and laser data with a virtual scan of the detection and
tracking of a driving vehicle. The example scenario shows the successful detection and
tracking of a driving vehicle (yellow) in a difficult unstructured forest region.

are roughly known. In total, the algorithm runs four iterations until the target
vehicle surface width is reached.

For track validation, the motion evidence score of Petrovskaya and Thrun
[PT09] is used. The motion evidence score describes how likely change was caused
by a moving vehicle, considering the areas that altered due to movement. Fig-
ure 5.4 shows a moving vehicle in time steps ¢ — 1 and ¢. The area in front of the
vehicle at time ¢ — 1 was previously free and became occupied. The area behind
the vehicle in time step ¢ was previously occupied and became free. The motion
evidence score requires knowledge of the candidate’s speed. However, when a
candidate is first localized, the motion pattern can be tested against a minimum
velocity v, to quickly rule out changes that do not fit the model.

For vehicle tracking, a Rao-Blackwellized Particle Filter is used that samples
directly from the measurement model. A detailed description is available in the
original paper [PT09]. Experiments revealed that spurious measurements in the
background are not hindering tracking performance. Therefore, all points in the
virtual scan are used for vehicle tracking, including points that were previously
classified as background. An example of a successfully tracked vehicle in a forest
environment is shown in Figure5.5. The approaching vehicle is shown in the
camera image on the left and the tracking is shown as a yellow rectangle in the
virtual scan on the right.

5.1.5 Egomotion Estimation

Egomotion estimation is another essential aspect of the system. With an impre-
cise or unavailable estimation, the movement of the robot causes false alarms
in form of vehicle candidates from stationary objects. Therefore a localization
module is integrated in the software framework (Chapter 3) to solve this task. A
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Om-30m | 30m-50m | 50 m-80 m
Average detection time  [No. frames|| 3.38 3.50 11.33
Minimum detection time [No. frames] 3 3 10
Maximum detection time [No. frames] 5 5 12
Number of misses [No.| 0 0 6

Table 5.1: Number of frames required for vehicle detection and number of total misses
in 0m—30m, 30 m—-50 m, and 50 m—80 m.

description of the localization module developed by Volk [Vol09] and used in this
approach is available in Section4.5.

5.1.6 Evaluation

The system is evaluated with regard to detection times in ranges 0 m—30m, 30 m—
50m, and 50m-80m. The test sequence contains in total eight vehicles that
drive towards the robot with velocities between 60 km/h-80km/h. To enable
multiple detections in different ranges, the tracker is configured to drop tracks
after one frame. Table5.1 summarizes the results. In the range of 50 m-80m
only two out of eight vehicles were detected. Detection times ranged between 10
and 12 frames. Due to the limited angular resolution of the Velodyne HDL-64E,
only few readings fall onto the vehicle surface in long distances. Furthermore,
inaccuracies in ground detection cause noisy measurements that are disregarded
by the foreground model. In ranges 0m-30m and 30m-50m all vehicles are
successfully detected. Detection times average between three and four frames.
The maximum detection time is five frames for both ranges. With at least three
frames required for vehicle detection, the system performs close to the theoretical
minimum in ranges up to 50 m.

The overall performance is further evaluated on the publicly available DARPA
Urban Challenge data set [HAOT11|. The data set depicts the DARPA Urban
Challenge finals from the perspective of team MIT’s robot “Talos”. Evaluation is
carried out by counting total number of detections and misses on mission files 2
and 3. Both missions sum up to a total of 4 hours and 40 minutes of autonomous
driving over a distance of 62.7km. Vehicles were considered for detection if they
were within 50m of the robot and visible in the virtual scan, e.g., not fully oc-
cluded by other objects. Moving vehicles are counted as missed in two situations:
1. if the vehicle is not detected and 2. if the track is not maintained during
close contact. Specifically, vehicles must be tracked when entering an intersec-
tion and when passing the ego-vehicle in close range. Qualitative measures, such
as minimum and maximum detection times, are omitted due to missing ground
truth.

Table 5.2 summarizes the results. A total of 361 out of 371 vehicles are cor-
rectly identified and tracked. Several misses occurred where vehicles are driving
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Mission Duration | Distance | Detected | Missed
[s] [km]| [No.| [No.|

2 5,428 21.5 153 6

3 10,414 41.2 218 4

Table 5.2: Summary of overall performance on the DARPA Urban Challenge data set
of Huang et al. [HAOT11].

Runtime: mean / standard deviation in ms
Scenario Scan | Detection | Validation | Tracking | Total
City center |23 /3| 5 /3 12 /13 13/9 |54 /15
Forest 26 /4| 12/5 15/ 14 0/0 |53/16

Table 5.3: Mean and standard deviation of runtimes in a city and in a forest scenario.

in the opposite direction on a divided highway. The view onto the other side
of the road is obstructed by evenly spaced trees on the median. Consequently,
vehicles are partially occluded with only few readings falling onto the vehicle sur-
face. Furthermore, it has been revealed that the initial detection of slow moving
objects is challenging. Several misses are caused by slow moving traffic in the
middle of the road or close to an intersection. Near misses occur at intersections
with approaching vehicles that are overly careful (to slow). Generally, these ve-
hicles are detected when entering rather than on approaching the intersection.
However, once these vehicles are detected, tracking remains stable. Occasionally,
the robot approaches an intersection where another vehicle is already waiting. As
vehicle localization is initiated in areas of change, the vehicle is not detected until
it moves off the stop line.

For runtime evaluation two data sets are analyzed. The first data set was
recorded during a trip through the congested city center of Koblenz. It is char-
acterized by frequent traffic and partial as well as full occlusions, with up to ten
vehicles being tracked simultaneously. The second data set was recorded in a nat-
ural forest environment. The data are characterized by vegetation and clutter.
However, there was no encounter with other traffic participants. Table5.3 sum-
marizes runtimes on a 2.53 GHz Intel Core 2 Duo. The system performs equally
well in both scenarios with runtimes of in average under 55 ms per frame, which
is lower than the update frequency of the Velodyne HDL-64E. These results are
published in [Wojke and Héselich, 2012].

5.2 Detection and Tracking of Pedestrians

Autonomous robots need to perceive pedestrians in their environment in order to
avoid collisions or to interact with them. Unlike vehicles, pedestrians possess a
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much more arbitrary movement set since they are not bound to a certain driving
direction. Furthermore, they are smaller and move much slower than vehicles,
making them very hard or even impossible to detect by motion only. Therefore,
shape-based approaches are widespread since they allow detection and tracking
of stationary pedestrians and techniques can be applied to several sensor types.

5.2.1 Related Work

Systems using camera images for pedestrian detection and tracking in outdoor
scenarios are widespread and an active research community is addressing this
topic. In the past years, a large number of approaches emerged and significant
progress could be observed. A recent publication of Dollar et al. [DWSP12] es-
pecially addresses this situation and presents an elaborate evaluation of sixteen
state-of-the-art detectors. Evaluation yields that despite the steady progress over
the last years, there is is still room for improvement in case of low resolution im-
ages or for partially occluded pedestrians.

Regarding the components of current detectors, the trainable system of Papa-
georgiou and Poggio [PP00] can be seen as pioneering work for many approaches.
Their approach computes a feature vector from a detection window that is classi-
fied afterwards by a SVM [CV95| with a polynomial kernel. The authors present
a large number of features and select relevant ones manually to detect faces,
persons and cars.

Viola et al. [VJS03| present an approach that is based on their previous work
on facial recognition [VJ11|. Their approach uses AdaBoost [F'S95]| combined with
decision trees for learning. Classification is distributed on a cascade of true/false
decisions and is further accelerated by computation principles for rectangular
sums presented by Crow et al. [Cro84].

Dalal and Triggs [DTO05a| present the “Histograms of Oriented Gradients
(HOG) feature which is able to encode the shape of a pedestrian in a robust
way. It is computed from normalized three-dimensional histograms quantized in
position and gradient orientation. Dalal and Triggs use a linear SVM for clas-
sification. Prisacariu and Reid [PR09| demonstrate the real-time capability of
the HOG feature without losing quality using GPGPU techniques. In a subse-
quent approach, Dalal and Triggs [DTS06] introduce the feature “Histograms of
Oriented Flow” (HOF). This feature adopts the principle of HOG to the optical
flow [HS81]| to increase the classification quality.

Detection quality of HOG-based approaches can be increased through combi-
nation with complementary features and other learning approaches. Wojek et al.
[WWS09] focus on moving images and examine the quality of HOG, HOF and
Haar-Wavelet features in combination with different learning algorithms. Besides
the combination of linear SVM and HOG introduced by Dalal and Triggs, the his-
togram intersection kernel SVM presented by Maji et al. [MBMOS] is examined by
Wojek et al. In addition, AdaBoost and the extension MLPBoost [CMBR12]| are

7
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used. The comparison shows that movement information is helpful for detecting
pedestrians moving sideways.

Walk et al. [WMSS10] present a pedestrian detection system that uses a his-
togram intersection kernel SVM in combination with HOG, HOF, and a new
feature called “Color Self-Similarity” (CSS). The CSS feature encodes the color
similarity of all cells within a detection window and is supposed to describe color
relations from objects and background.

Zhu et al. [ZYCAO6] integrate AdaBoost with HOG features to realize a hu-
man detection system. The authors use the work of Porikli [Por05], who showed
that the fast computation of rectangular sums on integral images is portable to
histograms. An integral image is created for each histogram bin and the result-
ing integral histogram can be used to compute arbitrary rectangular histograms.
The detector of Zhu et al. achieves an acceleration of factor 70, but is unable to
uphold the quality of the original HOG variant.

Dollar et al. [DTPB09| generalize this idea and present the “Integral Channel
Features”. In their approach, the authors investigate various channels and use
the boost approach to determine relevant features. For the detection of pedestri-
ans, eight channels are used: gradient magnitude, gray-value image and gradient
histogram (six channels).

Based on the Integral Channel Features, Dollar et al. [DBP10| publish a
speed-optimized extension. Since gradients and gradient histograms are not scale-
invariant, the authors approximate the necessary pyramid of features from dif-
ferent scales by using neighborhood information. Although detection quality is
affected by this approximation, pedestrians can be detected in multiple images
per second.

Felzenszwalb et al. [FGMR10] propose a part-based approach for pedestrian
detection. Their approach uses the HOG feature as well and defines a two-
dimensional star pattern to model the part-whole relation of the pedestrians.
Felzenszwalb et al. choose a latent SVM which is able to encode the relative
position of the parts as hidden variables.

Breitenstein et al. [BRLT09] present a tracking-by-detection approach for mul-
tiple persons using particle filters in color image series. Their implementation al-
lows for the tracking of large numbers of moving pedestrians in 2D space without
camera calibration or knowledge of the ground plane.

Modern 3D LRFs like the Velodyne HDL-64E enable detection and tracking
within a 360 degree field of view around the robot. Recently, a number of ap-
proaches used the data of LRFs to detect and track moving objects in outdoor
scenarios.

Scholer et al. [SBST11]| use a Velodyne HDL-64E LRF to detect and track
people in 3D point clouds. Their approach allows for the tracking of partially
and fully occluded persons over a certain length of time in indoor areas.

Spinello et al. [SLA11] present a combined bottom-up top-down detector for
pedestrians in Velodyne HDL-64E data in urban outdoor environments. Their



88 CHAPTER 5. DETECTION AND TRACKING OF MOVING OBJECTS

approach is independent from ground plane assumptions and the described de-
tector uses a layered person model. For tracking, a multi-target multi-hypothesis
approach is used and their system achieves good results within a limited range
of 20 m.

Navarro-Serment et al. [NSMH10] use geometric and motion features to de-
tect and track pedestrians while driving in outdoor regions. Their algorithm
detects objects using a virtual 2D slice and then classifies each object using sta-
tistical pattern recognition techniques. Kidono et al. [KMW™T11] extend features
of INSMH10] by a slice feature and by reflection intensities of their Velodyne HDL-
64E. Their approach classifies pedestrians with a SVM in road environments and
is able to deal with low spatial resolution targets.

Thornton et al. [THMO0S8| present a multi-sensor approach including a 3D LRF
for human detection and tracking in cluttered environments.

A probabilistic person detector on multiple layers of 2D laser range scans
classified using AdaBoost [FS95] is presented by Mozos et al. [MKH10]. Each
layer detects a different body part and the conducted experiments reveal robust
detection rates in cluttered environments.

Premebida et al. [PLN09| present a laser-based pedestrian detection system
and focus on information extraction from LRFs. In their work, the authors ex-
plore and describe the potential of LRFs in pedestrian classification and present
results with different classification techniques using automotive and industrial
LRFs.

Carballo et al. [COY08| fuse multiple 2D LRFs on two layers to detect pedes-
trians in uncluttered indoor environments. Gidel et al. [GCB*10] present a pedes-
trian detection and tracking approach using a LRF system on multiple layers, too.
The proposed detector fuses the information from four layers and tracking is per-
formed with a particle filter. Sato et al. [SHT*10] use a LRF with six scanning
layers to track pedestrians with a Kalman filter in urban environments. The ap-
proach maps objects with a certain height to a grid map and uses global nearest
neighbor-based data association.

Despite the steady progress over the past years, there is still room for improve-
ments. In particular, detection is disappointing at low resolutions, for partially
occluded pedestrians, and especially in unstructured outdoor environments where
uncertainties often occur. Furthermore, performance in terms of runtime and
memory consumption is not yet optimal. In the following two sections, two dif-
ferent approaches are presented for camera- and laser-based pedestrian detection
and tracking focused on unstructured environments and their specific challenges.

5.2.2 Pedestrian Detection in Camera Images

A key challenge for an image-based pedestrian detection system is the high vari-
ability of pedestrians. Persons differ in their form, pose, clothing, and color and
hence possess a high inter-class variance. Other difficulties arise from the out-
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door environment. The area around the sensor is unknown and heterogeneous
and parts of the pedestrians can be occluded. Unknown ambient light conditions
complicate the detection and may cause erroneous or falsified sensor data, espe-
cially for color values. In the following section, a complete system for pedestrian
detection is presented according to state-of-the-art techniques. HOG [DT05a] is
used to encode the shape and appearance of a pedestrian. Walk et al. [WMSS10]
present CSS, a feature that describes color relations within a detection window
and forms a well-suited addition to the gradient histograms. The approach of
Walk et al. is modified and integrated into the robotic framework (Section 3).
Computation of the color similarities is identified as a cost-intensive part and
a new structure element that accelerates the computations is presented. This
section is structured as follows. In Section 5.2.2.1, the pedestrian detector is de-
scribed followed by the classifier in Section 5.2.2.2. The training procedure is
depicted in Section 5.2.2.3, and evaluation is presented in Section 5.2.2.4.

5.2.2.1 Detector

The search for pedestrians in an input image uses a sliding window framework
with a fixed window size. Each window needs a binary classification if a pedes-
trian is sufficiently contained. A fixed window size alone results in a pedestrian
detection that is limited to pedestrians of a fix size and is not scale-invariant.
Hence, the input image is transformed into multiple scales and the fixed-size
window operates on each scale with the given offset.

(Classification of all windows on all scales yields a number of detections that
accumulate around the pedestrians (cf. blue rectangles in Figure5.6 (b)). Those
multiple detections for a single target need to be aligned. Different approaches ex-
ist to realize such a thinning or non-mazimum suppression. Dollar et al. [DTPB09|
for example perform a pairwise comparison of overlapping windows and discard
the ones with the lowest decision value. Here, the mean shift algorithm [CMO02]
is used as described by Dalal et al. [DTS06]. The mean shift algorithm assumes
that its input points result from random samples of a single or multiple Gaussian
distributions. In an iterative process, the algorithm estimates the mean of these
distributions using the Mahalanobis distance. Figure5.6 (a) shows an example
in which detections are depicted as blue plus-signs and estimated means as red
crosses. The corresponding bounding boxes are visualized in Figure 5.6 (b) where
the red boxes are the ones selected by the non-maximum suppression.

5.2.2.2 Classifier

The task of the classifier is to perform a binary classification between pedestrian
and non-pedestrian as precisely as possible. Therefore, a SVM is trained for
the detection windows. A linear Soft-margin SVM [CV95, TKO09] is used with a
feature vector that will be described in Section5.2.2.3. Given the two classes w;
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Figure 5.6: Non-maximum suppression using the mean shift algorithm. In the left
image detections are marked as blue plus-signs and estimated means are red crosses,
corresponding to the bounding boxes of the same color in the right image.

and wo with corresponding feature vectors a; with ¢ = 1,...,[, their affiliation is
encoded by y; defined as

+1, if &; belongs to wy (5.3)

g = { —1, if x; belongs to wq
For this task, the LIBLINEAR-library from Fan et al. [FCHT08] is used which is
optimized for linear SVMs with a plenty of data.

5.2.2.3 Training Procedure and Feature Vector

For the training of the SVM, the INRIA data set [DT05a] is used which consists
of 615 positive and 1218 negative samples. Positive samples are extracted from
annotations and negative samples are generated at random at all scales from
images without pedestrians. In order to reduce the number of false positives,
an extended bootstrapping is performed in which the SVM is retrained with
difficult samples. The model created in the first iteration is therefore applied on
images without pedestrians on the whole scale space. Since all detections are
false positives, they are added as such to the model. This step is repeatable
and lowers the number of false negatives, but also influences the number of true
positives. True positives that were close to the hyperplane before an iteration
might not be detected again by the classifier afterwards. It can be observed that
two bootstrapping phases adequately reduce the false negatives while preserving
the number of true positives.
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Figure 5.7: Application and benefit of the new structure element. Similarity computa-
tions for the CSS are shown in (a) and the structure element that is used to accelerate
the computations is visualized in (b). The current cell is marked with an X, elements
contained in the structure element are depicted as plus signs, and cells that are used for
computation are marked with a circle. Extraction of the similarity computations from
the new structure element is illustrated in in (c).

Features encode occurring patterns as multi-dimensional feature vectors. For
the previously described detection windows, the HOG and CSS features are com-
puted.

The HOG feature introduced by Dalal and Triggs [DT05a] is able to bundle
the gradient information and still allows variations in the pose. It encodes the
rough shape of an object and is tolerant to small changes of the shape. HOG-
blocks can be precomputed for the entire input image and individual detection
windows can be evaluated by the concatenation of all contained HOG-blocks. A
detailed description of the HOG feature used in this work is available in [DT05a].

The second feature used in this work is the CSS-feature introduced by Walk
et al. [WMSS10]. Complementary to the shape description of the HOG-feature,
CSS encodes the color information. Color is a difficult feature in outdoor scenarios
and for pedestrians as well. Pedestrians wear different clothes and their skin color
can also vary. Images are taken from different cameras which produce different
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color values. Furthermore, those images can be taken under various lighting and
weather conditions. Those conditions complicate the use of color as a feature.
Dollar et al. [DTPB09| have shown that integral channel features are able to
record a peak in the Hue channel in the area of the head, but not for the rest
of the body. CSS circumvents this limitation by considering color similarities
instead of accessing the color values directly.

For the computation of the CSS-feature, the image is initially converted to the
HSV space. The detection window is subdivided into quadratic cells of size ¢ x(
and for each cell a three-dimensional color histogram of 3x3x3 is constructed. The
histogram is filled with the pixels contained in the cell and a trilinear interpolation
is performed. Afterwards, for each cell the color similarity to any other cell of
the window is computed. The feature is able to describe the similarity of body
parts and the similarity of background regions, which are interrupted by the
appearance of pedestrians (cf. Walk et al. [WMSS10]).

Computation of the similarities for one window is illustrated in Figure 5.7 (a).
In the image, a circle represents the computation of a similarity with the cell
marked with an X.

Inspection of the sliding window reveals an acceleration possibility, which is
to dissolve redundancies by precomputations. The approach works as follows.
Firstly, the whole image is divided into cells of size ( x(. The goal is to compute
all relevant similarities for all cells in advance. The window size determines
the region called support that influences the feature of a single cell. For the
example from Figure5.7 (a) with a detection window of 3 x4 cells, the support
is constructed as the structure element shown in Figure5.7 (b). The support
Sp, Xsp, w.r.t. the number of cells of the detection window in z- and y-direction
is defined as sp, = 2c, — 1 and sp, = ¢,

It is now possible to create a buffer for each cell of the image that stores the
support information (cf. the example in Figure5.7 (b)). Figure5.7 (c) visualizes
how all the similarities displayed in Figure5.7 (a) can be extracted from the
structure element shown in Figure 5.7 (b). Application of the structure element is
possible for all cell windows w.r.t. boundary treatment. The evaluation described
in the next chapter will reveal an acceleration of factor four without any loss in
quality:.

5.2.2.4 Evaluation

Evaluation of the implemented pedestrian detection system follows the instruc-
tions of Dollar et al. [DWSP12] in order to achieve a precise comparison with
existing detectors. Ground truth consists of images from InriaTest [DT05a| and
TudBrussels [WWS09] data sets (for validation) data sets. InriaTest contains 288
images of varying size, illumination, and scenery and is a loose collection of hol-
iday photographs. The 508 images of TudBrussels are gathered from a camera
mounted on a car driving through the city of Brussels, Belgium. In this data
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Detector Resolution
320 x 240 640 x 480 1280 %960

1 o | fps 1 o | fps 1 o | fps
HOG-Dalal n.a.| n.a.(n.a.| 4.18s| n.a.|0.24| 18.52s| n.a.|0.05
rhog8 0.17s]0.01s]5.69| 0.945|0.025|1.07| 4.17s|0.09s(0.24
rhog6 0.235]0.01s]4.29] 1.39s|0.025|0.72| 6.61s/0.10s|0.15
rhog6ess8combo 1.50s5]0.015|0.67[13.895]0.035(0.07]78.995]0.115|0.01
rhogbess8structcombo |0.49s]0.01s|2.05| 3.61s5]0.035(0.28(19.09s5[0.11s|0.05

Table 5.4: Comparison of the different detector runtimes reflecting the runtime opti-
mization achieved with the new structure element.

set, pedestrians are annotated in various poses from a size of 50 pixels upward,
sometimes occluded by vehicles and other objects. Both image data sets are
completely disjoint from the training data. In order to determine if the rectangle
surrounding a detected pedestrian corresponds to the rectangle of a pedestrian
annotated in the ground truth, the PASCAL-criteria [EVGW™10] is used. The
criteria states that two rectangles sufficiently overlap if they share at least 50 %
of their area, resulting in a true positive (TP) matching between detected pedes-
trian and ground truth. Bounding boxes of detected pedestrians that fail this
criteria are classified as false positives (FP), vice versa as false negatives (FN) for
bounding boxes of the ground truth.

In the case of multiple detected bounding boxes corresponding to a single
ground truth annotation, only the one with the highest decision value will be
used while the others are classified as FP. This in turn means that an effective
approach has to conduct a very effective non-maximum suppression to reduce the
impact of these false positives on the classification quality.

Quality of the detector is described by an evaluation curve whose linear z-axis
describes the false positives per image and whose logarithmic y-axis encodes the
miss-rate. False positives per image are computed as

FP (5.4)
# images '
and the miss-rate is defined as
FN
- 5.5
TP + FN (5:5)

Figure 5.8 shows the results for HOG versus HOG + CSS classifiers on both data
sets. The key in the lower part shows the miss-rate at 10~! false positives per
image as reference point.

As observed by Dalal and Triggs [DT05a], the cell size of the HOG feature
is directly linked to the object that is to be detected. A cell size of 6 of the
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Figure 5.8: Comparison of the HOG-based classification versus the HOG 4 CSS-based
variant. Evaluation was performed on INRIA (InriaTest) [DT05a] and TudBrussels
(TudBrussels) [WWS09] data sets.

HOG feature yielded the best results during the experiments. Linear SVMs have
a single parameter C' which has a strong influence on the classification quality.
In this work, a C-value of 0.02 yielded the best results. The cell size of the CSS
feature is another parameter of the classifier. For the experiments, 8 x 8 pixels
per CSS cell were used. The number of retraining phases (RT) is the subject
of controversial discussion in literature. For example, Dalal and Triggs [DT05a|
consider two retrainings appropriate while Walk et al. [WMSS10| take up the
position that a large number should be carried out. In this work, two retraining
phases (RT) mainly lead to convergence for the HOG feature alone whereas the
combination of features requires seven retrainings.

Each combination of parameters can be seen as a new detector which is why
the name of each classifier is formed from these parameters, e.g., as rhog6(HOG
cell size)+css8(CSS cell size)-C0.02(SVM C-value)+RT7(# retrainings). The
classifier is compared to the state-of-the-art approaches in Figure5.9. Curves are
generated from the script of Dollar et al. [DWSP12].

Runtime of the system is evaluated on the TudBrussels data set (508 images,
resolution 640x480) and the result is shown in Table5.4. Since runtime mainly
depends on the size of the images, interpolated sizes of 320x240 and 1280x960 are
used as additional material. Runtimes include loading data, detection itself, and
non-maximum suppression. A detailed description of HOG-Dollar is available in
[DWSP12|. The two variants rhog6 and rhog8 represent the feature with 6 x 6
and 8 x 8 pixels per cell. HOG features combined with the CSS features are
represented by rhog6cess8combo6 and rhog6ess8structcombo, where the latter is
the variant with the new structure element described in Section5.2.2.3. The
values for HOG-Dollar are taken from the original paper and the system used for
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Figure 5.9: A selection of some detection results and a comparison with other state-
of-the-art approaches. The legend follows the notation of Dollar et al. [DWSP12].

all other measurements is an Intel(R) Quad Core(TM) with 2.66 GHz and 8 GB
RAM. These results are published in [Héselich et al., 2013b].

5.2.3 Pedestrian Detection and Tracking in 3D LRF Data

The following part describes a detection and tracking approach for pedestrians in
3D LRF data. It is divided by descriptions of ground removal (Section5.2.3.1),
clustering (Section 5.2.3.2), feature extraction (Section 5.2.3.3), classification (Sec-
tion 5.2.3.4), measurement model (Section 5.2.3.5), tracking (Section 5.2.3.6), and
evaluation (Section5.2.3.7). The main focus here is a tolerant classifier with a
solid measurement model combined with a rapid extinction of particles over time.
This way, many candidates are accepted but rejected very early if they are not
validated continuously.

5.2.3.1 Ground Removal

The task of ground removal is to separate obstacle points from ground points (cf.
[KMW*11, NSMH10]) in order to reduce the computational load and to perform
a first selection of candidates. In unstructured environments, an assumption of a
planar ground surface with a fixed ground height is likely to fail. Planar ground
regions are often interrupted by hills, ditches, and other surface variations. In this
approach, 3D data are inserted into a three-dimensional grid with a resolution
of 0.1mx0.1mx0.1m per cell. Afterwards, cells are sorted according to their
height, computed from the highest and the lowest point in each cell, from high
to low. Each of those candidate cells is not only classified w.r.t. the contained
points, but also w.r.t. the neighboring cells. A sliding window with a height
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Figure 5.10: Accepted pedestrian candidates (green frames) extracted from a large
segmented group (blue frame). The clustering algorithm separates large objects into
smaller ones.

threshold is used to calculate the absolute difference between the highest and the
lowest point among all points of the current cell and in addition all points of
the neighboring cell. Based on the resulting values, a cell is classified as Empty,
Ground or Obstacle.

5.2.3.2 Clustering

The segmentation algorithm yields groups of cells which contain obstacles. After-
wards, those groups need to be prepared for feature extraction and classification.
On the one hand, the clustering algorithm needs to cluster obstacle cells to groups
of sufficiently large 3D distance measurements which represent pedestrian candi-
dates. On the other hand, the algorithm needs to split up large groups of 3D
points in order to separate pedestrians from other obstacles which are close to
them, including trees, buildings and other pedestrians. Unstructured outdoor
scenes are more complex than urban environments considering different elevation
levels in rough terrain, diverse vegetation, and sensor noise.

The following approach consists of two steps and aims to find a high number
of pedestrian candidates even if they are located close to other objects. Thus,
the next step is to further analyze clusters that are too large to represent a
candidate, which in turn yields increased runtime. In order to keep the overall
runtime low, several algorithms are inspected. Approaches like k-means [Mac67|
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Figure 5.11: Rejected pedestrian candidates (blue frames) from a wall (green frame).
The clustering algorithm re-merged the smaller boxes. The large object is also rejected
because it is now again too large.

exhibit fast runtimes but the original algorithm requires knowledge of the number
of clusters k£ in advance and an imprecise initial configuration of medians may
drastically increase runtime. The k-means++ extension [AV0T7]| improves the
initial distribution and provides faster runtimes. The problem of an unknown
k is solved by the dp-means algorithm [KJ12|, which starts with & = 1 and
increments it (if a cluster grows too large), and in addition exhibits fast runtimes.
An example of a resulting separated cluster is shown in Figure5.10 where the
replaced cluster is framed in blue and the new clusters are framed in green.

The aforementioned step results in an over-clustering of large obstacles, which
are now separated w.r.t. the extent of pedestrians. Hence, the next step is to
re-merge nearby clusters without a sufficient gap between them. An example
of re-merged candidate clusters is shown in Figure5.11. Here, the new smaller
clusters cannot be separated adequately and the original group is maintained.
This strategy has the advantage of finding pedestrian candidates close to any
other obstacles at the expense of an increased runtime and the possibility of
more false positives.

5.2.3.3 Features

Pedestrian feature vector per cluster consists of 8 different features introduced in
the literature, where f; and fs are presented by Premebida et al. [PLN09| and
to describe the number of points included in a cluster and the minimum distance
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Figure 5.12: Selected detection results with confidence displayed as green filling. A
standing pedestrian with a confidence of > 99 % is shown in (a) and a running pedestrian
with a confidence of ~ 35% in (b). The pedestrian with a confidence of < 1% in
(c) outstretches his arms while wearing an open jacket and is a good example of the
limitations of the detector. In (d), a tree in a forest region falsely classified as pedestrian
with a confidence of = 65 %.

of the cluster to the sensor. Navarro-Serment et al. [NSMH10] apply a Principal
component analysis (PCA) to the clusters, which represents f3 to f;. Those five
features are: the 3D covariance matrix of a cluster, the normalized moment of
inertia tensor, the 2D covariance matrix in different zones (cf. [NSMH10]), the
normalized 2D histogram for the main plane, and the normalized 2D histogram
for the secondary plane. In another approach, Kidono et al. [KMW*11] introduce
two additional features. The first one, the slice feature of a cluster, forms the last
feature fg and aims to differentiate pedestrians from false positives in the shape
of trees or poles. A cluster is partitioned into slices along the z-axis and for each
slice the first and second largest eigenvalue is calculated. As the descriptive power
of the slice feature decreases over longer distances, only a rough estimate remains.
The other feature introduced by Kidono et al. considers the distribution of the
reflection intensities in the cluster. Since the Velodyne HDL-64E used for this
thesis is not calibrated w.r.t. the intensities, this feature could not be integrated.

5.2.3.4 Classification & Training

The task of the classifier is to perform a binary classification between pedestrian
and non-pedestrian as precisely as possible for each candidate cluster. As pro-
posed by Kidono et al. [KMW™11]|, a SVM is used with radial basis function
(RBF) Kernel [CL11, CV95] together with the feature vector described previ-
ously. For training the SVM, pedestrians are annotated in different data sets
from the campus Koblenz of the University of Koblenz-Landau. Positive samples
are extracted from annotations and negative samples are generated at random
from clusters that have not been marked as pedestrians by a human annotator.
The LIBSVM library from Chang and Lin [CL11] is used to compute a separating
hyperplane which discriminates between pedestrians and non-pedestrians. The
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Figure 5.13: Cylindrical measurement model of the particle filter. The left image
outlines the different regions of the model. The right image shows the model applied
to real sensor data with displayed particle hypothesis (cyan: range readings; yellow:
particle; red: best particle).

classifier returns a vector of confidence values in [0, 1] for each class represent-
ing how likely it is that a candidate belongs to the class (cf. Figure5.12). The
probability of the highest rated class is used as the input value for the tracking
system (cf. Section 5.2.3.6) and can further be used to reject candidates with low
probability.

5.2.3.5 Measurement Model

The initial idea for the tracking is to re-use virtual 2D scans again inspired by
Petrovskaya and Thrun [PT09]. Many pedestrians could successfully be tracked
with an adopted measurement model and a high resolution 2D scan. Unlike in ur-
ban scenarios, varying inclination angles of the terrain and many occlusions (e.g.,
caused by vegetation) occur and are problematic. Hence, a new measurement
model was developed focussed on a sophisticated interaction of the detection al-
gorithm with the particle filter. This allows for discarding the hypotheses early
and enables to deal efficiently with false detection that occur frequently in un-
structured environments.

The measurement model approximates pedestrian geometry as a cylindrical
shape of non-zero depth (cf. Figure5.13). The likelihood of range readings is
modeled according to three different regions omitting the height value. A region
of free space in form of an outer cylinder is modeled around an inner cylinder with
one half facing the sensor and the other half facing away. The majority of range
readings are expected to fall in the region facing the sensor (green cylinder-half).
The minority is expected on the other side (yellow cylinder half) as humans repre-
sent solid objects and laser rays passing a human occur infrequently, e.g., during
limb movement. The region around the pedestrian is expected to contain few
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(a) (b) ()

Figure 5.14: Tracking results in selected situations. Image (a) shows four pedestrians
walking in the same direction with blue lines on the ground visualizing active tracks.
In (b), one of the pedestrians changed his direction and crossed paths with the others.
Since he became entirely occluded once, he had to be re-detected and the previous track
was stored and displayed in white. The third image (c) shows a comparison of tracked
persons (blue tracks) with given ground truth (green tracks). Correspondences with
tracking results and ground truth are shown as yellow lines.

to none points. Hence, the measurement model separates neighboring obstacles
adequately while taking pedestrians very close to other objects into account, too.

5.2.3.6 Particle Filter & Particle Extinction

Tracking is performed using a Rao-Blackwellized particle filter [DAMRO0], again
with 40 particles for each target where target extent is estimated separately for
each positional hypothesis. Each pedestrian hypothesis consists of a 2D position,
an orientation, a rotation angle w.r.t. the sensor, a velocity, and a circular extent.
Velocity compensates for pedestrian movement by applying a model of constant
velocity due to the small possible change within one rotation of the LRF. An ex-
ample of four successfully tracked pedestrians is shown in Figure 5.14. The image
shows how pedestrians are tracked over time (blue lines) and that one pedestrian
is lost once due to occlusions (white line). In case of a false detection, e.g.,, caused
by a tree or a bush, a particle filter would be initiated and remain on the target
until it disappears from view. Since false detections occur inevitably in the tar-
get domain, a solution was sought to handle them. Confidence-based approaches
(in images [BRL*09, SGVG10]) additionally grade system estimations in order
to reinforce correct inferences. In this approach, a particle filter is discarded if
either no re-detection occurs for a predefined time or if re-detections occur but
the confidence of the SVM is insufficiently low to maintain the target. The first
criteria allows continuous tracking in case of occlusions for a short period of time
and the second criteria ensures that no particle filter remains on invalid targets
for a longer period of time. In other words, the idea is that many low-confidence
detections or few high-confidence detections are both able to maintain a target,
even if the tracker yields inaccurate results.
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TP | FP | FN |Precision | Recall
[No.] | [No.] | [No.] |%] | %]

Gravel terrain (12Hz.) | 2358 | 37| 221 98.46 | 91.43
Outdoor area (12Hz.) | 3149 | 1434 | 1633 68.71 | 65.85
Polyterrasse (5 Hz.) | 1849 | 846| 886 68.61 | 67.61
Tannenstrasse (5Hz.)| 1348 | 2501 | 1116 35.02 | 54.71

Data set

Table 5.5: Pedestrian detection results in 3D LRF data in different environments.

5.2.3.7 Evaluation

Evaluation was performed on a laptop with an Intel(R) Core(TM) i7 QM with
1.73 GHz and 8 GB RAM. Training of the SVM is performed on data sets gathered
in vegetated areas on the university campus in Koblenz and the training data sets
are completely disjoint from all evaluation data sets. During the experiments, all
parameters are fixed and pedestrians were annotated within a range of up to 20 m.
The first two data sets have been recorded in Koblenz. Gravel terrain represents a
gravel parking lot on rough terrain with a number of puddles, some bushes and an
overgrown lamp post. The Outdoor area data set has been recorded on a road turn
next to vegetated hillside with two buildings and a tree. Two Velodyne HDL-64E
data sets with pedestrian ground truth are published by Spinello et al. [SATS10,
SLA11|. The first data set Polyterrasse contains pedestrians and bicycles in
an urban area of Zurich, Switzerland. Tannenstrasse, the second data set, has
been recorded in the downtown area and contains additional traffic participants
such as trams and cars. Tables 5.5 and 5.6 show the detection and the tracking
performance, respectively, on the data sets. The true positives (TP) denote the
number of correctly detected/tracked pedestrians, the false positives (FP) denote
the number of incorrectly detected/tracked objects (false alarms), and the false
negatives (FN) denote the missed targets. Precision and Recall are calculated as
before, cf. Equation 4.13 respectively Equation4.14. Runtimes of the algorithm
are summarized in Table5.7.

The presented approach yields interesting as well as unexpected results. Firstly
and as expected, the algorithm performs well on the Gravel terrain data set which
is less crowded than the other data sets. On the Outdoor area data set, perfor-
mance is affected by the additional candidates which reduce the precision. The
decrease of the Velodyne HDL-64E frequency from 12 to 5 Hz has an unexpected
but substantial influence on the SVM classification as the point density of a pedes-
trian drastically changes. Once detected, the particle filter tracks the pedestrians
with 5 Hz, but the missing detections affect the tracking especially on the Tannen-
strasse data set. Recall rates in crowded data sets are expected to be low due to
the additional candidates required to separate pedestrians standing close to veg-
etation. In order to increase the recall values, one would have to exclude difficult
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candidates (which is antithetical to the whole idea of this approach) or exchange
the classifier itself for another method. Considering the runtime results, the al-
gorithms show an overall good performance. The bottleneck of this approach is
the segmentation step, which is affected by the additional candidates created by

the segmentation. These results are published in [Héselich et al., 2014].

Data set TP | FP | FN | Precision | Recall
[No.] | [No.] | [No.] | %] | %]
Gravel terrain (12Hz.) | 2545| 165| 34 93.91| 98.68
Outdoor area (12Hz.) | 4556 | 6448 | 226 41.40 | 95.27
Polyterrasse (5 Hz.) | 2476 | 1454 | 259 63.00 | 90.53
Tannenstrasse (5Hz.) | 1802 | 7218 | 662 19.98 | 73.13

Table 5.6: Pedestrian tracking results in 3D LRF data in different environments. No-
ticeable are in particular the high recall values in comparison with the average detection

recall values exhibited in Table 5.5.

Std. Min. Max.
Mean . .
Data set dev. | runtime | runtime
[ms]
[ms| [ms| [ms|
.| Segmentation | 63.23| 5.21 53.25| 144.78
Gravel terrain .
Omin 45 s Detection 9.76 4.74 0.00 25.43
Tracking 1481 0.96 0.00 4.31
14 Hz
Overall 74.88 7.54 55.63| 159.96
Segmentation | 141.03 | 57.08 96.89 | 349.27
Outdoor area ;
12 min 46 s Detection 31.70| 11.16 3.97 73.47
14T, Tracking 32.89| 26.49 0.00| 159.34
Overall 206.56 | 64.66| 115.84| 582.29
Segmentation | 63.86| 5.05 48.70 87.85
Polyterrasse -
9 min 508 Detection 16.25 8.32 12.90 43.89
5y Tracking 6.60 | 4.69 0.00 43.26
Overall 87.53| 12.32 57.54| 137.17
Segmentation | 551.63 | 199.05 76.65 | 2208.51
Tannenstrasse -
. Detection 4447 | 14.15 7.68| 100.10
1 min 39sec -
5y Tracking 96.53 | 74.86 0.00| 591.14
Overall 693.31]214.32| 108.20| 2390.22

Table 5.7: System runtimes of the pedestrian detection and tracking approach in 3D

LRF data in different environments.




CHAPTER 6

INTEGRATION OF DYNAMIC
OBSTACLES INTO TERRAIN
CLASSIFICATION

Figure 6.1: Where is the road? It runs between the two red dots. Although no road
surface is directly visible, it can be inferred from the knowledge that cars drive on roads.

A complete and optimized terrain classification approach on fused sensor data is
presented in Chapter 4 and the detection and tracking of vehicles and pedestrians
is depicted in Chapter 5. So far, these algorithms work separately from each other
and fulfill specific disjoint tasks on the robot. Nevertheless, the output from one
of these algorithms can be very valuable for the other. Consider Figure 6.1, which
shows an image recorded with the robot’s front camera. If someone would ask a
human being where the road runs along in this image, the answer would probably
be something like: it runs between the two end-points indicated by the red dots
in the image. But how can humans detect the road, the terrain surface in general,
without actually seeing it? The answer is simple: Once humans detect the cars
in this scenario, they use their knowledge that cars drive on roads and draw
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inferences. This kind of inference is possible by knowing the semantics of cars
or other dynamic obstacles and using it in another domain. The knowledge that
cars drive on roads works exactly the same way: if a road surface is visible and
detected as such, tracking of a car can be refined as it is more likely that a
vehicle will follow the road rather than leaving it. This applies to pedestrians
in an inferior way, too, with the knowledge that they tend to prefer flat terrain
surfaces over rough terrain surfaces. For this thesis, only the first kind of semantic
knowledge is relevant as the goal is to improve terrain classification and not to
create a precise tracking approach. Therefore, in the following chapter, a system
is described which integrates vehicles and pedestrians in the terrain classification
approach in order to improve the terrain surface classification with the MRF.

6.1 Trails and Extrapolation

The task is now to integrate the information from the tracking system intro-
duced in Chapter5 into the terrain classification process. Therefore, trails are
introduced. A trail belongs to a single target and contains all relevant avail-
able tracking results and information. It contains the target’s pose, velocity, and
dimensions. For a pedestrian, the trail T' consists of

Te = ((z,v,d)o, (z,v,d)1, ..., (x,v,d);) (6.1)

where x is the x, y-position and #-orientation, v the movement speed, and d the
diameter of the cylinder enclosing the pedestrian. Within the sequence, all entries
are ordered by the time of their occurrence beginning with the oldest. Height is
omitted as pedestrians are assumed to stay permanently in contact with the
terrain surface. Correspondingly, the trail for a vehicle is given by

Ty = {(x,v,w, ), (x,v,w,1)1,...,(x,0,w, 1)) (6.2)

where  and v are identical with Equation 6.1 and width w is the diameter perpen-
dicular to the orientation and length [ the diameter parallel to the orientation for
the rectangular vehicle model. Note that all regions of free space, anchor points,
or other auxiliary variables are removed at this point. All trails of all currently
tracked targets are assigned to them and are provided by the tracking system. If
the tracker loses the target, the trail is marked accordingly and unbound from
the target as the tracker will be discarded. Trails of lost targets are not discarded
likewise as they still contain all the information where other traffic participants
moved in the past. Therefore, the tracking module keeps track of all lost trails
and provides them together with all currently tracked objects.

Note that a single target may create several trails as tracking may lose a
target, e.g., due to occlusions, multiple times or a target may leave and re-enter
the range of the sensor several times. An example for pedestrians is shown in
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Figure 6.2: Tracking results from pedestrian tracking (cf. Section 5.2.3) with visualized
trails. Trails are gathered pose and geometry information of successfully tracked targets.
Detections are highlighted as green bounding-boxes, active (alive) trails are drawn in
blue, and lost (dead) trails are shown in white.

Figure6.2. Green boxes in the image are current pedestrian detections by the
approach described in Section 5.2.3.4. Trails are visualized as white lines for lost
trails and blue lines for active trails yet linked to a target being tracked. In this
example, lost tracks accumulate over a long period of time resulting in many
trails that encode the information where pedestrians moved in the past.

Considering vehicle tracking, a prediction can be made where a vehicle is going
to move and where it will probably be located in the future. This information
is not only interesting for collision avoidance (anticipatory driving) but is also
relevant for terrain classification as the information where vehicles are going to
drive allows inferences about the targeted terrain. Prediction is performed for all
tracked vehicles as T” according to

T\,/ = <(m7 v, w, l7 u)t-i—la (ma v, w, l7 u)t+27 ERI) (ma v, w, la u)t+MaXPrediction> ) (63)

where 7Y, is consistent with 7y with exception for w, which is a measure for

uncertainty in range [0,...,1]. Values for T\, are computed as follows
1 = At v, - cos(by)
Y1 = At - (O Sin(9t>
Oy = At-AD (6.4)
AR
Uty = max(l - (MaxPié(;iition)’ )
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Figure 6.3: Tracking results from vehicle tracking (cf. Section5.1) with visualized
trails. Trails are gathered pose and geometry information of successfully tracked targets.
Tracked vehicles are shown as red rectangles, vehicle trails as blue lines, and predictions
as yellow rectangles for each extrapolation.

This linear extrapolation depends on the previous state as well as on At, which
is the amount of time in milliseconds between two predictions, or between the
first prediction and the current state, respectively. The time of the prediction
from the current state to the current prediction is denoted by Ag;+1. For the
fifth extrapolation step and a LRF update frequency of 12 Hz for example, Ag 144
is (4+1)- % s = 417ms. Values for v, w,l are not altered during prediction.
The threshold MaxPrediction has two functions. On the one hand, it defines
the temporal limit in which prediction makes sense and, on the other hand, it
is used to scale the predictions by starting from 1 and linearly decreasing to 0.
As MaxPrediction is set to 3seconds, prediction for a car, for example, driving
50km/h covers a trajectory of 41.6m. The tracker performs a prediction for
every vehicle. In case the target is lost, only 7y survives while 7%, is discarded
together with the tracker. An example for tracked vehicles is shown in Figure 6.3.
Here, vehicle trails 7y are shown as blue lines and predictions 75, in form of
extrapolations are visualized as yellow bounding boxes. The three cars passing
a crossing are marked by red rectangles. Note that the detection and tracking
approach for vehicles only considers moving objects which means that, for ex-
ample, parked cars are considered stationary obstacles and do not contribute to
the integration. Prediction is not performed for pedestrians as their cylindrical
model is independent from their motion direction.
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6.2 Integration into Markov Random Field
Terrain Classification

With the introduction of trails, position and geometry information of pedestrians
and vehicles is now available for terrain classification in form of Tp, Ty, and T%,.
In other words, for each site within the terrain grid, inspection is possible if other
traffic participants use this cell for their navigation. The next step is to perform
inference with this additional knowledge; more specifically, the task is to improve
classification quality utilizing the new information. Therefore, trails need to be
integrated into the terrain classification process. Reviewing Equation 4.5 reveals
that the two energy terms Ef and Eyr are separable and fulfill disjoint tasks to
create a combined energy value.

The term E; encodes the feature component which describes how likely a
terrain cell belongs to a terrain class. This is done by comparing observed features
against normal distributions of features learned manually in advance. Hence, this
part is a feature-based cell-wise classification of present observations.

The term E,r encodes the neighborhood component which describes how well
a terrain cell fits into its neighborhood. This is done by comparing the current
label of the terrain cell against the labels of the cell’s neighborhood. In contrast to
the feature component, the neighborhood component is completely independent
of all present sensor observations. It rather models the assumption that sites tend
to group or, more precisely, it encodes the prior that sites neighboring each other
are likely to have to the same label (often referred to smoothness prior). This
a-priori neighborhood assumption is realized via the Potts model which provides
a solution for the neighborhood interaction.

The information where other traffic participants move is the result of another
algorithm from present and past observations. But those tracking results alone
are useless for terrain classification. Their usefulness for the MRF terrain classi-
fication approach arises from the a-priori knowledge that vehicles drive on roads
and pedestrians walk on sidewalks. Therefore, Tp, Ty, and 1%, are not considered
additional features but rather knowledge that needs to be encoded in the prior.
Hence, the Potts model needs to be revisited again. For two arbitrary labels
l1,1ls € L the Potts model from Equation 2.37 is defined as

—1 ifly =1
o(ly,ls) = {+1 els; 2 (6.5)

which is the Kronecker delta (also known as Kronecker’s delta) that is named
after Leopold Kronecker (x1823, +1891), a German mathematician. In order to
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integrate the additional knowledge into the model, the Kronecker delta for the
terrain classification approach is extended to

-1 if [ = Iy A ly = Obstacle
—1 - UTp, Ty, 1%, (4,5),) il =12 ANly = Street
—1+1(Tp, Ty, 1Y, (4, 9),) if Ly =12 ANly = Rough
+1 else

&1y, b2, (i, 4)) =

(6.6)
where (i, ), is the site that the label [; is assigned to (cf. Equation2.1) and the
function I(-) enforces an additional prior for the two classes Street and Rough. The
prior integrates trail and prediction information from the tracking approaches as

Tp
(Tp, Ty, T%, (i, ),) = > i(Mgeometrys (4, 7)1,)

m
Ty

+ Z i(ngeometrya ('L.’ j)h) ) (67)

n
/
TV

+ Zi(ogeometrya (i7j)ll) ' (]' - OU)

where Mgeometry s Mgeometry s Ogeometry T€Present the geometry of the vehicles, or the
pedestrians in the coordinate system of the terrain classification w.r.t. their pose
and model, respectively. The function i(-) returns 1 if there is an intersection of
the geometry with the site the that label [; is assigned to, and otherwise 0. In case
of multiple intersections from different points in time within a trail, the function
returns only 1 and ignores the number of total intersections. Furthermore, to
account for the uncertainty in prediction, a site affected by the prediction for a
vehicle has its intersection value multiplied with the uncertainty value u from the
tracking system. In case of multiple intersections from different points in time
within a prediction, the function returns the lowest uncertainty value among the
intersecting elements of 7%,. Note that obstacles are not changed since [; = Iy
from Equation6.5 and [, = I3 A [y = obstacle from Equation 6.6 both return the
same value.

Another design choice concerns the case when a terrain cell is affected by
multiple different dynamic obstacles. For example, a pedestrian walked over a
terrain cell which a car also used before and there is a prediction that a second
car is likely to drive towards that cell. In this case, the function I(-) could return
the highest value from the respective candidates, which would yield a value 1 in
this example. For my approach, I decided to accumulate the results from multiple
targets which yields a value of 14+1+0.7 for the example. Thereby, a strong prior
is enforced on a terrain cell if multiple dynamic obstacles choose it for navigation.

Within the context of terrain classification, the Kronecker delta can be thought
of as a tensor and the differences of the models are as follows. The original Ising
model is a 2 x 2 x 1 tensor and, in fact, a degenerate case of the Potts model
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which is a M x M x 1 tensor where M is the number of labels. The extension ¢’
of the Kronecker delta results in a M x M X (o+ 1) tensor where o is the number
of additional cases. For the MRF terrain classification approach, the Kronecker
delta is a 3 x 3 x 3 tensor as there are three labels Obstacle, Street, and Rough
and two additional cases for the labels Street and Rough as those are possibly
affected by dynamic obstacles. Note that the rejection label Unknown is omitted
and that the label Obstacle is unchanged and still part of the default layer of
d(+). The next section depicts a comparison between the original 6(-) and ¢'(-) on
selected examples where a change in classification is possible.

6.3 Experiments

Experiments are performed on a gravel area that possess a semi-rough surface.
Semi-rough means that the roughness feature does not yield distinct results as
the surface is generally flat but for example, the tires of vehicles leave wheel rots
and the surface condition therefore varies. Regions with low data density occur
separately and in combination with ambiguous surface conditions due to smaller
obstacles in the test scenario.

Evaluation is not possible for this approach as no ground truth exists for
this specific case. Generation of ground truth by human experts is also not
possible here as the effect from the new model introduced in Section 6.2 only
occurs in very specific regions and if dynamic obstacles actually use this region.
For example, in a region with ambiguous features and low data density, a human
expert cannot possibly annotate labels, or at least not without errors, because
there are insufficient data he can rely on. Therefore, he could only guess or maybe
already know the place, in which case the new information would be useless to
the expert as it will not contain anything new. The question here is how can
one rate the change in classification between the MRF terrain classification with
and without the integration of dynamic obstacle trails and predictions. In order
to assess the original terrain classification and the terrain classification using the
new model from Equation 6.6, a visual comparison is provided in Figure 6.4 and
6.5. Figure6.4 shows a vehicle trail and the difference in terrain classification.
In Figure6.4 (a), the original terrain classification is used and in Figure6.4 (b),
the new model is applied. The scenario is well-suited for the comparison as
the bush marked with a green cross yield sparse roughness data in the region it
occludes. With the new model, the region behind the bush is classified differently
according to the information that a vehicle already drove on the respective terrain
cells. The same observation can be made in Figure 6.5 where multiple pedestrians
walk within the vicinity of the 3D LRF. Here, a difference in classification occurs
at three small regions where the knowledge that pedestrians walked over the
corresponding terrain cells is integrated into the terrain classification approach.
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(b)

Figure 6.4: Comparison of activated and deactivated integration of moving vehicles
into terrain classification. The upper image (a) shows the result of the MRF terrain
classification approach in gravel terrain and the lower image (b) integrates the knowledge
from dynamic obstacles. Bounding box and trail of the vehicle are depicted in blue. The
scene is well-suited to demonstrate the result of the integration as the affected terrain
cells contain only sparse data due to the bush highlighted with a green cross.
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(b)

Figure 6.5: Comparison of activated and deactivated integration of moving pedestrians
into terrain classification. The upper image (a) shows the result of the MRF terrain
classification approach in gravel terrain and the lower image (b) integrates the knowledge
from dynamic obstacles. Active trails of pedestrians currently tracked are depicted in
blue and tracks of lost targets are shown in white. The image highlights the integration
effect at three small regions where the labels changed according to the new information.






CHAPTER 7

CONCLUSION

The last chapter of this thesis reviews and summarizes my research and my results.
It is split up into several subsections which state the problem, the methodology,
describe the experiments, outline the results and discuss them, and conclude with
recommendations for further research in this field.

Problem statement

In this thesis I address the problem of terrain classification in unstructured terrain.
The environment is perceived by various sensors and autonomous navigation re-
quires a correct interpretation of these data. Sensors include 3D LRFs, cameras,
IMUs, and GPS receivers. As the natural scenario is complex, fault-prone, and
requires fast processing of sensor data, a robust and fast solution is necessary.
Furthermore, dynamic obstacles also need to be taken into account, in order to
avoid collisions with vehicles or pedestrians.

Methodology

MRFSs have been used frequently in image analysis and other fields and are char-
acterized by their context-sensitivity. The MRF terrain classification approach
presented in this thesis requires a 3D LRF and optionally up to three cameras.
Further sensors like the IMU or a second 3D LRF also contribute to the result
but are not necessary. In a first step, a terrain grid is applied for data reduc-
tion. For all grid cells, features are computed and classification with additional
respect to the MRF neighborhood component is conducted. The resulting grid
contains obstacles and free regions, of which the latter are further categorized
according to their surface conditions. Other traffic participants in natural envi-
ronments involve vehicles and pedestrians. Vehicles are detected and tracked in
the data of the 3D LRF. Pedestrians are detected in camera images and are de-
tected and tracked in the 3D LRF data. Tracking for all candidates is performed
with a particle filter with different measurement models for the respective tar-
gets. Eventually, the results from the algorithms are combined to enhance and
improve terrain classification by integrating the dynamic obstacles and thus using
the knowledge that vehicles drive on streets and pedestrians prefer flat terrain.
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Experiments

Evaluation was performed for all novel algorithms presented in this thesis. Start-
ing with terrain classification, the MRF approach was initially evaluated against
single scans annotated by hand. In the domain of terrain classification of 3D
distance measurements, no ground truth was publicly available and hence had to
be generated by human experts. The algorithm yielded good results in different
test scenarios except for the label Rough, which was the least present label in
specific scenarios and exhibited a reduced true positive rate there. Runtime of
the terrain classification was evaluated in long-term test runs and the presented
optimizations revealed adequate accelerations, e.g., factor 10 for the GPGPU par-
allelization. The MRF terrain classification approach was further evaluated on
3D maps of different challenging environments. Since the maps consist of millions
of 3D points with annotated ground truth from human experts, experiments were
extensive and further focused on variations. These variations differ from map to
map and aim to highlight the strengths and limitations of the approach. Overall,
the algorithm performed well and exhibited different new aspects and also some
weaknesses in this extensive evaluation. Noticeable is especially the classification
quality of the class Obstacle, which remained very high in all test cases. Evalua-
tion of the approaches to detect and track dynamic obstacles could be performed
on different data sets available to the public. The approach to vehicle detection
and tracking in 3D LRF data was evaluated on data sets from the DARPA Urban
Challenge. In all test cases, the algorithm performed well and exhibited excellent
runtimes. The approach to color image-based pedestrian detection performed
well on publicly available data sets, but exhibited only mediocre runtimes, even
if several acceleration techniques were applied. Laser-based pedestrian detection
and tracking was likewise evaluated on data sets available to the public. The
approach performed well during the experiments except for runtime and preci-
sion in very crowded environments. Feasibility of an improved classification by
integrating dynamic obstacle trails and predictions into the MRF terrain classifi-
cation was proven in several comparative experiments in selected regions.
Discussion

The presented approaches to terrain classification and detection and tracking of
dynamic obstacles in unstructured environments yield good to very good results
in all scenarios and exhibit fast runtimes. Generally, the feasibility of successfully
classifying obstacles and terrain with an MRF is proven. Limitations reveal while
using fused data of color cameras and 3D LRF. Here, a straightforward approach
does not yield adequate increase of classification quality to justify the increased
runtime of the algorithms. For improvement, the quality of the camera images
could be significantly increased by hardware purchases which in turn requires even
faster /better algorithms. Enhancing the cameras for other sensor modalities, e.g.,
thermal or multispectral imaging, would also increase results of the algorithms.
An improved calibration, for example, in form of auto-calibration of the cameras
to the 3D LRF, would also contribute to the classification quality. Another ap-
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proach could consider software-sided solutions for the existing camera hardware.
For example, a color-calibration pattern permanently in the field of view of each
camera could be used to deal with illumination and color-related issues. Usage
of color-cameras in the outdoors is complex and fault-prone. Considering time of
day, weather, or seasonal change for example, the same meadow that was green
the last time perceived by the robot’s cameras a couple of month ago is now white
from snow. Researchers are already searching for solutions, e.g., [CN13] gather
experiences of all possible phenomena and handle sensor data accordingly. The
detection and tracking of vehicles in the 3D data yields very good results but is
limited to the first obstacle in a certain direction. Therefore, occluded vehicles are
not detected since they are irrelevant for collision detection, but could contribute
to other algorithms, for example, the knowledge that there might be another
street. Pedestrian detection in camera images is the most advanced research area
encountered in this work. Only runtime and detection quality of low resolution
images need further improvement in this field. Omnidirectional cameras are an-
other alternative to consider as their field of view overlaps completely with the
3D LRF in order to work on fused data for pedestrian detection. Detection and
tracking of pedestrians in 3D LRF data with the approach presented in this thesis
yielded good results. Here, runtime issues occur in very crowded environments
due to the amount of pedestrian candidates. The reason is my design decision to
accept more candidates than other approaches and to drop them early by a close
interaction with the tracker. A change of the classifier or a stricter segmentation
might reduce runtime in crowded environments while maintaining high detection
values.

Recommendations

Despite the success of the developed approaches there is still room for improve-
ments. Besides the main direction I followed for my thesis, from terrain classifi-
cation via detection and tracking of dynamic obstacles to the integration of both,
there are several other directions worth considering. The two most interesting
ones in my opinion concern the advance of the terrain classification from 2D to
3D and the development of a multi-sensor auto-calibration. Extension to a full
3D terrain classification from a 2D grid with height information (which in fact
is a 2.5D Grid) yields an increased runtime but offers several new opportunities.
These opportunities include the ability to drive trough tunnels, handle complex
buildings like parking garages, and to better deal with vegetation hanging from
above like leaves and branches. An approach to auto-calibration for arbitrary
sensor configurations would also bring a lot of benefits to the community and
is a challenging task. A possible solution could be to identify distinct objects,
respectively their patterns or features, for pairs of sensors. In case such an object
is perceived by a pair of sensors, this information could be used re-calibrate their
relative position towards each other online w.r.t. the detected position and, where
applicable, the orientation of the object.
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High Definition Lidar
HDL-64E S2

Velodyne now offers an improved high definition lidar scanner designed
for autonomous vehicle navigation, mapping, surveying, industrial
automation, and other uses. The S2 version of the HDL-64E provides
improved accuracy and a higher data rate than the original version.

High Field of View, High Frame Rate

With its full 360° HFOV by 26.8° VFOV, the HDL-64E S2 provides
significantly more environmental information than previously available.
With its 5-15 Hz user-selectable frame rate and over 1.3 million
points per second output rate, the HDL-B4E S2 provides all the
distance sensing data you'll ever need. The unit's development has
been focused on high data rate, high robustness, accuracy and simple
100 MBPS Ethernet interfacing to the end user.

HDL-64E S2

Patent Pending 64-Laser One-Piece Design

Traditional lidar sensors have relied upon a single laser firing into a mechanically actuated mirror, providing only
one plane of view. The HDL-64E S2's patented one-piece design uses 64 fixed-mounted lasers to measure the
surrounding environment, each mechanically mounted to a specific vertical angle, with the entire unit spinning.
This approach dramatically increases reliability, FOV, and point cloud density.

The HD Lidar Concept

Velodyne's unique HD Lidar technology lets you focus your efforts on control algorithms, image parsing and
application-specific processing instead of multi-sensor mounting, debugging and integration. A prototype of the
HDL-64E S2 was successfully used in the 2005 DARPA Grand Challenge and the HDL-64E played an essential role
in the 2007 DARPA Urban Challenge for multiple prominent teams.

Actual point cloud image
from HDL-64E S2 showing
vehicle at intersection and
other vehicles in vicinity

along with road features.

www.velodynelidar.com




High Definition Lidar
The HDL-B4E 52 provides high definition 3 dimensional information about the surrounding environment.

Laser

Emitters
(4 Groups of 16]

Housing
(Entire
Laser unit spins
Receivers HEH )
(2 Groups of 32])
Motor
= Housing
HOL-64E 52 mounted atop vehicle. Unit spins
up to 900 RPM (15 Hz] to gather data. Mounting

Specifications |

Sensor: * 64 lasers/detectors
» 360 degree field of view (azimuth)
» 0.08 degree angular resolution (azimuth)
* 2B6.8 degree vertical field of view [elevation) - +2° up to -24.8° down
with 64 equally spaced angular subdivisions (approximately 0.4°]
* <2 cm distance accuracy [one sigma)
* 5-15 Hz field of view update [user selectable)
* 50 meter range for pavement [~0.10 reflectivity)
* 120 meter range for cars and foliage (~0.80 reflectivity)
* >1.333 M points per second
» Operating temperature - 10° to 50° C
* Storage temperature - 10° to 80° C

Laser: * Class 1- eye safe
* 4 x 16 laser block assemblies
* 905 nm wavelength
* 5 nanosecond pulse
* Adaptive power system for minimizing saturations and blinding

Mechanical: * 15V +£1.5V @ 4 amps
e <29 Ibs.
* 10" tall cylinder of 8" 0D diameter
* 300 RPM - 900 RPM spin rate [user selectable)
* Environmental Protection IP67

Output: = 100 MBPS UDP Ethernet packets

Copyright ©2010 Velodyne Lidar, Inc. Specifications are subject to change without nofice. Vemdyne erar, Inc.
Other trademarks or registered trademarks are property of their respective owners. MAR 2010 345 Digital Drive, Morgan Hill, CA 95037

lidar@velodyne.com

408.465.2800

www.velodynelidar.com
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High Definition LIDAR™
HDL-32E

Stylishly small, ruggedly built with an unrivaled field of view, Velodyne’s
HDL-32E LiDAR sensor was designed to exceed the demands of the most
challenging real-world autonomous vehicle, mobile mapping, and other
industrial applications.

The HDL-32E measures only 5.7” high by 3.4” in diameter and weighs
less than two kilograms. Its diminutive size and weight make it ideal for all
LiDAR applications, in particular those with constrained form-factors and
pricing requirements.

HDL-32E

Unprecedented Field of View and Point Density
The HDL-32E’s innovative laser array enables navigation and mapping

systems to observe more of their environment than any other LiDAR
sensor. The HDL-32E utilizes 32 lasers alignedfrom +10° to -30° to provide an unmatched vertical field of view, and its patent
pending rotating head design deliversa 360 horizontal field-of-view natively. The HDL-32E generates a point cloud of
approximately 700,000 points per second with a range of 70 meters and typical accuracy of £2cm at 10 Hz. The
resulting comprehensive point cloud coverage within a single data stream makes the HDL-32E an indispensable part of any
sensor suite.

The HDL-32E’s operating temperature range spans from -10° C to +60° C and has an IP rating of 67. Its hardened
structure makes it perfect for vehiclesthat operate in the most unforgivingof environments.

e |

[144.2]
5.68
OVERALL HEIGHT

TWO @.156 LOCATING FEATURES
FOR 5.32" DOWELL PINS

FOUR 10-32 THREADED
MOUNTING HOLES
3/8" DEEP

INTERFACE CABLE

3 METERS LONG

[85.3]
23.36 www.velodynelidar.com
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High Definition LiDAR
The HDL-32E provides high definition 3-dimensional information about the surrounding environment.

Specifications

Laser: e Class1- eye safe
e 905 nm wavelength
e Time of flight distance measurement
* Measurementrange 70 m [1m to 70m)

Sensor: 32 laser/detector pairs

* +10.67t0 -30.67 degrees field of view (vertical)

* 360 degreefield of view (horizontal)

e 10 Hz frame rate

e Operatingtemperature -10° to +60° C

e Storagetemperature-40° to 105° C

e Accuracy:<2 cm (one sigmaat 25 m)

e Angular resolution (vertical) ~ 1.33°

e Angular resolution (horizontal) ~ 0.16° at 600 rpm

Mechanical: e Power:12V @ 2 Amps
* Operatingvoltage: 9-32 VDC
* Weight: <2 kg
e Dimensions: 5.9” height x 3.4” diameter
* Shock: 500 m/sec2 amplitude, 1 msec duration
e Vibration: 5 Hz to 2000 Hz, 3 Grms
« Environmental Protection: 1P67

Output: * Approximately 700,000 points/second
* 100 Mbps Ethernetconnection
 UDP packets
- distance
- rotation angle
Orientation - internal MEMS accelerometers and gyros
for six-axis motion external correction
* GPS time-synchronized with included GPS Receiver

Copyright©2011 Velodyne Lidar, Inc. Specifications are subject to change without notice.
Other trademarks or registered trademarks are property of their respective owners.
97-0038c HDL-32E Data Sheet, Mar 2012

Velodyne LiDAR, Inc.
345 Digital Drive
Morgan Hill, CA 95037

408.465.2800

www.velodynelidar.com



http://www.velodynelidar.com/

APPENDIX C

NOTATION SIMILARITIES AND
DIFFERENCES

The following table contains an overview on the similarities and the few differences
between the notations from the book of Stan Z. Li [Li09] and this thesis. The
intention was to adopt the MRF' terminology as close to the textbook as possible
in order to preserve a consistent terminology and easier comparability with similar
works.

Identifier Li’s book|This thesis
The set of sites. )
The set of labels.

The set of cliques.

A label € L.

A clique € C.

A mapping from S to L.

The configuration (labeling) of a random field.
The configuration /solution space.

A random field.

A neighborhood system.

A Graph.

An energy function.

The partition function.

A clique potential function.

A temperature constant.

An energy value in a Gibbs distribution.

— — —
— —
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APPENDIX D

HARALICK FEATURES

Haralick et al. [HSD73] introduce the famous 14 statistical texture features com-
puted from the co-occurence matrix C' of an n x m image:

1, ifim(p,q) =i and im(p + Az, q+ Ay) =i
Conlio) =34 | < |

0, otherwise
p=1 q=1
where p(i, j) is the (i, j)-th entry of the normalized gray-level co-occurence matriz
(also referred to as gray tone spatial dependency matriz). The partial probability
density functions are denoted by p, and p,.

Angular Second Moment, fr=>2>"4p(,5)}
(]

Contrast fo= Nil {gq: %p(z J)}

n= i=1j=
where |i — j| =n

EZ(U)( )= Bty

Tz0y
where iz, 11y, 04,0, are the means
and standard deviations of p, and p,

Correlation f3=

Sum of Squares: Variance fa= Z Z(l — 1)*p(3, j)

Inverse Difference Moment fr=>.>" mp(i, J)
(]
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2N,

Sum Average fo =2 ipesy (i)
i=2
2N,
Sum Variance fr=2(i— f8)2p$+y(’i)
i=2
2N,
Sum Entropy fo = > Pary(i) log{pery (i)}
i=2
Entropy Jo=— E Zp(iaj) log(p(i, 7))
i
Ng-—1
Difference Variance fi0 = ©®pe_y(i)
n=0
Ng—1
Difference Entropy Ji1 = > Po—y(i)log{p,—y(i)}
n=0
Information Measure Ji2 = %

of Correlation 1
where HXY = ZZP(Z 7) log(p(i, j))

HXY and HY are entroples of p, and p,

HXY1=—3Y p(i, j) log{p.(i)p, (i)}

N

Information Measure fi3 = (1—exp[—2.0(HXY2—-HXY)])
of Correlation 2

where HXY2 = =373 p.(1)py(j) log{p.(1)p,(5)}

Maximal Correlation Coefficient f14 = (Second largest eigenvalue of Q)%

. i,k k
where Q(i, j) = E s



List of Abbreviations

CAD
CPU
CSS
DGPS
FN

FP
FPR
GPGPU
GPS
GPU
GRF
GUI
HOF
HOG
ICP
IMU
LADAR
LIDAR
LRF
MRF
NWU
PCA
PGM
QDEGSAC
RANSAC
RBF
ROC
ROS
SLAM
SVD
SVM
TP
TPR

Computer-aided design

central processing unit

color self-similarity

Differential Global Positioning System
false negative

false positive

false positive rate

general-purpose graphics processing unit
Global Positioning System

graphics processing unit

Gibbs random field

graphical user interface

Histograms of Oriented Flow
Histograms of Oriented Gradients
Iterative Closest Point

inertial measurement unit

Light Detection And Ranging

Light Detection And Ranging

laser range finder

Markov random field

north west up

Principal component analysis
Probabilistic Graphical Models
random sample consensus for (quasi-)degenerate data
random sample consensus

radial basis function

receiver operating characteristics
Robot Operating System
simultaneous localization and mapping
singular value decomposition

support vector machine

true positive

true positive rate






List of Notations

S0 2 QRIS ABRTO Oz NCd

H-H.m-u
o
o

set of sites

a site either in one-dimensional or two-dimensional indexation
number of sites

set of labels

label

number of labels

mapping from § to £

sequence of mappings f, called the configuration of a random
field

term describing available data in a general form, can be further
specified as observed sensor data or features for example
configuration space of a random field, contains all possible con-
figurations F. Also called the solution spac

energy function

energy value (in a Gibbs distribution)

partition function, a normalization constant in the Gibbs dis-
tribution

neighborhood system

set of sites € S neighboring site 7

set of cliques

element of C

another element of C, b C ¢

clique set C C

another clique set C C

clique potential

temperature value

random field

distance value

constant reflecting the pair-site interaction between two sites
graph

node in a graph

sample

set of samples

image

point

rotation matrix

transformation vector

time



J set of pairs of laser scan and corresponding camera image
C co-occurence matrix
p(i,7) entry of the co-occurence matrix C' at the i-th row and j-th
column
I mean
o standard deviation
H correlation matrix
by covariance matrix
bel belief
¢ terrain cell
z virtual scan, a vector of distance measurements in a 360° order
Cij set of sensor readings of the j-th cell in the i-th cone of a virtual
scan
x = x,y,07 pose consisting of position and orientations
q particle
w importance weight of a particle in a particle filter
Tp sequence of pose, velocity, and geometry of past pedestrian
states
Ty sequence of pose, velocity, and geometry of past vehicle states
Ty sequence of pose, velocity, and geometry of predicted future
vehicle states including an additional uncertainty in range
0,...,1]
I function accumulating all trail and prediction values for a site
H Hamiltonian
S Spin
egomotion refers to the proper motion of the host vehicle
v velocity
Quotes
[AEST08] Example of a reference
[Héselich et al., 2011a) Example of author’s own publication

20]

Example of an internet source
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