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Abstract

Through the increasing availability of access to the web, more and more interactions between

people take place in online social networks, such as Twitter or Facebook, or sites where opinions

can be exchanged. At the same time, knowledge is made openly availably for many people,

such as by the biggest collaborative encyclopedia Wikipedia and diverse information in Internet

forums and on websites.

These two kinds of networks – social networks and knowledge networks – are highly dynamic

in the sense that the links that contain the important information about the relationships

between people or the relations between knowledge items are frequently updated or changed.

These changes follow particular structural patterns and characteristics that are far less random

than expected.

The goal of this thesis is to predict three characteristic link patterns for the two network

types of interest: the addition of new links, the removal of existing links and the presence of

latent negative links.

First, we show that the prediction of link removal is indeed a new and challenging problem.

Even if the sociological literature suggests that reasons for the formation and resolution of

ties are often complementary, we show that the two respective prediction problems are not. In

particular, we show that the dynamics of new links and unlinks lead to the four link states of

growth, decay, stability and instability. For knowledge networks we show that the prediction

of link changes greatly benefits from the usage of temporal information; the timestamp of

link creation and deletion events improves the prediction of future link changes. For that, we

present and evaluate four temporal models that resemble different exploitation strategies.

Focusing on directed social networks, we conceptualize and evaluate sociological constructs

that explain the formation and dissolution of relationships between users. Measures based on

information about past relationships are extremely valuable for predicting the dissolution of

social ties. Hence, consistent for knowledge networks and social networks, temporal information

in a network greatly improves the prediction quality. Turning again to social networks, we show

that negative relationship information such as distrust or enmity can be predicted from positive

known relationships in the network. This is particularly interesting in networks where users

cannot label their relationships to other users as negative. For this scenario we show how latent

negative relationships can be predicted.
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Zusammenfassung

Viele Menschen kommunizieren und interagieren zunehmend über soziale Online-Netzwerke,

wie Twitter oder Facebook, oder tauschen Meinungen mit Freunden oder auch Fremden aus.

Durch die zunehmende Verfügbarkeit des Internets wird auch Wissen für immer mehr Men-

schen offen verfügbar gemacht. Beispiele hierfür sind die Online-Enzyklopädie Wikipedia oder

auch die vielfältigen Informationen in diversen Webforen und Webseiten.

Diese zwei Netzwerkkategorien – Soziale Netzwerke und Wissensnetzwerke – verändern

sich sehr schnell. Fast sekündlich befreunden sich neue Nutzer in sozialen Netzwerken und

Wikipedia-Artikel werden überarbeitet und neu mit anderen Artikeln verlinkt. Diese Änderungen

an der Verlinkung von Menschen oder Wissensbausteinen folgen bestimmten strukturellen Re-

geln und Charakteristiken, die weit weniger zufällig sind als man zunächst annehmen würde.

Das Ziel dieser Doktorarbeit ist es, drei charakteristische Verlinkungsmuster in diesen zwei

Netzwerkkategorien vorherzusagen: das Hinzufügen von neuen Verlinkungen, das Entfernen

bestehender Verbindungen und das Vorhandensein von latent negativen Verlinkungen.

Zunächst widmen wir uns dem relativ neuen Problem der Vorhersage von Entlinkungen in

einem Netzwerk. Hierzu gibt es zahlreiche soziologische Vorarbeiten, die nahelegen, dass die

Ursachen zur Entstehung von Beziehungsabbrüchen komplementär zu den Gründen für neue

Beziehungen sind. Obwohl diese Arbeiten eine strukturelle Ähnlichkeit der Probleme vermuten

lassen, zeigen wir, dass beide Probleme nicht komplementär zueinander sind. Insbesondere

zeigen wir, dass das dynamische Zusammenspiel von neuen Verlinkungen und Entlinkungen

in Netzwerken durch die vier Zustände des Wachstums, des Zerfalls, der Stabilität und der

Instabilität charakterisiert ist. Für Wissensnetzwerke zeigen wir, dass die Vorhersagbarkeit von

Entlinkungen deutlich verbessert wird, wenn zeitliche Informationen wie der Zeitpunkt von

einzelnen Netzwerkergeignissen mit genutzt werden. Wir präsentieren und evaluieren hierfür

insgesamt vier verschiedene Strategien, die von zeitlichen Informationen Gebrauch machen.

Für soziale Netzwerke analalysieren wir, welche strukturellen Einflussfaktoren zur Entste-

hung und Löschung von Links zwischen Benutzern in Twitter indikativ sind. Auch hier zeigt

sich, dass zeitliche Informationen darüber dass eine Kante schon einmal gelöscht wurde, die

Vorhersagbarkeit von Verlinkungen und insbesondere Entlinkungen enorm verbessert. Im letz-

ten Teil der Doktorarbeit zeigen wir, wie negative Beziehungen (beispielsweise Misstrauen oder

Feindschaft) aus positiven Beziehungen zwischen Nutzern (etwa Vertrauen und Freundschaft)

abgeleitet werden können. Dies ist besonders relevant für Netzwerke in denen nur positive

Beziehungen kenntlich gemacht werden können. Für dieses Szenario zeigen wir, wie latent

negative Beziehungen zwischen Nutzern dennoch erkannt werden können.
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1 Introduction

The study of social relationships between people has a long tradition in Sociology. The for-
mation, maintenance, and dissolution of social relationships has been widely studied in social
networks ranging from married couples to criminal networks and high-school students [Parks,
2007]. With the rise of social networking websites, new means to analyze interactions between
people have emerged. Over 1.82 billion users1 currently use online social networks such as
Facebook2, Google+3 or Twitter4 to keep in touch with friends and find new friends. Whereas
sociological studies had to collect relationship data by questioning or observing individuals,
there are now many datasets available which provide information on relationships between
online users. If the patterns of online relationships are similar to offline relationships, then
these online datasets provide new opportunities to analyze human behavior at a large scale.
Conversely, if the patterns of online relationships are different from offline relationships, then
it is worthwhile to observe the driving factors of relationships in an online context.

The study of relationships between knowledge items that are captured in so-called knowl-
edge networks is also facilitated by the amount of available online data. A non-negligible part
of social media is concerned, not with exchanging personal information, but with building
knowledge bases. Such knowledge bases are for instance given by any part of the Semantic
Web, in which knowledge is represented in a systematic manner. Most prominently, the online
encyclopedia Wikipedia5 represents one of the largest online communities dedicated to estab-
lishing a knowledge base. The knowledge contained in Wikipedia, rather than being arranged
alphabetically or chronologically, as in paper encyclopedias, consists of articles connected by
hyperlinks. These hyperlinks have the specific purpose to allow readers a simple navigation
in the encyclopedia, and can thereby be considered to represent the linked structure of the
knowledge itself.

Relationships between items in a dataset are traditionally modeled as a graph, i.e., a set of
nodes that is connected by links. These relationships may represent friendships between users
in a social network or semantic relatedness between knowledge items in a knowledge network.

Link Changes Many datasets of online social networks and knowledge networks are highly
dynamic in the sense that existing content is frequently updated or new content is added. These
content changes have implications on the structural level of a network; as not only the content
is modified but also the relationships between content items are changed. The research field
of network analysis seeks for characteristic change patterns that are consistent across various
networks to understand the underlying mechanisms that drive the evolution of networks.

In knowledge networks, two types of link changes influence the structure of a network. On

1http://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
2http://www.facebook.com
3https://plus.google.com
4https://twitter.com
5http://www.wikipedia.org
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the one hand, new connections between knowledge items are established if they carry impor-
tant information and thus improve the organization of knowledge. For instance, the topics
of Social Network Analysis, Graph Theory and Sociology are highly related and should thus
appear connected in a knowledge network that contains all academic disciplines. On the other
hand, some connections may be wrong or not meaningful enough. Even for very different and
unrelated concepts, a relationship can be formulated. Having many of such unimportant con-
nections hinders the navigation of the content. Since knowledge connections in some knowledge
networks such as Wikipedia and the web are created by humans, a connection may also be
falsely established. An article on quantum physics may be falsely linked to the German soccer
player Thomas Müller as opposed to the German physicist with the same name.

Many people are active in online social networks such as Facebook and Twitter or product
review websites such as Epinions6 and Slashdot7. Due to the high number of possible users
to interact with, these platforms employ recommender systems that help users to find new
relational partners or interesting content. The task of recommender systems can then be best
explained by predicting links that are likely to appear in a network. On the other hand, users
may not always be able to maintain all their online relationships, so they decide to dissolve
relationships with people that are not important for them anymore. Sometimes, users may also
have reasons to end a specific relationship because of a break-up or a special event such as a bad
post or a controversy. In fact, these unlinkings are quite common across different networks; for
instance around 25% of all Twitter relationships are terminated [Myers and Leskovec, 2014].

Many popular social networking services allow users only to form relationships with a posi-
tive connotation such as friends or followers. Even if users cannot explicitly mark relationships
as negative, latent negative relationships exist in a social network. For instance, you would
rather not add your biggest enemy as a friend on Facebook and would hence not form a
friendship with him or her.

Prediction Problems With more and more data – in particular longitudinal datasets – be-
coming available, the evolution of knowledge and social networks can be observed on a larger
scale. Many applications that make use of networks can be described as prediction of links.
For instance, recommending friends, predicting friendship dissolution or finding latent negative
links in a social network, predicting new connections and spurious or unimportant connections
in a knowledge network can be modeled as link prediction problems. Given a current network,
a link prediction problem predicts the location of new links or unlinks that will occur in the
future network.

In this thesis, we study the problems of predicting new links (the link prediction problem),
and the problem of predicting link removals (the unlink prediction problem) in social networks
and knowledge networks. For social networks, we also study characteristic patterns that de-
scribe latent negative links – the latent negative prediction problem. These three prediction
problems are visualized in a small toy network in Figure 1.1.

Whereas structural patterns for the appearance of links have been widely studied in many
networks and contexts [Liben-Nowell and Kleinberg, 2003, Lü and Zhou, 2011], the removal
of links has substantially received less attention. This is mainly due to the fact that there are
only few datasets which contain unlink events and are thus suited for empirical evaluation.

6http://www.epinions.com
7http://www.slashdot.org
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1.1 Research Questions

UnLink Prediction

Latent Negative

I am going to break up 
with the yellow guy.

Us together? That 
will never happen!

Link Pre
diction

Us together? That 
will never happen!

     I am going to 
  make friends with 
   the other orange 
           guy, too.

Figure 1.1: Visualization of the three studied prediction problems.

Nevertheless, unlinking is actually quite common in social networks and knowledge networks
[Myers and Leskovec, 2014, Mislove et al., 2013]. Existing studies on link removal in social
networks have used platform-specific information or the content that was produced in inter-
actions [Kwak et al., 2012, Kivran-Swaine et al., 2012, Quercia et al., 2012], thus the results
are not general and cannot be adapted for other platforms or networks.

The problem of predicting latent negative links is new and was defined by us [Kunegis
et al., 2013] to overcome the absence of negative relationships in many social online platforms.

Structural Aspects of Unconnectedness All these relevant problems involve the states and
state transitions of non-connected links. A given non-connected link in a network could be
the result of an unlink, if the link was present in the network at some point in time. A
currently non-connected link could also transform into a connected link, which will create
a new link in the network. Some non-connected links in a trust or friend network may also
be unconnected because they express a latent negative relationship that cannot be explicitly
marked as negative because it is not possible in a given platform. Therefore, the corresponding
prediction problems of link, unlink and latent negative prediction all target the finding of
structural characteristics of unconnectedness. For this research we consider only the structure
of the network. The reasons for this are threefold. First, many behavioral change theories relate
the changes to structural characteristics. Second, structural models can be compared more
easily across different networks, whereas the content diverges. Third, the structural models can
easily be extended with additional information, such as content or even external knowledge.

1.1 Research Questions

In this thesis, we study the problem of predicting the appearance of new links, the removal of
links and the existence of latent negative links. In the following, we present our four research
questions: the first two research questions are related to link changes in knowledge network.
The first one asks for characteristics of links and unlinks in knowledge networks, whereas the
second research question addresses the influence of temporality for the predictability of links
and unlinks. Research question number three is related to link and unlink prediction in social
networks. The fourth main research question is related to the prediction of latent negative
links in social networks. Our four research questions, which are individually tackled in one
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chapter, are as follows.

Chapter 3: Predicting Link Additions and Removals in Knowledge Networks

In 2003, Liben-Nowell and Kleinberg were the first to define and tackle the link prediction
problem [Liben-Nowell and Kleinberg, 2003]. Since then, many measures and models were
developed to improve the prediction of new links. On the contrary, unlink prediction is a
relatively new problem. Before we started our studies, this problem has not been tackled in
a systematic and purely structural matter. Given only the structure of a network, the goal is
to find structural measures to predict links that will be removed. Hence, the corresponding
research question and subquestions are as follows.

RQ 1 Which structural characteristics are indicative for the removal of links?

In particular, we ask whether indicators for links can be used to characterize unlinks as well.
In the past, link prediction has already been extensively studied, whereas the prediction of
unlinks has only been researched in a handful of studies [Quercia et al., 2012, Kwak et al.,
2012, Kivran-Swaine et al., 2012, Kwak et al., 2011]. Do we need to consider both problems
or is one problem enough to draw conclusions about the other?

RQ 1.I How are unlinks related to new links, i.e., can characteristics of new links be used to
characterize unlinks?

If one problem can be reduced to the other one, then classic link prediction measures can
be used to predict unlinks as well. We hypothesize that the two problems are highly related:
factors that drive the formation of new links should hinder the removal of links and vice versa.

RQ 1.II What is the interplay of link and unlink dynamics?

This question sets out to answer how numerical indicators of a link can be interpreted for link
and unlink prediction. Both problems have so far only been considered separately, so this line
of research will aim to provide a unified view of both problems.

Chapter 4: Temporal Models of Knowledge Networks

Many collaborative knowledge networks evolve rapidly – knowledge items are added, inter-
linked and revised constantly, thus reflecting the fast changes in many knowledge areas. Classic
link prediction approaches represent the relationships in a network dataset by one single snap-
shot from which only static characteristics can be computed. Since change is an inherently
temporal phenomenon, we may ask the question whether change in Wikipedia’s hyperlink
structure is mediated by temporal phenomena. Hence, we propose to employ a temporal ap-
proach to evaluate whether recent or long-lived connections have a bigger influence on the
formation of links and unlinks. Hence, the corresponding research question and subquestions
are as follows.

RQ 2 Does the exploitation of temporal data improve the classification of new links and un-
links?

If the timestamps of individual addition and removal events are given for a dataset, how can
this temporal information be exploited for the prediction of links and unlinks?
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RQ 2.I What strategies would be adequate to exploit temporal informations as to classify new
links and unlinks?

Information of addition and removal events can be leveraged on different levels; one could use
the specific timestamp of an event, use only the ordering of events or exploit the qualitative
information how often a link has been added or deleted.

RQ 2.II Does the exploitation of temporal data improve the classification of new links and
unlinks?

Will the prediction results be significantly better than without temporal information? The
snapshot representation of a dataset does not provide any evidence to whether links that are
not in the snapshot have been present before. We hypothesize that information on unlinks,
that can be extracted from temporal data, should improve the predictability of new unlinks.

Chapter 5: Predicting Link Additions and Removals in Social Networks

There are various sociological constructs that explain the formation and dissolution of social
relationships [Parks, 2007]. Building upon this existing body of work, we want to translate these
constructs to predict the formation and dissolution of directed relationships between users in
a social network, where latent or explicit user groups are given. Due to social mechanisms such
as group conformity [Bernheim, 1994], users are influenced by their friends and groups (e.g.
teams, organizations, parties) that they belong to.

RQ 3 Which structural characteristics predict link formation and dissolution in directed social
networks with latent or explicit groups?

In the related work, some characteristics were shown to be indicative for the formation of a
tie, while other characteristics were found to correlate with the dissolution of a tie. One can
then asses which influence factors have the highest impact on the prediction of new links and
unlinks.

RQ 3.I Which influence do structural characteristics have on the prediction of new links and
unlinks?

While many datasets provide only a snapshot of the network that does not lent itself to derive
unlinks [Kunegis, 2013], a dataset consisting of multiple snapshots can be used to derive links
and unlinks.

RQ 3.II What is the added value of unlink data for link and unlink prediction?

This research question targets the question of how useful this additional unlink information
is, i.e., how much the prediction of new links and unlinks is improved when unlink data is
exploited.

Chapter 6: Latent Negative Links in Social Networks

Many social networking websites such as Facebook, Google+ or Twitter prohibit the user to
label relationships as negative; users can only be added as friends or followers. Although it is not
possible in these platforms to explicitly label other users as foes or distrusted, users implicitly
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have negative relationships or opinions about other users. We refer to these relationships
as latent negative. Some platforms allow users to sign their social network, i.e., to define
friends and foes. We will use datasets of two such platforms to evaluate how negative links are
embedded in the network of positive links.

RQ 4 Which structural characteristics are indicative for latent negative links in social net-
works?

For the first scenario, we assume that only the positive links, e.g. all friendships in a network,
are given. The goal of this research is to find characteristic patterns for negative links in the
network consisting of only positive relationships.

RQ 4.I Which structural indicators infer negative links from only positive links?

Some networks do not allow the user to label relationships as negative. Therefore we ask what
the added value of the negative link feature for the prediction of negative links is. For that
we compare two settings: How much easier is it to predict latent negative ties, when some
negative information is used in contrast to the sole usage of only positive ties.

RQ 4.II What is the added value of the negative link feature?

The predictive performance of the two prediction settings will be compared to obtain the added
value of the negative link feature.

1.2 Contributions

The contributions of the work in this thesis are twofold. First, we propose several new models
and approaches for link prediction problems. Second, we perform several experiments with
overall seven knowledge networks and three social networks and obtain new insights into
factors that drive the formation and dissolution of links and the existence of latent negative
links. The specific contributions for each chapter are as follows.

Chapter 3: Predicting Link Additions and Removals in Knowledge Networks

Complementarity We have proposed two different transformations of unlink prediction prob-
lems as link prediction problems, the complement score and the complement network model.
In an empirical evaluation, we found that the complement score model is superior over the
complement network model and that the complement network model performs worse than a
random baseline for most datasets [Preusse et al., 2012]. With this research, we have shown
that unlink prediction cannot be understood as a simple transformation of link prediction.

Interplay To study the interplay of unlink and link prediction, we have defined a unified view
for both problems [Preusse et al., 2013]. In networks links are added and removed, links can
be classified into the four states of growth, decay, stability and instability. Whereas growing
links are likely to be added, decaying links are likely to be removed. The distinction between
stable and instable links classifies, whether the state of a node pair will not change or is likely
to change between growing and decaying which we defined as unstable. We have presented
structural indicators for each category and refined the link and unlink indicators as indicators
of growth and decay [Preusse et al., 2013].
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Characteristics of Unlinks As the previous contributions reveal, link and unlink prediction
are not symmetric problems. Having further specified the problem of unlink prediction as the
problem of predicting links that are likely to be removed but not to be added again, we have
evaluated the predictive performance of several structural characteristics at the task of unlink
prediction. Features of the embeddedness of a relationship, e.g. common neighbors or common
neighbors of neighbors, have shown to perform well for several knowledge network datasets
[Preusse et al., 2013, Preusse et al., 2012].

Chapter 4: Temporal Models of Knowledge Networks

Temporal Models Using temporal information on link additions and removals, we presented
and implemented four models of temporal change [Perl et al., 2014a]. In contrast to the time-
agnostic setting, the qualitative model captures which links have been removed. The decay
model exploits the ordering of changes and the neighborhood evolution model uses the evolution
of an article’s neighborhood to reason about an article’s future.

Added-Value of Temporal Data We have shown that temporal information improves the
classification of links and unlinks significantly [Perl et al., 2014a]. Data on unlinks should not
be discarded, but serves as valuable indicator for new links and unlinks. Further, we have
demonstrated the theoretical feasibility of unlink prediction by using the actual neighborhood
size as opposed to an estimation for the neighborhood evolution model.

Chapter 5: Predicting Link Additions and Removals in Social Networks

Computational Social Science Approach for Link Changes Given an overview of social
theories that aim to explain the formation and dissolution of social ties in a network, we have
presented a computational approach for quantifying new links and unlinks [Perl et al., 2014b].
For that, we developed a model of influence factors that describes the network effects that
lead to the formation and dissolution of social ties by means of the network’s structure and
information on latent or explicit group associations for users. Our model can be applied to any
directed social network where explicit or latent group memberships are given.

Predictive Performance of Influence Factors We have demonstrated the utility of our ap-
proach in a case study about the evolution of the social network of German politicians on
Twitter and present our empirical results on the impact of different theoretical influence fac-
tors on the formation or dissolution of ties in a social network of politicians [Perl et al., 2014b].
Our results show amongst others, that the tie formation behavior of a user is more in line with
the tie formation behavior of his friends or group members than a user’s tie dissolution behav-
ior.

Added Value of Unlink Information We have shown that measures based on information
about past links are extremely valuable for predicting the dissolution of social ties, while
measures based on the link network are sufficient for the prediction of new social ties [Perl
et al., 2014b]. For that, we have compared two classifiers that utilize only link information
respectively link and unlink information.
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Chapter 6: Latent Negative Links in Social Networks

Definition of the Latent Negative Prediction Problem We have defined a new and inter-
esting prediction problem that has many applications for networks with positive and nega-
tive relationships as well as for networks where only positive relationships can be expressed
[Kunegis et al., 2013]. Further, we have defined the prediction set up to evaluate the predictive
performance of any measure for the task of predicting latent negative links.

Characteristics of Latent Negative Links When only positive links in a network are given, we
have measured that a combination of page-rank and cosine-similarity performs best to predict
all known negative links [Kunegis et al., 2013]. Further, we have demonstrated that the added
value of the negative link feature that is employed in only few platforms, is only minor for
the prediction of negative links. This implies that negative links can only be predicted slightly
better in platforms with negative and positive links than in platforms with only positive links.

1.3 Publications

This thesis contains work that was reported in five papers.

[Preusse et al., 2012] In this submission to arXiv, two possible transformations from the
unlink prediction into the link prediction problem were evaluated. The implementation
and the main paper work was done by me.

[Preusse et al., 2013] The analysis of the interplay of link and unlink prediction is published
in a paper at the International AAAI Conference on Weblogs and Social Media 2013.
I implemented my own idea and performed the analysis on my own. Regarding the
publication, I wrote the majority of the paper.

[Perl et al., 2014a] Models that exploit temporal information for new links and link removal
were proposed and analyzed in this work that is yet only published in a technical report.
I implemented my own idea and performed the analysis on my own. The majority of the
paper was written by me.

[Perl et al., 2014b] In this submission to the International Conference on Social Informatics,
I have analyzed link formation and link dissolution behavior of users in directed social
networks using a case study of German politicians on Twitter. I implemented my own
idea and performed the analysis on my own. For the submission, I wrote the majority of
the paper.

[Kunegis et al., 2013] Analysis on Features that predict latent negative links in signed net-
works was published at the International World Wide Web Conference 2013. I had the
idea for this work and developed the methodology and evaluation together with Jérôme
Kunegis. I wrote large parts of the paper, but the majority of text was written by Jérôme
Kunegis.

1.4 Outline of the Thesis

The thesis is structured as follows.
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1.4 Outline of the Thesis

Chapter 2, Foundations, introduces the basic concepts and notations of networks. Link state
prediction problems are introduced and formalized as a class of link mining problems and
the prediction framework is described. The linking behavior of individuals is summarized,
including studies on the formation, maintenance and dissolution of personal relationships.
Prediction models to solve link state prediction problems are presented.

Chapter 3, Predicting Link Additions and Removals in Knowledge Networks, studies whether
an unlink prediction problem can be transformed into a link prediction problem. The
interplay of both prediction problems, resulting in four states of a link, is evaluated
experimentally for the knowledge network Wikipedia.

Chapter 4, Temporal Models of Knowledge Networks, evaluates how much temporal informa-
tion improves the prediction of links and unlinks in Wikipedia. For that, four temporal
models are described and evaluated.

Chapter 5, Predicting Link Additions and Removals in Social Networks, studies the linking
and unlinking behavior of users in directed social networks. Nine sociological influence
factors are translated to structural measures and evaluated on a Twitter dataset of
German politicians.

Chapter 6, Latent Negative Links in Social Networks, examines the problem of predicting
latent negative links in two social datasets. For that, the prediction of negative links
from positive links is evaluated.

Chapter 7, Conclusions and Future Directions, concludes the work of this thesis and shows
limitations and future directions.

9





2 Foundations

In this chapter, we familiarize the reader with the mathematical concept of a network, network
properties and evolution of networks. We give an overview of general link mining problems
and describe the three link state prediction problem which are treated in this thesis. Related
sociological work on changes in relationships is surveyed. Mathematical methods and models
for the prediction of link state changes are presented.

2.1 Foundations of Networks

The relationships between objects are commonly represented using the formalism of a network.
A network N is formally defined as a tuple N = (V,E) of objects or vertices V and relationships
or links between objects E. An example of a network is the structure of Wikipedia, where
articles link to each other so that users can navigate the article pages in Wikipedia. In this
example articles represent the objects and the relations between articles are formed by article
links. Throughout this thesis, we use the terms link, edge and tie as well as the terms vertices
and nodes interchangeably.

2.1.1 Networks Types

Directed versus Undirected Networks In a directed network, each link has a particular
direction. For instance the fact that user i follows user j on Twitter is modeled by an edge
(i, j). Therefore all edges e ∈ E are node tuples, which is commonly indicated by the notation
(i, j) if i relates to j. In an undirected network, the direction of edges can be dropped, because
all relationships are bidirectional. An example is a friendship network; if person i is a friend
of person j, then j is also a friend of person i. Edges in undirected networks are therefore
commonly represented by sets of node pairs, where {i, j} ∈ E if the two entities i and j are
in a relationship with each other, which is indicated by the notation i ∼ j. In this thesis, we
study state networks only and thus introduce the distinction between networks state and event
networks as follows.

State versus Event Networks In general, state networks reflect the state of a relationships
between two nodes, i.e., either there is a relationship between two nodes or there is none.
Therefore state networks have no parallel edges; two nodes are either connected or not. Exam-
ples of a state network are friendship networks, the hyperlink network of Wikipedia articles,
or an employment network that contains the information which worker is employed at which
company.

Contrarily, event networks contain events or actions between two nodes, such as the postings
of two users, paper-collaboration of two authors or online users that reply to each other in an
online forum. These network types allow parallel edges, since more than one action can take
place between two nodes. Event-networks are fundamentally different from state networks. For
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a state network, the state of a given relationship is always defined: two nodes are either in a
relationship or not. On the contrary, the relationship between two nodes in an event network
is only defined for the specific time point of the event. If two users have exchanged mails,
what is the state of this relationship two hours after the message exchange? Are the users still
connected? What about two years after the message exchange?

Signed Networks Whereas the networks described before only capture whether two nodes
are in a relationship or not, signed networks additionally designate a sign – either positive or
negative – to the relationship. Signed networks can be undirected, but are mostly directed in
real networks. For instance, in a network of persons, one can thereby express friends and foes
and who trusts or distrusts whom. Signed networks are a specific kind of weighted network,
where in general a weight is assigned to a relationship.

Figure 2.1 shows an example for each network type considered in this thesis.

(a) undirected (b) directed (c) signed

Figure 2.1: Example networks for (a) undirected networks, e.g. friendship networks, (b) di-
rected networks, e.g. hyperlink networks, and (c) signed networks, e.g. trust
networks.

2.1.2 Network Characteristics

The network structure of an unsigned network can be represented with the network’s adjacency
matrix A, which is a binary matrix A ∈ {0, 1}|V |×|V | where an entry A(i, j) is defined as

A(i, j) =

{
1, if i links to j,

0, else.

The adjacency matrix of an undirected network is thus symmetric, since

{i, j} ∈ E ⇔ A(i, j) = A(j, i) = 1.

For a signed network, the values in the adjacency matrix take either 0, 1 or -1 depending on
the sign of the relationship.

There are several interesting network statistics and characteristics that describe an indi-
vidual network. We describe them in the following.

Density The density of a network is a measure of the sparseness of the adjacency matrix,
which is computed by the ratio of the actual number of edges in the network and the number
of possible edges in the network. A network with n nodes is maximally connected when it is

12



2.1 Foundations of Networks

complete, i.e., every node is adjacent to each other. Thus, the density of a network N is defined
as

density(N) =
2|E|

n(n− 1)
.

Generally speaking, most large networks are sparse, i.e., only a small fraction of the possible
edges exist [Kunegis, 2011].

Degree Distribution The degree distribution of a network is a function P (d(x) = k) which
describes the fraction of the nodes x which have degree d(x) of k. The degree distribution
describes how the links in the graph are distributed among the nodes. For many networks,
the degree distribution is heavy-tailed, i.e., only a small fraction of the nodes have a very
high degree, while the majority of nodes have a small degree. The degree distribution of many
networks more specifically follows a power-law [Barabási and Albert, 1999], i.e., the probability
that a node x has degree k is given by

P (d(x) = k) ∼ k−α,

where α is the so-called power-law exponent. For many real-world networks, power-law co-
efficients between 2 and 3 have been observed, e.g. [Barabási and Albert, 1999]. Despite the
popular usage of this descriptive characteristic, some fundamental criticism has been raised
because only few degree distributions seem to significantly follow a power-law [Lima-Mendez
and van Helden, 2009, Clauset et al., 2009]. Since many studies seem to compute the power-
law exponent only to indicate the skewness or inequality of a distribution, other measures
such as the gini coefficient1 seem more appropriate and can be universally measured even for
non-power-law distributions [Kunegis and Preusse, 2012].

Connectivity An undirected network is called connected if each node can be reached from
each other node. Directed networks are called strongly connected if each node can be reached
from each other node on a correctly directed path. If each node is only reachable when ignor-
ing the direction of edges, then the network is called weakly connected. Since most networks
contain several isolated nodes or groups of nodes, they are are not connected. Then, the largest
connected component is an inclusion-maximal set of nodes for which a path between all pairs
of nodes exists. For directed networks the weakly largest connected component is then defined
for undirected paths between node pairs, whereas the strongly largest connected component
is defined for directed paths between all node pairs.

Radius and Diameter The eccentricity of a node is the distance of the longest shortest path
between it and any other node. The radius is the minimum eccentricity among all nodes,
whereas the diameter is defined as the maximum eccentricity. Expressed otherwise, the di-
ameter is the longest of the shortest paths in a network. Following this definition, radius and
diameter are defined as∞ in an unconnected network. Henceforth, these two network measures
are usually computed only for connected node pairs in the largest connected component. Since

1The gini coefficient is defined as twice the area under the Lorenz curve, where the Lorenz curve is defined as
the set of points (x,y), where the share x of nodes with the lowest degree covers a share y of all edges.
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the diameter is very sensitive to outliers such as only several long link chains in the network,
the effective diameter is then used. The effective diameter of a graph is the characteristic
number for which 90% of the graphs maximum distances between two nodes are smaller than
or equal that value [Leskovec et al., 2005].

Clustering Coefficient The clustering coefficient of a node is the ratio of existing links be-
tween the node’s neighbors and possible ones. It is given by the ratio of triads and the number
of possible triads and defined for an undirected network N as follows:

Clusco(N) =
|{{j, k} ∈ E | {i, j} ∈ E ∧ {i, k} ∈ E}|

|{{i, k} ∈ E | {i, j} ∈ E}|
.

The clustering coefficient of a network thus reflects the amount of transitivity in a network;
if nodes i and j form a relationship and a relationship between i and k is also present, how
likely is there a relation between j and k, as well?

2.1.3 Network Models

To describe and understand the effects that lead to the structure of real-world networks,
different network evolution models have been proposed. These models are described to match
common global characteristics of networks, such as the power-law of the degree distribution
or a high-clustering coefficient. In the following, we give an overview over some well-known
network models.

The simplest graph model is the Random Graph Model [Erdös and Rényi, 1959]. Every
edge in this model exists with the same global probability γ. Random graph models fail to
produce a power-law degree distribution and fail to capture the amount of clustering that is
observed in many networks and particularly social networks [Watts and Strogatz, 1998].

The Preferential Attachment Model suggests that the likelihood of a node to form new
links is proportional to its in-degree (the number of its neighbors) [Barabási and Albert,
1999, Barabási et al., 1999]. Thus, the more links a node has already received, the more it will
receive in the future – the “rich get richer” phenomenon. This network model has been shown
to produce networks with power-law degree distribution [Barabási et al., 1999].

The Assortative Mixing Model implements that nodes are more likely to form links with
nodes of similar degree [Newman, 2002]. Whereas the preferential attachment model tends
to produce networks where mostly low-degree nodes are connected to high-degree nodes, the
assortative mixing model produces networks that follow real-world observations in which high-
degree nodes in networks tend to connect to other high-degree nodes [Newman, 2002, Mislove,
2009].

The Small-World Model results from randomly replacing a fraction p of the links of an
n-dimensional ring lattice with random links [Watts and Strogatz, 1998]. It has been shown
that this model reproduces the clustering coefficient and the characteristic path length – the
average of all shortest paths between all node pairs – better than the random graph model
[Watts and Strogatz, 1998].

The Copying Model expresses the probability of a new edge in terms of the probability
of copying one of the neighboring node’s neighbors or the degree of a node in the network
[Kleinberg et al., 1999, Kashima and Abe, 2006] . For instance, when writing a paper one finds
a new related work and cites some of the same papers that are cited within.

14



2.1 Foundations of Networks

The Forest Fire Model is an extension of the copying model which copies only out-going
links of a node in that it also considers incoming links of other nodes [Leskovec et al., 2005].
In the forest fire model, a new node randomly connects to existing nodes and then burns
links outwards or inwards from this node, meaning that each link found on the out-going or
in-coming path is copied with a certain probability. The forest fire model particularly captures
the evolution of two characteristics: the shrinking diameter and a faster growth of links than
of nodes that can be observed in many networks. Using the same example as for the copying
model, one does not only look for the related work that is cited within one paper, but also
considers papers that cite the work.

In the p1 Model, the probability of each edge is defined by a log-linear combination of
features of tie characteristics [Holland and Leinhardt, 1981]. Importantly, the p1 model assumes
the independence between ties, i.e., the existence of one tie does not influence the existence of
other ties.

Exponential Random Graph Models allow a generalization beyond the restrictive dyadic
independence assumption of the p1 model class [Frank and Strauss, 1986, Anderson et al.,
1999]. Accordingly, this class permit models to be built from a more realistic interpretation
of the structural foundations of social behavior. Exponential random graphs focus on local
statistics of the graph, such as the number of triads or reciprocated dyads. Each statistic is
weighted by a parameter that can be interpreted as the log-odds of a tie conditional on the
other statistics which are fixed. Thus, a negative value indicates that the statistic is observed
less often than by chance, whereas a positive value signals that the feature occurs more often
than expected by chance.

2.1.4 Evolving Networks

We consider a scenario of evolving networks Nt, where

Nt = (Vt, Et)

for t ∈ N is the network Nt at time t with Vt being the set of nodes of Nt and Et ⊆ Vt × Vt
the set of links of Nt. Without loss of generality, we assume that Vt = Vt′ for all t, t′ ∈ N ,
otherwise we could define V1 ∪ V2 . . . to be the set of nodes for each network.

Given an evolving network, structural changes in a network can be studied on two levels:
changes on the micro-level and changes on the macro-level of the network.

Micro-Level Micro-level changes are defined as changes on the node-level or changes on the
link level of the network structure. New nodes may either enter the network or be deleted. User-
focused research has studied the evolution of user characteristics within the network structure,
e.g., when users leave a network [Karnstedt et al., 2010] or how users change their activity
over time [Rowe, 2013]. In our research, we disregard node changes and keep a constant set
of nodes throughout our methods. Since we study state networks, changes on the link level
are transformations of states - a link that was previously not present can either be added or
a link that is present can be removed. There are two lines of work that study the evolution of
links. The first line of research aims to determine the characteristics of new links, i.e., how new
links are embedded within the current network. For instance large sequences of link additions
were analyzed to understand the driving factors of this process [Leskovec et al., 2008]. This
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study shows that most new edges span very short distances, typically closing triangles or new
links are attached to higher-degree nodes. Changes in the link structure have been analyzed to
understand how communities or networks evolve (e.g. community evolution studies how dense
subgraphs in a network change over time) or to understand what drives the decay of a whole
network [Garcia et al., 2013].

Contrarily, the research area of link prediction problems seeks to accurately predict the
addition and removal of links. Since the research in this thesis studies link prediction problems,
we will explain this topic in more detail in Section 2.2.

Macro-Level Despite frequent micro-level changes in the network, the global characteristic of
networks remain relatively stable [Viswanath et al., 2009, Parks, 2007]. Even though many ties
are added or removed throughout the evolution of a network, descriptive network statistics such
as the clustering coefficient, the average node degree or the size of the connected component
change only slightly [Kossinets and Watts, 2006]. Many real-world networks have been shown
to become slightly but significantly denser over time and that the effective diameter is shrinking
[Leskovec et al., 2005]. The densification of networks means that the number of edges grows
faster than the number of nodes and the shrinking diameter indicates that real-world networks
consist of bridge nodes that succeed to connect previously unconnected nodes.

2.2 Link State Prediction Problems

The previous section described how relationships between actors are commonly represented as
a network. Whereas information can also be stored in the form of node attributes, such as the
age or gender of an actor, the structural information contained in the links alone often suffices
to make educated guesses about the network’s future. Links carry important information, such
as the importance of an actor or which communities exist in a network. This very structured
knowledge is leveraged by different problems.

In the following, we focus on link state prediction problems, in particular the link prediction
problem, the unlink prediction problem and the latent link prediction problem. These link state
prediction problems belong to the category of Link Mining Problems, which are defined as
problems that solve network-related tasks by using the links of the network [Getoor and Diehl,
2005]. To understand the differences and similarities between these three problems, we first
describe the general setup for a link state prediction problem and then describe the three
prediction problems.

Link prediction problems try to predict the state of a link, given the state of other links.
In general, all link state prediction problems have the same set up:

Input:

• node pairs in the training set

• node pairs in the test set, i.e., node pairs in the true test set that should be predicted
and node pairs in false test set which should not be predicted.

• a prediction function

Procedure:
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1. Compute the prediction function for all node pairs of the test set on the training
set.

2. Rank node pairs in descending order of their value of the prediction function.

3. Measure the quality of the ranking.

Output:

• The quality of the ranked node pairs in the test set.

Optimizing Function:

• Choose a prediction function to maximize the quality of ranked node pairs in the
test set such that node pairs in the true test set are ranked higher than node pairs
in the false test set.

• The maximum is reached when all node pairs in the true test set are ranked better
than any node pair from the false test set.

Hence, each particular link state prediction problem can be characterized by the specific choice
of the training set, the test set consisting of the true and false test set and the prediction
function. Note that the test set is solely used for testing the predictive performance of a
prediction function. Thus, no information in this set is allowed to be used for the actual
prediction.

We introduce the notation of

P : Training set→ True test set | False test set,

to formalize a prediction problem P by its training, true and false test set.

We distinguish two kinds of link state prediction problems: those that predict state changes
from current to future links and those that predict the status of current links. Accordingly,
the set-up for both prediction classes is slightly different: whereas the input data for state
change problems is temporally split, the input data for status predictions is split into known
and left-out edges.

This thesis will study three problems: the link addition prediction problem – abbreviated as
link prediction problem, the link removal prediction problem –abbreviated as unlink prediction
problem, and the latent negative prediction problem. The link prediction problem seeks to
accurately predict edges that will appear in the future, given the current set of links. The
unlink prediction problem targets the prediction of links that will be removed in the future,
given the current links. Therefore, these two problems are considered as state change prediction
problems. The latent negative problem infers negatively signed links from positively signed links
disregarding the temporal dimension. Thus, we consider the latent negative problem as a status
prediction problem. The three prediction problems are displayed in Figure 2.2. We define the
two classes of link state prediction problems in the following.

2.2.1 Link State Change Prediction – Link and Unlink Prediction

Link state change prediction problems aim to predict how the state of a node pair will change
from time t1 to time t2. Hence, for this problem category one needs to consider the temporal
evolution of links, i.e., it is important whether a link was added before or after time t1.
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Link prediction

Unlink prediction

Latent negative

Known edges PredictionsPrediction Problem

Figure 2.2: Overview of three link state prediction problems.

In order to predict the changes of links we consider a scenario of evolving networks. Let

Nt = (Vt, Et)

for t ∈ N be the network Nt at time t with Vt being the set of nodes of Nt and Et ⊆ Vt×Vt the
set of links of Nt. Without loss of generality, we assume that Vt = Vt′ for all t, t′ ∈ N , otherwise
we could define V1∪V2 . . . to be the set of nodes for each network. We also write Nt = (V,Et) for
t ∈ N and define n = |V |. Depending on whether one performs an unsupervised or supervised
prediction, the network will be given for two or respectively three timepoints. Given the set of

+ − =

Network at time t1 (Et1) Network at time t2 (Et2)Added edges (E+) Removed edges (E{)

Figure 2.3: Schematic representation of the link addition and removal process. At time t1, the
network has the edge set Et1 . After t1, the set of edge E+ is added and the set E−

is removed, giving the set of edges Et2 at time t2. Link directions are not indicated
in the figure.

links Et1 present at a particular time t1, we want to solve the problem of how to predict state
changes of node pairs between time t1 and time t2. Since there are two possible state changes
– edges may either be added or removed – there are two different prediction problems. The
first one is how to predict new edges E+ and the second one targets the prediction of deleted
edges E−, where

E+ = Et2 \ Et1 ,
E− = Et1 \ Et2 ,
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such that

Et2 = (Et1 \ E−) ∪ E+.

The sets of added and removed links are illustrated in Figure 2.3. The problem of predicting
new links E+ is called the link addition prediction problem, or simply the link prediction
problem [Liben-Nowell and Kleinberg, 2003]. Typically, the link prediction problem is solved
by link prediction functions, i.e., functions that map node pairs to numerical scores, based on
the known edges in the set Et1 . The problem of predicting the removal of edges – called the
unlink prediction problem – can then be solved analogously by unlink prediction functions.

Data Split For both prediction problems, the data is split into a training and a test set at
time t1. Commonly, t1 is the temporal proportion of node pairs in the training set to node
pairs in the test set is 3:1, which means that t1 is chosen as t1 = 3

4 · t2 which corresponds
to a 75% : 25% data split. For link prediction, we consider only node pairs in the largest
connected component of the network. The reason for this is that predictions for nodes that are
not connected by any path hardly make sense, since the structural information that can be
used for this prediction would be too weak. This step is not necessary for the unlink prediction
problems, where all unlinked node pairs must have been connected before and thus enough
structural information can be used. Figure 2.4 depicts the temporal data split for link state
change prediction problems. For the link prediction problem, node pairs in the true test set E+

All edges 

Edges in largest 
connected component

Training Set
True Test

False Test

1. Find largest    
   connected component
   (link prediction)

2. Prediction

Edge event time
t1 t2

Figure 2.4: The data split for link state change prediction problem is depicted. First, the
largest connected component of the network is computed. This set is then split
into training, false and true test set to perform the prediction.

must be distinguished from those that where not added, i.e., those in the false test set E+
false.

Analogously, the prediction of link removal aims at distinguishing links that are removed, in
the true test set E−, from those that are not removed, in the false test set E−false. The set E−false
is thus defined as

E−false = Et1 ∩ Et2 .
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The set E+
false is defined as a random sample of node pairs from the set of node pairs which

are neither connected at time t1 nor at time t2

E+
FALSE = V × V \ (Et1 ∪ Et2),

E+
false ⊂ E

+
FALSE , with

|E+
false| = |E

+|.

Note that E+
false is a sample of non-edges because most real-world datasets are very sparse

which means that there are by far more non-edges than actual edges. Computing the predictive
function for all non-edges would be too time-consuming. The link prediction problem PL and
the unlink prediction problem PU are thus formalized as

PL : Et1 → E+ | E+
false

PU : Et1 → E− | E−false.

Parameter Training When the prediction function contains parameters, such as the weight
of an individual feature in a feature regression model, these parameters need to be trained. For
that, the data is split into a source and target set at time t0 = 3

4 t1, where the parameters are
trained from the source to the target set. Having trained the parameter values, one can then
apply the trained link prediction function as in the unsupervised scenario from the training
to the true and false test set. Thus, the trained classifier is then evaluated on unseen data.
Figure 2.5 depicts the data split for parameter training.

All edges 

Edges in largest
connected component

Training Set
True Test

False Test
3. Prediction

Edge event time
t1 t2

Source Set 2. Parameter trainingTarget

t0

1. Find largest 
   connected component
   (link prediction)

Figure 2.5: The data split for parameter training of state changes is illustrated. The dataset
is additionally split into a source and target set to train the parameters of the
prediction function.

New Link Prediction versus Repeated Link Prediction Since this work is only concerned
with state networks which do not contain parallel edges, we study the prediction of new links.
In event networks with parallel edges, an edge may be added that was present in the network
before. We call these kinds of links repeated links and the corresponding problem repeated link
prediction. If we consider a posting event network, the distinction between the two kind of link
changes becomes clearer. Whereas the new link prediction problem seeks user pairs that have
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not had a post-exchange so far, the repeated link prediction problem seeks user pairs that will
interact again.

Edge-centric versus Node-centric Approaches Most link prediction frameworks measure
the existence likelihood of a given set of links, thus these frameworks can be considered as
edge-centric. The scenario for node-centric approaches takes a set of users as input and tries
to predict which links are the likeliest to appear for these users. This task is relevant for user
recommendations, where items or other users (e.g. friends) are recommended to users [Tylenda
et al., 2009].

2.2.2 Link Status Prediction – Latent Negative Prediction

Whereas the time of an addition or removal event for link state change problems is considered,
link status prediction problems disregard the temporal components in the data. Instead, link
status prediction problems aim to correctly classify the status of a left-out set of node pairs.

The input network N = (V,Ew) is defined as a time-independent set of nodes V and set of
weighted links Ew. The set of weighted links is here defined as

Ew ⊂ V × V × R,

where w is an additional weighting function that assigns a weight to each node pair, w :
V × V → R.

In general, link status prediction problems then predict the weight of a left-out set of node
pairs Eb given known node pairs Ea, where Ea ∩ Eb = ∅ ∧ Ea ∪ Eb = E, i.e., both node pair
sets are a disjunct decomposition of the set of all node pairs.

For the latent negative prediction problem, the set Ea consists of a subset of positive links
and Eb consists of all negatively signed links and the remaining positively signed links. The
problem of predicting the correct state of nodes in Eb is then solved by link status prediction
functions. In the following, we define the prediction methodology for signed networks only. In
signed networks, the weighting function more specifically assigns a value of -1 or 1 to all node
pairs. Therefore, the set of edges E contains the disjunct edge sets of positively signed edges
P and negative signed edges N . Note that we assume that both sets are disjunct, that means
in particular that a link cannot change its sign.

Data Split Analogously to link state change prediction problems, the dataset is split into a
training and a test set that consists of a true and a false test set. To ensure that sufficient
structural information is available for the targeted prediction nodes, only nodes that are in
the network’s largest connected component are considered for the prediction problem. This is
done because no structural information can be leveraged to predict the sign of node pairs that
are not connected to others.

We define the data split for the latent negative problem as follows. First, the set of all
positive links P is split into two sets Pa and Pb, such that |Pa| = 3 · |Pb|, which corresponds to
a 75% : 25% split. The set Pa corresponds to the training set, whereas Pb will be part of the
false test set. The true test set N is then formed by all negatively signed links. The larger set
of positively signed links Pa is then used to predict links that are signed negatively, N , against
links that are signed positively Pb and non-links that we denote as O. Figure 2.6 depicts the
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data split for the latent negative problem. Further, one also needs to ensure that negatively

All edges 

True TestFalse 
Test 3. Prediction

2. Find positive and 
    negative linksP N

Edges in largest
connected component

1. Find largest 
   connected component

Training Set

Pa Pb N

Figure 2.6: The data split for the latent negative problem is depicted. The set of positively
signed links is split into a training and a false test set. The false test set then
consists of all negatively signed links.

signed links are distinguished from positive links and negative links are distinguishable from
non-links. Thus, the latent negative problem is defined as follows

PLN : Pa → N |PbO,
Pa → N |Pb,
Pa → N |O.

Link Sign Prediction The problem of predicting which positive and negative edges will appear
is called the link sign prediction problem. In this prediction scenario, unlabeled links are given
and are classified either as positive or negative. For example, positive links can be trust or
friend links and negative links can express relationships of distrust or enmity. Hence, the
problem setup is different from latent negative predictions in that positively signed links must
only be distinguished from negatively signed links.

Link Completion Problem The task of the link completion problem is to identify which other
links a node will attach to, given links that were formed by the node at the same time [Kubica
et al., 2003a, Kubica et al., 2003b]. One example is that three people have a meeting, but only
the name of two of them is known. Given all previous meeting events, the link completion
problem targets to infer the most likeliest third participant. The link completion problem is
different from the link prediction problem because the missing link is formed at the exact same
time as other links. The link completion data for the problem input is not a state, but an event
network; best-performing methods rely on re-occurrence measures [Kubica et al., 2003a].

2.2.3 Solving a Link State Prediction Problem

Having now defined the individual data splits for the two kinds of prediction problems, we
now introduce the solution procedure. First, one needs to decide on a prediction function that
is then evaluated on the dataset to asses its ability to distinguish node pairs in the true and
false test set.
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Prediction Functions Remember, that a network is typically represented by its adjacency
matrix, which consists of 0s and 1s for a state network. To solve a prediction problem, one
uses a function

fm : {0, 1}n×n → Rn×n

that takes the adjacency matrix of the training set and assigns for each node pair i, j ∈ V
a prediction score by computing measure m. For link prediction, this function gives a score
for a node pair i, j to quantify its existence likelihood, for unlink prediction it quantifies the
likelihood of an unlink and for latent negative it quantifies how likely a link is negatively
signed.

In general, fm is considered as a good prediction function when the scores of node pairs in
the true test set are higher than the score of node pairs in the false test set.

For link prediction fm is a good link prediction function when it gives node pairs in E+

higher values than node pairs in E+
false. Analogously, f is a good unlink prediction function

when it gives edges in E− higher values than edges that are not removed, in E−false. Conversely,
f is a good latent negative function when it assigns higher function values to node pairs in
N than for nodes in Pb or O. In Section 2.4.1, we present an overview over commonly used
prediction measures m.

Evaluation of a Prediction Function To measure the accuracy of a prediction function, we use
the area under the curve (AUC), defined as the area under the receiver operating characteristic
(ROC) curve [Bradley, 1997]. The AUC-value is a robust measure in the presence of imbalance
[Stager et al., 2006]. In the following we describe the ROC curve for link addition prediction;
the definition is analogous for link removal prediction.

The evaluation procedure to obtain the AUC-value of a toy network is shown in Figure 2.7.
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Figure 2.7: The evaluation procedure of prediction function is depicted. (i) All edges in the
true and false test set are (ii) ranked in decreasing order by the link prediction
function. (iii) The ROC-curve is constructed from the ranking and the AUC-value
is then computed as the area under the ROC-curve.

Let f be a prediction function. All node pairs in the combined true and false test set are
sorted by descending values of f . Starting from the best-ranked position, for every position in
the ranking, the false positive rate is plotted against the true positive rate. The true positive
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rate equals the number of observed node pairs from the true test set divided by the overall
number of node pairs in the true test set. Analogously, the false positive rate is computed as
the number of observed node pairs of the false test set divided by the overall number of node
pairs in the false test set. The ROC curve is always contained in the square [0, 1]× [0, 1]. The
AUC-value is then defined as the area under the ROC curve and is thereby a value in the
interval [0, 1]. For a random predictor, the ROC curve approximates the diagonal connecting
the points (0, 0) and (1, 1), giving an AUC-value of 0.5, whereas a perfect predictor yields
an AUC-value of 1. When a prediction function f is inverted to give −f , its AUC-value x is
replaced by 1− x. This observation allows to turn a below-random predictor into a predictor
that performs above random by negating the chosen ranking measure. The AUC-value can
then be interpreted as the probability that a randomly chosen node pair from the true test set
is ranked higher than a randomly chosen node pair from the false test set.

Alternative measures of accuracy, which we do not use in this thesis, are the mean average
precision [Najork et al., 2007] and the normalized discounted cumulative gain [Järvelin and
Kekäläinen, 2002]. We choose the AUC-value since it is robust with respect to changes in the
size of the split and an established prediction measure in the link prediction community.

Comparison of Classifiers The ROC curves of two prediction functions provide insights into
a classifier as to how its prediction operates in which range. Thus, a prediction function A is
superior over a prediction function B if all points of A’s ROC-curve are above all points of
B’s ROC-curve [Lichtenwalter et al., 2010]. We will use the AUC-value to compare prediction
functions in an aggregated fashion. In most link prediction scenarios it is more desirable to
achieve high precision in the left half of the precision-recall curve, because in actual applications
only the top K predictions are often desired.

2.3 Linking Behavior in Social Networks

The formation, maintenance and dissolution of personal relationships has been widely studied
in many social networks ranging from married couples to criminal networks and high-school
students [Parks, 2007]. Even if it is still not clear whether individuals behave similarly or
differently in online and offline networks, the last century of sociological studies has devel-
oped several highly-interesting theories and discovered influence factors that are worthwhile
to consider for online networks, too. According to the Dunbar number we are only capable of
maintaining a certain number of relationships [Dunbar, 1992]. Therefore, we have to decide on
a regular base which relationships to maintain and which to dissolve. Many of the studies that
have targeted the understanding of personal relationships have focused on individual char-
acteristics of actors rather than on describing actors as embedded in larger social networks.
These two approaches correspond to action theories and structuralist theories [Parks, 2007].

Action Theories Action theories emphasize on the individual variability and choice of each
actor to explain personal relationships. This theoretical branch assumes that individuals choose
whom to interact with according to personal preferences to maximize their personal benefit.
The Social exchange theory is a prominent representative of this category. Social Exchange
theory, originally proposed by Homans in 1958, states that individuals choose to form the
relationship they expect to profit from the most, or to have the lowest cost [Homans, 1958,
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Garlaschelli and Loffredo, 2004, Emerson, 1976]. According to this theory, individuals will
stick to these relationships if they are rewarded and no other relationships provide better
opportunities at lower costs.

Structuralist Theories Structuralists explain individual behavior by the larger social struc-
tures that a person is embedded in. They see individual behavior not as the product of personal
choice but rather as one’s position held in a social network. People with the same position or
function are assumed to behave similar regardless of personal traits.

Lazarsfeld and Merton introduced the concept of homophily which states that individuals
are likely to bond with others that are similar to themselves [Lazarsfeld and Merton, 1954]. The
similarity between two individuals may be present in the form of similar age, gender, class or
organizational role. The effect of homophily has been found to hold in many diverse networks,
such as friend networks, neighborhood networks or co-worker networks [McPherson et al.,
2001]. At the same time, homophily also influences the dissolution of relationships, McPherson
et al. also found that ties between non-similar individuals are also likelier to break. The theory
of assortative mixing states that nodes of similar degrees, in particular higher-degree nodes, are
likelier to get connected with each other than nodes with a highly dissimilar degree [Newman,
2002]. Balance theory [Heider, 1958] states that people tend to align their preferences with
others. A structural consequence of this theory is that triangles are likely to be balanced, i.e.,
to contain an even number of negative edges [Harary, 1953]. On the other hand, if we dislike a
partner’s friends – and hence an unbalanced triad is formed – we may either disconnect with
the partner or come up with some coping strategies to reduce the imbalance. Synthesizing this
idea, Granovetter asserts the strength of weak ties which further develops the concept of triadic
closure [Granovetter, 1973]. In his famous theory, he posits that if a person is connected by
strong ties to two other people, these two people are likely to be connected themselves.

In this work we define changes of actors or entities in the network based on structural-
ist theories - i.e., we treat all users in the network the same and seek for general network
mechanisms that explain the network evolution rather than focusing on individual differences.

2.3.1 Characteristics of Relationships

Network structuring is a combination of two processes: personal strategic decisions and unin-
tended consequences of the behavior of others and oneself. Even if we decide to a certain extent
how to form our personal network, some decisions and created structures are unintended. The
network structure determines who we are likely to get in touch with because of a high number
of shared friends. One might even make friends with someone with a high friend overlap so
that activities with friends are not competing too much. Thus, even if individual choice plays
an important role in the network structuring process, the network structure sets the frame of
who we could meet or befriend. To characterize the structure that a personal relationship is
embedded in, Parks gives the following seven influence factors on the relational life cycle of a
tie [Parks, 2007].

Network Distance is defined as the distance between two people in a network and reflects the
closeness of two people in a given network. A relationship is called direct if two people
are directly connected with each other and indirect if they are only connected through
a friend’s friend or in general with a distance greater than one.
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Network Overlap is defined as the degree of linkage between two peoples’ networks. It is
measured by ratio of the number of common neighbors and the number of possible
common neighbors.

Cross-Network Contact quantifies the frequency of communication with the partner’s other
relational partners that are not among one’s own contacts. It is measured by the number
of people of the partner’s network that one has had contact with divided by the size of
the partner’s network.

Cross-Network Density reflects to which extend the relational partners of two persons interact
with or know each other. The proposed measure is computed by the proportion of actual
to possible cross-links.

Attraction to Partner’s Network is defined as the like or dislike for members of the part-
ners network. A corresponding measure would try to capture one’s attitude towards the
members of the partner’s network.

Support from Network Members is the extend to which other network members or one’s re-
lational partners support either the relationship with the partner or the partner. Note
that these two dimensions are different, since network members could support the rela-
tionship with the partner but not the partner or vice versa.

In the following, we summarize the results of empirical studies that have observed char-
acteristic effects for the formation of relationships, the maintenance of relationships and the
dissolution of relationships in various domains.

2.3.2 Establishing Relationships

Analyzing one year of email exchanges between 43,553 students, faculty, and staff at a large
university Kossinets and Watts found that the formation of new links is driven by the shared
activities and affiliations of their members, by similarity of individuals’ attributes, and by the
closure of short network cycles [Kossinets and Watts, 2006].

In general, Parks found the following four conceptual reasons for establishing new relation-
ships: physical proximity, group norms regarding partner choice, social proximity effects and
third party effects [Parks, 2007].

Physical Proximity The physically closer two people are, the likelier they may run into each
other. If people work at the same place together and also meet frequently they are likely to
talk to each other and thus likelier to establish a personal relationship beyond the professional
context. People have also found to befriend with others just because they live close-by and not
even because they particularly like them [Parks, 2007].

Group Norms People tend to reach out to partners that are similar to them and the group
that they are in. Even the general culture that a person lives in may dictate how to choose a
partner. This dictations might be up to things as simple as Men must be taller than women.
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Situational Generalization It has been recognized that the situation that two people get
to know each other influences the chance of the two people to bond with each other. For
example, it was shown that adventures bond people together, as well as situations with a
successful outcome such as winning a competition [Parks, 2007].

Social Proximity Effects It has been generally recognized in many studies that one often gets
to know a new partner via common friends [Parks, 2007, Kossinets and Watts, 2006, Martin
and Yeung, 2006]. Social proximity effects relate changes in the network structure to changes
in the network distance to other network members that may trigger the formation of new
relationships. In an experimental study of four large online social networks it has been observed
that between 30–60% of all new links are closing triads in the social network [Leskovec et al.,
2008]. Thus social proximity plays a major role for explaining the formation of new links.

Third Party Effects These effects refer to ’little helpers’ or ’matchmakers’ and rather occur
in a dating context. One often experienced example is that one’s friends try to set you up with
someone. A person may also be hired to find a suitable partner.

2.3.3 Maintaining Relationships

Studies on social networks show that the persistence of ties is influenced by several factors.
We divide them into individual, relationship and network factors which are defined as follows.
Individual factors are personal characteristics of an actor’s personality traits and the current
stage in life. Thus, they are independent of the relationship with other actors. Relationship
factors characterize the personal relationship of two people and omit other relational partners
and network members. Network factors then consider all effects that can be explained by the
network structure that two actors are embedded in. Hence, relations to other network members
are also used to characterize the relationship in question.

Individual Factors The likelihood that a tie persists increases with the age of the actor – an
effect called liability of newness [Burt, 2000]. For example, this effect was observed when new
employers enter a company or new members enter a sport team. Further, it has been observed
that women are better than men in maintaining relationships [Kirke, 2009, Rubin, 1986], hence
the gender has an influence on the relationship maintenance. Also, marriage and child-bearing
have been shown to decrease the binding to existing friends and to favor locally close people
[Martin and Yeung, 2006].

Relationship Factors The closer two individuals are to each other with respect to their
individual traits, the likelier the tie is to persist [Martin and Yeung, 2006]. This homophily-
effect does thereby not only influence the likelihood of the formation of a tie, it is also likelier
that individuals with many shared interests will stay connected. Further the liability of newness
has also been observed for relationships; the longer to people are relational partner the likelier
the relationship persists [Martin and Yeung, 2006, Burt, 2000]. Martin and Yeung found that
proximity is an important factor for the persistence of even strong social ties [Martin and
Yeung, 2006]. Strong ties appear to be more persistent because partners in such relationships
exchange intimate feelings, are mutually connected and have more frequent contact than weak
ties [Wellman et al., 1997]. Once invested the time and effort, these partners are thus likely to
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maintain their relationship. In particular kin-ship ties are likely to be long-lasting as phrased
in the saying ’blood is thicker than water’ [Wellman et al., 1997].

Network Factors Ties that are embedded in a long-lasting group are likelier to retain [Martin
and Yeung, 2006]. For instance if people have worked together or played in a team together
for a long time, they have also more time to form long-lasting relationships with others from
the same community. The structural embeddedness of a tie plays a further very important
role. Ties that are well-embedded, i.e. partners sharing many common friends, are likelier to
persist over time. Densely knit networks are likelier to be durable, because they bind their
members more strongly by social control and collective identity [Wellman et al., 1997]. A
prevalence of imbalanced relationships was found in the following study, conducted with high
school students [Parks, 2007]. 82% of the high school students reported that at least one close
friend had a close friend who they disliked. Exemplary, a subject stated that the disliked
person is known for three years and communication with him/her takes place around 3 times
a week. Thus, attraction to a partner’s network may play a big role in getting connected,
but even if some network members are disliked, the tie may still persist. Instead individuals
find appropriate coping strategies to handle the negative attraction. Additionally if the level
of cross-communication is high, marital relationship have also been observed as more stable
[Kearns and Leonard, 2004].

2.3.4 Dissolving Relationships

Most relationships end. We meet a lot of people and bond with a lot of people on an acquaintance-
level, but we seem to stay in touch only with few [Parks, 2007]. Wellman et al. conducted two
interviews with 33 people who had to name their strong and weak ties twice: in 1968 and ten
years later [Wellman et al., 1997]. Only 27% of relationships considered as intimate remained
so ten years later. This number is in accordance with the observations of Suitor and Keeton
where only between one quarter and one third of all supporting relationships were maintained
across a 10-year period [Suitor and Keeton, 1997].

Individual Factors Individuals with an introverted or neurotic personality where shown to be
be more prune to a friendship resolution in Facebook [Quercia et al., 2012]. This corresponds
with a longitudinal study of marriage stability that observed partnerships with partners that
are high in neuroticism and low in extraversion to be likelier to dissolve [Karney and Bradbury,
1995].

Relationship Factors If a relationship is less highly-developed2, the relational partners are
likelier to disconnect [Parks, 2007]. But also highly-developed relationships exhibit high rates
of instability; Burt found that 92% of close business partners were not connected any more
three years later [Burt, 2000]. Romantic relationships have also been observed to end despite
high levels of trust and a high amount of interaction. 65% of 38 studied couples that started
dating broke up within the first 4 months [Berg and McQuinn, 1986] and 60% of marriages in
the US end with divorce [Preston and McDonald, 1979]. A lack of reciprocity in the marital
relationship, indicated by missing support from the partner or imbalance of contribution to
the marriage, was also found to be an influential break-up factor [Karney and Bradbury, 1995].

2Highly-developed relationships are characterized by high levels of trust and a high amount of interaction.
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Network Factors The process of network structuring offers an explanations why a relation-
ship is likelier to break if the network between two relational partners is breaking apart. When
the number of shared partner decreases, the barrier to the dissolution of the relationship de-
creases and partners are likelier to end their relationship [Milardo, 1987]. The same study also
revealed that the dissolution of one relationship can also cause further dissolutions of ties in the
network of common friends. This effect corresponds with the intuition that common friends
have to choose sites. Changes in the cross-network density, i.e., the amount of a partner’s
communication and relationships with the partner’s network, have also been observed as a
reason for relationship dissolution [Parks, 2007]. That is because a high cross-network density
works as a barrier to dissolve a relationship. A reduction of cross-network density then resolves
the barrier of the two relational partners to break up and is thus correlated with a declining
relationship. Little support from one’s own as well as from the partner’s network also carries
some potential for breaking up. In particular if the disliking person is important to one of the
partners and frequently seen, the conflict increases the tension within a relationship and may
lead to the dissolution of the relationship [Cleek and Pearson, 1985].

Transformation of Relationships Even if romantic partners break up, only 27% of studied
couples stated that they do not have any relationship with the former partner anymore [Parks,
2007]. The remaining 73% either returned to being friends or engaged in an unfriendly relation-
ship or something in between. Therefore, it is worthwhile to consider that a relationship may
not dissolve but rather transforms from one state (being married) to another (being friends).

2.4 Prediction Measures and Models

In Section 2.2, we have introduced the general framework for a link state prediction problem.
The heart of the prediction problem is the prediction function which quantifies the existence
likelihood for links in question. The previous chapter has shed some light as to which char-
acteristics have found to be indicative for the formation of new relationships, the persistence
of a relationship and its dissolution in social networks. The presented sociological studies are
based on observations of personal relationships. On the contrary, the work of this thesis tar-
gets the prediction of the state of a tie. Some of the previously described characteristics have
been described in terms of the underlying network of relationships. In the following, we review
structural measures that characterize a tie (i, j) and more complex graph models that express
the existence likelihood of a tie.

2.4.1 Prediction Measures

Various measures have been proposed and implemented to quantify the relationship (i, j), i.e.,
a link from node i to node j. We summarize characteristics that are the important for our work
and divide them into the three categories of node-based, link-based and neighborhood-based
measures. For a detailed survey on different link prediction measures, we refer to [Lü and Zhou,
2011]. Node-based measures describe the structural characteristics c(i) of a single node i. To
then quantify the tie (i, j), the product of the individual node characteristics is computed,
i.e., c((i, j)) = c(i) · c(j). Link-based measures characterize a tie, whereas neighborhood-based
characteristics describe the neighborhood of a tie, e.g., the shared neighborhood or paths of
length three between two nodes. In the following table, we list some common measures from
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the three feature classes along with the definition for a node i or a node pair (i, j) in an
undirected network. For directed networks, the set of possible measures is bigger, because the
direction of an edge can be considered. Note that the notation {j | i ∼ j} corresponds to all
nodes j that are adjacent to i, i.e. all nodes that are connected with i in the network.

Feature class Feature Definition

Node-based Degree d(i) = |{k | k ∼ i}|

Link-based Reciprocity r(i, j) = 1↔ (j, i) ∈ E

Neighborhood-based

Joint degree jd(i, j) = |{k | k ∼ i ∨ k ∼ j}|
Common neighbors CN(i, j) = |{k | k ∼ i ∧ k ∼ j}|
Jaccard Jacc(i, j) = CN(i,j)

jd(i,j)

Cosine distance cos(i, j) = CN(i,j)√
d(i)·d(j)

Adamic-Adar Adad(i, j) =
∑
{k|k∼i∧k∼j}

1
log d(k)

Paths of length 3 P3(i, j) = {k | i ∼ k ∧ k ∼ l ∧ l ∼ j}

Table 2.1: The table gives an overview over some common prediction measures that are also
used throughout the thesis. The node based-measures are defined for node i and
the link- and neighborhood-based measures are defined for the node pair (i, j)

Ensemble Prediction Functions When quantifying the likelihood of the state different ties,
one can use one of the single link measures listed before. Since the predictive expressiveness of
a single feature is rather limited, combinations of multiple features come into play. We require
an ensemble link prediction function that a) produces a numeric value that we can use to
rank ties and compute the AUC-value, and that b) is easy to use with only few parameter
to tune and c) does not make any assumptions on the distribution of the data, such as a
normal-distribution of errors. Based on our requirements, we choose logistic regression as used
for link prediction by others (e.g. [O’Madadhain et al., 2005, Potgieter et al., 2007, Raeder
et al., 2011]) to obtain an ensemble prediction function and describe it in the following.

Logistic Regression Logistic Regression is a classification method that returns the probability
that a binary dependent variable may be predicted from the independent input variables
[Llullaku et al., 2009]. For the prediction set up considered in this thesis, the input variables
are given by a set of independent prediction measures and the output variable is the likelihood
that a particular state is true. In order to learn the regression weights, the training set is split
into a source and target set as described in Section 2.2.

If f1, f2, . . . , fk are the individual prediction functions,e.g., measures from Table 2.1, then
the ensemble prediction function is given by

f∗ = L(b+ a1f1 + a2f2 + . . .+ akfk),

where b and ai are the parameters of the ensemble method, which are learned by logistic
regression, and L(x) = 1

(1+e−x)
is the logistic function.
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The least squares optimization function is used as a statistical method for estimating the co-
efficients of the logistic regression model. Because logistic regression produces unstable results
when the input variables are highly-correlated, one needs to remove the correlated variables
before learning the parameters. Only if the input variables are completely independent, the
learned parameter weights can be interpreted: If the weight of a parameter is positive then the
effect on the outcome variable is positive, i.e., the input variable is positively correlated with
the outcome variable. For even slightly correlated variables, one cannot interpret the weights.

2.4.2 Graph Models for Prediction

In the following, we summarize two approaches for graph models that can be applied to solve
link state prediction problems.

Global Organizing Principle These methods assume some organizational principle, such as a
generative model, for which the specific parameters are learned to maximize the likelihood of
the current network. In other words, the parameters that are most likely for the current network
are calculated. Having fitted the model on the data, one can then asses which of the potential
new links will produce the most likeliest network in the next step. Maximum likelihood methods
are computationally very expensive; they cannot handle large networks [Lü and Zhou, 2011].
A prominent example are stochastic block models [White et al., 1976, Faust and Wasserman,
1992] which partition a network into different blocks and characterize the likelihood that one
actor interacts based on the likelihood that the respective two blocks that the users belong to
interact with each other. These blocks can then be formed by formally defined roles, structural
characteristics or detected communities in the network. These kinds of models give interesting
insights in the underlying organizing principles but are not feasible for large networks [Lü and
Zhou, 2011, O’Madadhain et al., 2005].

Probabilistic Relational Models Given a network, a probabilistic model with defined features
will be trained to best explain the current network. Then, the probability of links in the test
set can be estimated by the conditional probability of the links given the learned model. One
well-studied example for probabilistic models are Exponential Random Graphs – also called
p*models [Anderson et al., 1999, Snijders and Steglich, 2013]. A weight for each feature in the
p* model is learned; when the weight of a feature is bigger than one, then the new graph with
an increased value of this feature (e.g. more common neighbors) is more likely. If the weight is
lower than one, the new graph is more likely if the value of the feature decreased. In general,
probabilistic models are highly complex because the estimated probabilistic model greatly
depends on the choice of the prior, the model of dependencies and the chosen inference model
to learn the parameters. The parameter estimation is particularly difficult and inefficient for
many dependent variables [Lü and Zhou, 2011].

2.5 Applications

Link state prediction problems have been widely used in many applications. This section gives
an overview over applications for link state prediction tasks.
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Recommender Systems In particular in online social networks such as Facebook, new friends
can be hard to discover. Recommender systems help the user to overcome the problem of finding
friends in the large set of users. Recommender systems are also developed to recommend
items, e.g. movies or products, to persons. Amazons Customers who bought X also bought
Y feature helps users discover new and personally relevant products. Netflix’s recommender
system suggests unseen movies to users based on which kind of movies the user has seen so far
and which other movies similar users have watched [Koren, 2010, Koren, 2008]. Recommender
systems are therefore applying link prediction methods. Methods that solve the latent negative
prediction problem can be applied to detect hidden negative relationships that should then
not be recommended to users.

User Navigation Users navigate in hyperlink networks such as Wikipedia. Given typical
navigation paths, link prediction methods can then be used to propose new connections that
facilitate user navigation [Perkowitz and Etzioni, 1997]. For instance, if users often navigate
from A via B to C, a shortcut link from A to C could be the result of a link prediction method.

Storage of Big Graphs Popular social media platforms are too big to store their data on one
partition only. Efficient algorithms to partition data efficiently have drawn a lot of attention
in the research community. To perform well, algorithms need to consider the recency of inter-
actions. For instance users that have interacted but that are not likely to interact again can be
stored at different partitions [Carrasco et al., 2011]. Methods of the repeated link prediction
can be used to detect these re-occurring user interactions.

Distributed Processing With the rapid growth of online social networks, a scalable architec-
ture is required that can handle database queries and analysis of the data. Local queries, i.e.,
queries that operate within one partition are desired, hence one needs to store data items that
are connected in the queries preferably together. For tasks such as news stream generation and
friend recommendation, this implies that well-connected users should be placed on the same
partition, but – since networks evolve over time – repartitioning might have to be performed
and decreases the efficiency of the processing system. Thus, data partitioning heuristics should
not only take existing edges into account, but also those that are likely to appear. These links
can be detected with link prediction methods.

Biological Networks Biological networks may consist of interacting molecules or proteins,
where the existence of an interaction – a link in the network – must be demonstrated by an
experiment. Because biological experiments are very costly, researchers are interested in the
most probable interactions that can than be proven in experiments [Lü and Zhou, 2011]. Link
prediction methods can be used to predict the most likely chemical interaction.

Communication Surveillance The communication patterns of a group of target persons is
observed over time to predict whether targets will communicate again and whether new com-
munication relationships are formed [Huang and Lin, 2009]. Hence, methods from repeated
link prediction and link prediction can be applied to this problem setting.
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Information Cascades To predict how influence or goods will propagate in a network, current
methods use the present network structure. Some of the links in the network are spurious
or weak, thus information will not propagate as expected. Using unlink and repeated link
prediction methods, one can identify which links are likely to be removed or decay to improve
the performance of information flow prediction.

Interaction Suggestion If a friendship is detected as at risk, then social networks might
suggest befriended users to interact again or even rank status posts of the user pair better, so
that interaction is facilitated.

News Stream Ranking Many users on social networking sites such as Facebook or Twitter
are overwhelmed by the sheer amount of content produced by friends or followees. Unlink
prediction can help to identify potential non-friends and rank their content lower. In the same
way, methods of repeated link prediction could be used to detect that users will not interact
with each other’s content again and then also rank the produced content lower.

Advertising Jobs Business services such as LinkedIn3 or Xing4 are booming. Employees are
active in this websites to establish and maintain contact with other firms and business partners.
Firms primarily want to recruit new employees on these platforms. Instead of sending job offers
to anyone that matches the job description, firms can use unlink prediction methods to detect
employers that may potentially leave their current firm.

3https://www.linkedin.com
4https://www.xing.com/
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3 Predicting Link Additions and Removals in
Knowledge Networks

3.1 Introduction

Since the appearance of the World Wide Web, creation of human knowledge has been increas-
ingly collaborative and dynamic. On web sites such as Wikipedia, knowledge is aggregated
and interlinked in a massively collaborative and parallel fashion: the number of participants
in the creation of collaborative knowledge is virtually unlimited, and changes are made con-
tinuously and in parallel. As an example, the English Wikipedia1 holds more than four million
interlinked articles, and currently sustains more than 30,000 active users2. The knowledge col-
lected in such knowledge bases is often represented as text, but also increasingly in the form
of a knowledge network consisting of connections between concepts. In the case of Wikipedia,
these connections are given in the form of links from one article to another, so-called wik-
ilinks. In other cases, a knowledge network may be formed by other types of connections, for
instance interactions between drugs and diseases in the Diseases Database3. In either case,
a remarkable property of these networks is their connectivity: All concepts are related to all
other concepts through one or more connections. Thus, the understanding of the underlying
knowledge networks is of primary importance to understand the knowledge bases themselves.

While the addition of individual pieces of knowledge to knowledge networks has been stud-
ied, collaborative knowledge networks also allow the removal of edges. In fact, the collaborative
nature of online knowledge bases results in differences of opinions, and therefore in a high num-
ber of removals and reverts of content. On Wikipedia for instance, between 20 and 30 percent of
all edits remove one or more wikilinks4. Despite these numbers, the disappearance of relation-
ships in knowledge networks is only rarely studied. To fill this gap, we proposes to investigate
the structural signals leading to the appearance and disappearance of knowledge links between
concepts. Our study is performed on the largest collaborative knowledge network in existence,
the online encyclopedia Wikipedia, and consists in identifying structural features of a knowl-
edge network that can be used to predict the appearance and disappearance of edges, and
investigating in what way these features can be used as signals to understand the evolution of
these networks.

Analysis of link structures is traditionally an important component of Web information
systems, such as search engines, recommender systems, spam filters, content summarization
tools, and many others. These applications are supported by a wide range of state of the art
methods for link-based authority ranking, prediction of further network evolution, and detec-
tion of structural anomalies. Well-known properties of networks such as the Web are (1) highly

1http://en.wikipedia.org/
2http://en.wikipedia.org/wiki/Wikipedia:Wikipedians
3http://www.diseasesdatabase.com/
4See Table 3.6
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imbalanced distributions of node degrees (in a broader sense of several existing models, node
“authoritativeness”), and (2) high clustering coefficient, indicative for existence of multiple
or tightly connected sub-components (“cliques”) [Adamic, 1999]. Among many possible use
cases, this knowledge can be used for suggesting new network edges that appear “reasonable”
in an existing network structure, e. g., by connecting two nodes that have many neighbors in
common. The prediction of such “missing links” (e. g., references between Web pages, friend-
ships in social networks, followers and citations on Twitter, cross-references between articles
in Wikipedia, etc.) can be seen as an established recommendation scenario that has been
intensively discussed over the last decade.

Since the invention of written language, humans have aggregated knowledge in written form.
In recent times, knowledge has been accumulated in encyclopedias, dictionaries, thesauri and
other reference works. What these types of works have in common is their structure: They con-
sist of individual items of knowledge such as concepts or words, connected by cross references.
These links are not just additional information, but an integral part of the knowledge. Imagine
an encyclopedic article about the city of Paris. This article will invariably mention that the
city is located in France. Thus, a link is formed between the article Paris and the article
France. In online encyclopedias such as Wikipedia, these links are represented explicitly: The
article about Paris contains a hyperlink to the article about France. Thus, the hyperlinks in
an online encyclopedia are a representation of the knowledge contained in that encyclopedia,
and thus an analysis of the hyperlink structure can reveal much about the knowledge itself.

An online encyclopedia such as Wikipedia also differs in another important way from
traditional encyclopedias: It is collaborative, i.e., written by many people simultaneously, and
thus it changes much faster and much more often than a traditional encyclopedia. What is
more, different authors often have different opinions about the topic at hand, and their edits
will clash, resulting in one editor reverting the edits of another editor. This leads to a high
amount of dynamism in the hyperlink structure, where links are added, but also removed, very
frequently. In order to analyze the dynamics of these changes, we will thus resort to theories
of network analysis.

swim surf

SEO

water

beach Page

Rank

Figure 3.1: Sample network N of interlinked Wikipedia articles. The connection between arti-
cles ‘swim’ and ‘surf’ is intuitively wrong.

As a running example, we may consider the fictional network N of a sample of Wikipedia
articles from Figure 3.1 which consists of the nodes V

V = {water, swim, beach, surf,SEO,PageRank}.

A link (i, j) indicates that article i links to article j.
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The network N contains two tightly connected components

T1 = {swim,water, beach},
T2 = {surf,SEO,PageRank}.

The link (swim, surf) does not directly belong to structures of T1 and T2 and thus does not
connect closely related resources, this can be recognized by the fact that (swim, surf) does not
substantially contribute to the high clustering coefficient of G. Consequently, we may assume
that the link (swim, surf) may demand critical reconsideration as a potential mistake and will
be possibly removed in the future.

Conceptually, we study the hypothesis that knowledge of the structure of social networks
and models allows for defining invariant indicators for “superfluous” links. More precisely,
we consider different ways to solve the unlink prediction problem as a special case of link
prediction, by introducing novel graph models and edge weighting metrics, customized for
prediction of low-likelihood edges.

In our sample network introduced before, the wrong link has been set due to missing
disambiguation of two meanings for ‘surf’. In general, the decision to withdraw a link may have
many different reasons and cannot be fully explained without domain-dependent knowledge
about the particular network and without content resp. context analysis of affected nodes
(users, web pages, postings). Our contribution aims to answer the fundamental question: to
what extent can structural analysis contribute to the prediction of unlinks? The resulting
domain-independent approach can be easily combined with case-specific content analysis and
adopted for a variety of applications, such as advanced authority ranking, detection of link
spam and manipulations, recommendations for re-organization of social graphs by users and
content providers, and many others.

In the following, we investigate the problem of predicting the removal of links in networks
in a general and formal manner.

Structural Link Predictions Depending on the type of a network, removal of links may be
caused by different issues. In general, the reasons for a link being removed may be content-
based reasons, e. g., a hyperlink from a Wikipedia page is removed as the articles’ topics
are not related, structural reasons, e. g., removing a network link in a telecommunications
network, or a combination of both. For our treatment we consider only structural properties
of the underlying network and we do this for two reasons. First, our objective is to find
general domain-independent models, whereas content is clearly domain-dependent. Second,
we hypothesize that several content-based reasons are also reflected in the network structure.
Coming back to our introductory example from Figure 3.1, two different main topics can be
found and are manifested in the two highly-connected components and only one link between.
Although this hypothesis is, of course, not generally applicable we focus on structural properties
in order to investigate how good we can predict decay of links without considering content.

Research Questions

This chapter will be concerned with the following research questions.

RQ 1 Which structural characteristics are indicative for the removal of links?
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In 2003, Liben-Nowell and Kleinberg were the first to define and tackle the link prediction
problem [Liben-Nowell and Kleinberg, 2003]. Since then, many measures and models were
developed to improve the prediction of new links. On the contrary, unlink prediction is a
relatively new problem. Before we started our studies, this problem has not been tackled in a
systematic and purely structural matter. Given only the structure of a network, the goal is to
find structural measures to predict links that will be removed.

In particular, we ask whether indicators for links can be used to characterize unlinks as
well. In the past, link prediction has already been extensively studied, whereas the prediction
of unlinks has only been researched in a handful of studies [Quercia et al., 2012, Kwak et al.,
2012, Kivran-Swaine et al., 2012, Kwak et al., 2011]. Do we need to consider both problems
or is one problem enough to draw conclusions about the other?

RQ 1.I How are unlinks related to new links, i.e., can characteristics of new links be used to
characterize unlinks?

If one problem can be reduced to the other one, then classic link prediction measures can
be used to predict unlinks as well. We hypothesize that the two problems are highly related:
factors that drive the formation of new links should hinder the removal of links and vice versa.

RQ 1.II What is the interplay of link and unlink dynamics?

This question sets out to answer how numerical indicators of a link can be interpreted for link
and unlink prediction. Both problems have so far only been considered separately, so this line
of research will aim to provide a unified view of both problems.

The structure of this chapter is as follows. Section 3.2 will review existing research on predict-
ing link removals. Section 3.3 discusses research question RQ 1.I and evaluates two possible
transformations between link and unlink prediction. Since unlink prediction appears to be
more than a simple transformation of link prediction, Section 3.4 provides a unified view on
both prediction problems. For that, numerical indicators for both problems are combined in
a second experiment to answer research question RQ 1.II. Section 3.5 then concludes on both
empirical evaluations and summarizes the most indicative features for the removal of links.

3.2 Related Work

Predicting Link Additions The problem of predicting the appearance of links in networks has
received substantially more attention than the problems of predicting their removal. Surveys on
the link prediction problem are provided by [Liben-Nowell and Kleinberg, 2003] and [Lü and
Zhou, 2011]. For many networks, the number of common neighbors, the degree of an actor
and the ratio of the number of common neighbors and the actor-neighborhood sizes are good
indicators for the formation of new links [Lü and Zhou, 2011]. Other algorithms for links
prediction include the index of Katz [Katz, 1953], graph kernels [Ito et al., 2005] and diffusion
models [Kondor and Lafferty, 2002].

Predicting Link Removals Work on the removal of links in networks has mainly focused on
social networks and on explaining why users on particular social networking platforms such
as Facebook and Twitter unfriend or unfollow each other [Kwak et al., 2012, Quercia et al.,
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2012, Kivran-Swaine et al., 2012]. As these studies use very specific user information, such as
personality traits, gender, or Twitter-specific interaction data, they cannot be used to classify
the formation of new links and link removal in networks other than social networks. See Section
5.2 for a detailed survey on unlink prediction in online social networks.

One recent work on structural characteristics of unlinks performed a data analysis for
friendship relationships between 32 freshmen over one year at seven different points in time
[Snijders and Steglich, 2013]. This work trains a p* model to characterize unlinks and links in
the dataset. Though that approach is very powerful, it does not scale well. The corresponding
software package5 is applicable to networks with 10 to 1,000 nodes and thus cannot even be
applied to the dataset used in our study.

Strong versus Weak Ties Strong ties in communication networks are associated with a high
amount of communication between two partners [Kossinets and Watts, 2006, Onnela et al.,
2007]. Onnela et al. observed that the removal of weak ties in a mobile phone network, associ-
ated with a small amount of communication between two people, lets the network fall apart, i.e.
the largest connect component is fragmented into smaller components [Onnela et al., 2007]. In
contrast, the removal of strong ties has a minor influence on the connectedness of the network.
The influence of the removal of ties is measured by the relative size of the largest connected
component. This is in accordance with ”the strength of the weak ties” which conjectures that
structural information of strong ties is somehow redundant in a network, because strong ties
appear in highly-clustered regions [Granovetter, 1973]. Hence, after the removal of strong ties,
remaining ties still keep the network connected. The analysis of information spreading within
the described mobile phone network yields that neither strong ties nor weak ties are impor-
tant for the conduction of information. The authors explain this by weak ties offering too few
opportunities for communication partners to exchange news and strong ties to be embedded
in highly-clustered communities with little access to new information.

Related Problems

In the following, we discuss works on related problem types that are similar, but not identical
to the prediction problem discussed in this chapter.

Link Decay In many networks, links cannot be removed but are rather considered to become
inactive or to decay. Two studies that predict decay in mobile phone communication networks
assume that links decay if no communication was exchanged between the actors for a par-
ticularly chosen time period [Raeder et al., 2011, Hidalgo and Rodriguez-Sickert, 2008]. Both
works conclude that links are more likely to persist when the connection is reciprocated and
when either both actors’ degrees are low or both degrees are high. Raeder et al. observed that
the “liability of newness” holds, i.e., the age of a tie is correlated with its persistence [Raeder
et al., 2011]). Viswanath et al. found that the longer two users have engaged in wall-to-wall
interactions on Facebook, the more likely they are to continue and thereby the less likely the
interaction link in Facebook is to decay [Viswanath et al., 2009]. We cannot use features such
as the interaction frequency, since links in a state network mostly change from present to
removed and thus the history of a tie is not useful. Further, this line of research deals with
derived link removals as the datasets themselves do not contain explicit unlinks.

5http://www.stats.ox.ac.uk/~snijders/siena/
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Declining Participation Related works focus on two perspectives of declining participation:
the user-perspective and the community perspective. The decay of groups in social networks
has been studied by Kairam et al. through interaction patterns and the social structure of
users [Kairam et al., 2012]. They observe that groups with a high rate of interaction of group
members that are internally well-connected, are less likely to die. In [Garcia et al., 2013],
cascading effects that lead to the decline of a community were studied. Given that users leave
the community if they have less than k friends, they analyze how this contributes to the
community decline. A user-related phenomenon is called churn, describing the situation in
which a user quits a social community or quites using a service [Karnstedt et al., 2010].

Anomaly Detection A related problem is the identification of spurious links, i.e., links that
have been erroneously observed [Guimerà and Sales-Pardo, 2009, Zeng and Cimini, 2012]. A
related area of research is the detection of link spam on the Web, in which bad links are to be
detected [Benczúr et al., 2005]. The problem of anomaly detection is structurally similar to
the problem studied here, but do use content features as opposed to structural features of the
dataset.

Infer Missing Links in Wikipedia Various works aim to complete Wikipedia’s hyperlink
structure. These works use textual analysis to predict which phrases in an article should be
linked, and to which articles they should point. Some methods only use linguistic features to
detect potential link targets and predict the links to target articles with the highest semantic
relatedness to the source article [Milne and Witten, 2008] or by classifiers trained on textual
features [Mihalcea and Csomai, 2007]. A more structural approach uses pre-processed n-grams
and ranks them by structural characteristics of the network, inferred by similar links to other
articles [Adafre and de Rijke, 2005] or a principal component analysis of the structure [West
et al., 2009]. This line of work relies on textual features or textual preprocessing of an article.
In particular, the presented approaches target the problem of predicting new links between
Wikipedia articles and do not cover the prediction of unlinks.

Ontology Alignment An ontology is a knowledge representation of facts in a database. On-
tology alignment is then the procedure to relate or map the concepts of two ontologies with
each other. It becomes necessary, when information from different ontologies should be com-
pared, merged or queried. For instance, two concepts from two different ontologies can be the
same and just labeled differently or one instance can be a subclass of another instance from
a different ontology. Ontology matching algorithms usually have three different approaches to
compare entities: lexical analysis, structural analysis and semantic analysis. The lexical analy-
sis compares the string values of the entity labels. Similarly to the structural approach of this
thesis, the structural analysis focuses on the surrounding structure of two entities, such as their
subclasses and super-classes, siblings and mapped entities. The information about structurally
related entities can then be used to asses the similarity of two entities. Even if two entities
might not be named similarly, the surrounding entities might be and therefore they can be
mapped to each other. The semantic analysis of two entities requires the use of reasoning mech-
anisms and deduction of new assertions. For a state of the art survey on ontology matching,
we refer the reader to [Shvaiko and Euzenat, 2013]. The structural analysis of ontologies uses
ontology-specific class-relationships and is therefore different from the relationships between
knowledge items that we consider.
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Citation Analysis Another type of knowledge network is a citation network, which consists
of scientific publications which are connected by citations. While this type of network fits our
definition of a knowledge network, it grows in a very specific and simple way: The only possible
change is the addition a new publication. This corresponds to a new node, added simultaneously
with all its outgoing edges. The addition or removal of an edge between two existing nodes
is not possible in such a network, and as such traditional link prediction methods are not
applicable. Instead, research on these types of networks has focused on modeling measures of
popularity and similarity.

3.3 Transformations from Link to Unlink Prediction

Intuitively, link prediction seeks to predict links that appear with a high likelihood, whereas
unlink prediction targets the prediction of links with a low likelihood in the current network.
Hence, both prediction problems seem highly related and we may therefore ask whether the
unlink prediction problem can be understood as a simple transformation of the link prediction
problem. If so, then all theories, models and methods developed to solve the link prediction
problem can also be used to predict unlinks. In this section, we will evaluate two plausible
transformation.

Problem Formalization

In order to predict the removal and addition of links, we consider a scenario of evolving
networks. Let

Nt = (V,Et)

for t ∈ N be the network Nt at time t with V being the set of nodes of Nt with n = |V | and
Et ⊆ V × V the set of links of Nt.

Typically, a network Nt is represented by its adjacency matrix A(Nt), i. e., V is defined via
V = {1, . . . , n} and A(Nt) ∈ {0, 1}n×n is defined as

A(Nt)ij =

{
1, if (i, j) ∈ Et,
0, otherwise.

If the actual network and evolution step is of no importance we usually write A instead of
A(Nt).

Prediction Functions A link prediction function fm is a function

fm : {0, 1}n×n → Rn×n (3.1)

that takes the adjacency matrix of the network A(Nt1) at time t1 and assigns for each node
pair i, j ∈ V a link creation score by computing measure m. The bigger a link prediction score
of an edge (i, j) /∈ Et1 is, the more it is expected to actually be added to the network. Thus,
good link prediction functions assign larger scores to links (i, j) that will appear until time t2,
i.e. (i, j) ∈ Et2 \ Et1 , than to others.
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For the problem of predicting link removal, our aim is to define a unlink score function gm
of the form

gm : {0, 1}n×n → Rn×n (3.2)

that takes a matrix A(Nt1) and computes for each node pair a decay score by measure m.
More specifically, for edges (i, j) ∈ Et1 \Et2 we expect gm(N(At1))ij to be significantly larger
than unlink scores of other edges.

3.3.1 Prediction Models

The problem of predicting whether a link will be removed can be viewed as the inverse problem
of predicting the creation of links. The objective of our approach is to validate how far unlinks
can be predicted with the same structural methods as new links. In the following, we propose
two different approaches for answering this question. These approaches transform the link
prediction problem into an unlink prediction problem by complementing the score (cf. Model
1: Complement Score) and the network (cf. Model 2: Complement Network), respectively.

Model 1: Complement Score

Using a link prediction function fm from (3.1) that computes a score by measure m we define
its inverse link prediction function g1m via

g1m(A) = −fm(A) .

The rationale behind this complement model is that links that have a high link prediction
score should not be removed, whereas links with a low score are expected to be deleted. In the
literature a series of different approaches have been proposed for solving the link prediction
problem [Lü and Zhou, 2011]. Here we consider the following measures as the basis for unlink
prediction.

Preferential attachment Let d(i) denote the degree of node i and let d(j) denote the degree
of a node j in A. Preferential attachment estimates that an edge (i, j) is added with a likelihood
proportional to the product of the degree of i and the degree of j, i.e., we have fPA(A)ij =
d(i) · d(j). Hence, the complement score score of (i, j) is

g1PA(A)ij = −d(i) · d(j). (3.3)

Thus according to this method, links are likelier to be removed between two nodes of a low
degree.

Common neighbors This link predication method implements the intuition that two nodes
are to be linked if they share a lot of neighbors. The function fCN is defined via fCN(A)ij =
(A2)ij , where (A2)ij is the number of paths of length 2 between i and j, i. e., the common
neighbors. g1CN is therefore defined as

g1CN(A)ij = −(A2)ij (3.4)
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Links in this model are expected to be removed if they have only few common neighbors.

Cosine similarity With the cosine similarity method, an edge (i, j) is estimated to be created
with likelihood proportional to the angle between the degree vectors of node i and j. fcos and
g1cos are defined as

g1cos(A)ij = −fcos(A)ij = − (A2)ij√
d(i) ·

√
d(j)

. (3.5)

If the two nodes are connected to the same nodes, the link between them is expected to stay.

Jaccard index Let N(k) be the set of neighbors of node k ∈ V , i. e.,

N(k) = {l ∈ V | Akl = 1}

With the Jaccard index, an edge is created with likelihood proportional to the number of
common neighbors divided by the number of different neighbors of both nodes. The function
fJacc and the corresponding function g1Jacc are defined via

g1Jacc(A)ij = fJacc(A)ij = − (A2)ij
|N(i) ∪N(j)|

. (3.6)

If two nodes are not connected to many nodes but share only few common nodes, the link
between them is expected to be removed.

Adamic–Adar The measure used by the approach of Adamic and Adar [Adamic and Adar,
2001] counts the number of neighbors of nodes i and j, weighted by the inverse logarithm of
each neighbor k’s degree d(k):

g1Adad(A)ij = fAdad(A)ij = −
∑

k∈N(i)∩N(j)

1

log d(k)
. (3.7)

Thus, if two nodes share only few common neighbors with a high degree, the link between
them is not expected to stay in the network.

Model 2: Complement Network

The second family of unlink functions we consider employs link prediction functions as well. But
rather than inverting the prediction function we now invert the problem itself and consider
predicting removal of links in a network by predicting creation of links in its complement
network. Using a link prediction function fm we define its complement link prediction function
g2m via

g2m(A) = fm(Ā) .

Given a network N = (V,E) its complement N̄ = (V, Ē) is defined via Ē = {(i, j) | i 6=
j, (i, j) /∈ E}, i.e., N̄ contains only links between different nodes that are not connected in N .
The complement network of the network in Figure 3.1 is shown in Figure 3.2. The rationale
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(a) Original Network

swim surf

SEO

water

beach Page

Rank

(b) Complement Network

Figure 3.2: The Complement network of network (a) is illustrated in Figure (b). It consists of
all edges that are not present in the original network.

behind this complement model is that since it contains all non-edges, edges that are predicted
in it, should not be present in the original network. Thus, we can conclude the likelihood with
which they can be removed. The complement network is by far not sparse, thus we cannot
represent the complement network as a matrix. Since link prediction methods compute a score
of a network’s adjacency matrix, we will use the following alternative that does not need the
adjacency matrix of the complement network to be constructed. If A = A(N) is the adjacency
matrix of N then Ā = A(N̄) can be written as

Ā = 1− I −A (3.8)

where 1 is the 1-matrix (containing only 1s) and I is the identity matrix (containing 1s in the
diagonal).

We expect that predicting creation of links in Ā also solves the problem of predicting
removal of links in A. Considering Figure 3.2 again, we can see that predicting a link between
nodes ‘swim’ and ‘surf’ is very likely, e. g., using the number of common neighbors. From the
prediction of this edge in the complement network, its removal in the original network would
be predicted.

In the following, we use Equation (3.8) to derive g2m(A)ij using the same link prediction
measures m as in the previous section.

Preferential attachment An edge (i, j) is removed with a likelihood proportional to product
of the degree of node i and degree of node j in the complement network N̄ .

g2PA(A)ij = fPA(Ā)ij

= (n− 1− d(i)) · (n− 1− d(j)) (3.9)

A link is therefore likely to be unlinked between low-degree nodes.
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Common neighbors The unlink score of an edge (i, j) in the original network is then trans-
lated to the link prediction score in its complement network by

g2CN(A)ij = fCN(Ā)ij

= n− d(i)− d(j) + (A2)ij . (3.10)

Thus, a link is likely to stay if the degrees of its incident nodes are big and share many
neighbors.

Cosine similarity An edge is removed with a likelihood proportional to the angle between
the complemented degree vectors

g2cos(A)ij = fcos(Ā)ij

=
n− d(i)− d(j) + (A2)ij√

(n− 1− d(i)) ·
√

(n− 1− d(j))
. (3.11)

Jaccard index Applied to the complement network, we obtain the following unlink score

g2Jacc(A)ij = fJacc(Ā)ij

=
n− d(i)− d(j) + (A2)ij

n− |N(i) ∩N(j)|
. (3.12)

According to this measure, an edge is expected to be removed if the degrees of its incident
nodes are small and have more dissimilar neighbors.

Adamic–Adar The weighted variant of the Adamic–Adar score of the complement network
is as follows

g2Adad(A)ij = fAdad(Ā)ij

=
∑
k∈V

1

log d(v)
−
∑

k∈N(i)

1

log d(k)
−
∑

k∈N(j)

1

log d(k)

+
∑

k∈N(i)∩N(j)

1

log d(k)
. (3.13)

Under this model, if nodes i and j are adjacent to few and rather high-degree nodes the link
(i, j) is likely to be removed.

A summary of the scoring methods is given in Table 3.1.

Predictions in Directed Networks

The link and unlink prediction methods in this section were aligned for undirected networks, so
they used characteristics such as degree d(i) and neighborhood N(i) of a node i. We evaluate
methods and models for link predictions on directed Wikipedia article-hyperlink networks.
Instead of only one node degree for undirected networks, three different degrees of a node
can be defined for directed networks: a node’s out- and in-degree and its degree. Consider
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Name Link prediction function Inverse Complement

Preferential attachment fPA(A)ij=d(i) · d(j) −fPA(A)ij [Eq. (3.3)] fPA(Ā)ij [Eq. (3.9)]
Common neighbors fCN(A)ij=(A2)ij −fCN(A)ij [Eq. (3.4)] fCN(Ā)ij [Eq. (3.10)]

Cosine similarity fcos(A)ij=
(A2)ij√
d(i)·
√
d(j)

−fcos(A)ij [Eq. (3.5)] fcos(Ā)ij [Eq. (3.11)]

Jaccard index fJacc(A)ij=
(A2)ij

|N(i)∪N(j)| −fJacc(A)ij [Eq. (3.6)] fJacc(Ā)ij [Eq. (3.12)]

Adamic–Adar fAdad(A)ij=
∑

k∈N(i)∩N(j)
1

log d(k) −fAdad(A)ij [Eq. (3.7)] fAdad(Ā)ij [Eq. (3.13)]

Table 3.1: Overview of all score methods for link and link decay prediction of an edge (i, j)

Figure 3.3: An arbitrary node i with incoming and outgoing edges.

the node shown in Figure 3.3. It’s out-degree dout is defined as the number of outgoing links
from it and its in-degree din is defined as the number of incoming links. For the given node i,
dout(i) = 2 and din(i) = 3. The degree d is defined as dout + din, so d(i) = 5. Further, the node
neighborhood N(i) of a node i can now be defined for outgoing and incoming links accordingly

Nout(i) = {j ∈ V | (i, j) ∈ E}
Nin(i) = {j ∈ V | (i, j) ∈ E}.

A common approach when predicting links in directed network is to use the same methods as
for undirected networks but to test different degree combinations [Lichtenwalter et al., 2010].
Thus, all undirected degrees d(i) and d(j) are aligned with all given combinations from Table
3.2.

For better readability, the methods in this section were aligned with the ’sym’ degree
(column 1 in Table 3.2) version only. Other methods can be defined analogously and have
been systematically tested in this work.

3.3.2 Methodology

By utilizing common link prediction methods we have defined two families of approaches to
predict decay in networks. In this section we conduct an empirical evaluation on how good
our approaches work on real datasets. In particular, we stipulate that, given the evolution of
some network, links that are removed in a step of the evolution receive a high link decay score.

Name sym asym in out

d1(i) d(i) dout(i) din(i) dout(i)
d2(i) d(j) din(j) din(j) dout(j)

Table 3.2: List of the combinations of degrees of node i and node j used.
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Wikipedia #Articles Adds Deletes
[×106] [×106]

French 1,763,659 41.7 17.3
German 1,526,219 58.7 27.6
Italian 953,208 26.0 8.9
Polish 765,930 18.8 6.2
Dutch 751,888 15.3 4.7

Table 3.3: The datasets used in our evaluation. The number of articles also includes articles
that were removed.

Furthermore, given that we approach the problem of predicting removal of links by using link
prediction methods we ask the question of how related those two problems are in real datasets
and if they can be solved using the same methods. We conduct our analysis using five directed
large-scale networks from Wikipedia. As general practice, we evaluate link decay methods
for directed networks with different combinations of in-degree and out-degree [Lichtenwalter
et al., 2010]. Thus, we will explore which effects the different degree combinations have on the
prediction quality and which prediction method provides the best precision.

Datasets

To evaluate our proposed decay models, we use the directed article-hyperlink networks of five
of the six largest6 Wikipedias. We choose Wikipedia because it’s the biggest publicly available
online encylopdia and its content is actively maintained which makes it a highly-dynamic large
scale knowledge network. We skip the largest one, the English Wikipedia, due to its size and
limited computational resources. In the directed article-hyperlink network of Wikipedia, a link
between two articles i and j is present if article i links to article j. For our link decay prediction
scenario we omit user pages and article discussion pages.

For each of the five Wikipedias we considered all creation and deletion events for links since
their installment. An overview over the datasets is given in Table 3.3. The French Wikipedia
is the biggest dataset used with around 1.8 million articles between which overall 41.7 million
links where added and 17.3 million removed. Note that the number of articles includes also
articles that where removed later. For these Wikipedias, link deletions make up about 24–31%
of all link operations, thus accounting for a large part of structural changes.

Evaluation Methodology

In our evaluation we aim to compare how well we can distinguish edges that have been removed
and edges that are not removed. An illustration of the temporal dynamics of an article network
N is shown in Figure 3.4.

For that we split the datasets of a Wikipedia article network N = (V,E) at time point
t1 = 3/4t2 of the whole time interval t2. We define the training set as all edges that are present

6http://meta.wikimedia.org/wiki/List_of_Wikipedias
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+ − =

Network at time t1 (Et1) Network at time t2 (Et2)Added edges (E+) Removed edges (E{)

Figure 3.4: Schematic representation of the link addition and removal process. At time t1, the
network has the edge set Et1 . After t1, the set of edge E+ is added and the set E−

is removed, giving the set of edges Et2 at time t2. Link directions are not indicated
in the figure.

at time point t1

ETraining = Et1 ,

the true test set E− as all edges from the training set that are not present anymore at time t2

E− = {(i, j) ∈ Et1 \ Et2 | i, j ∈ V },

and the false test set E−false as random sample of edges from the training set that are still
present at time t2 with size |E−false| = |E

−|

E−false = {(i, j) ∈ Et1 \ Et2 | i, j ∈ V }.

The three edge sets are illustrated in Figure 3.5.

swim surfwater

beach Page

Rank

swim surfwater

beach Page

Rank

time

True test set E+

False test set E–

SEO SEOETraining

t1 = 3/4 t2                                        t2

Figure 3.5: Split in training and test set.

We compute the precision of our models with the AUC-value (cf. Section 2.2.3). By con-
struction, the AUC-value is ranged between 0 and 1, where a perfect prediction would obtain
an AUC-value of 1.0 and the random baseline is 0.5.

We compute the AUC-value for all combinations of unlink scores shown in Table 3.1 and
the four combinations of degrees from Table 3.2 for the five largest Wikipedias.
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3.3.3 Evaluation

In the following, we provide results of our empirical evaluations.

Precision of Unlink Models We have defined two link removal models that transform the
link prediction problem to the problem of predicting unlinks. Each of the two unlink models
computes scores of five classic link prediction methods: preferential attachment (PA), common
neighbors (CN), cosine (cos), Jaccard (Jacc), and Adamic–Adar (Adad), which in turn are
varied by four different out and in-degree combinations. Figure 3.6(a) and Figure 3.6(b) show

French German Italian Polish Dutch0.45
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(a) Complement score

French German Italian Polish Dutch0.45
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0.55

0.60
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0.70

0.75

(b) Complement network

Figure 3.6: AUC-values of (a) complement score model and (b) complement network model.
Only the AUC-values of the best-performing degree combination are depicted for
each method.

the best AUC-values over all degree combinations of each method for the complement score
model and the complement network model.

The complement score model performs significantly better than random, all methods have
an AUC-value above 0.5. Preferential attachment is the top-performing method, superior over
the four remaining methods on all five datasets. This means that the likelihood of an edge
to be removed is bigger if the two adjacent nodes have a low degree. Up to 69.7% of all
edges from the test set where correctly classified as to remove. Jaccard and cosine as well as
common neighbor and Adamic–Adar perform very similar to each other with precisions above
the random baseline, too.

The AUC-value of the complement link prediction model, shown in Figure 3.6(b), has lower
precisions than the preceding approach. However, all methods, except cosine, out-perform the
random baseline. PA, CN and Jaccard predict link removals with the highest precision, which
leads to up to 58.4% of correct predictions for the test set. In comparison, the complement
score approach does a better job in predicting link removals.

Effect of degree combinations Computing unlink scores for all edges (i, j) of the test set,
we have tested four different degree combinations (cf. Table 3.2) of node i’s and node j’s in
respectively out-degree.
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Figure 3.7: Error plot of the four different degree combinations for (a) complement score model
and (b) complement network model. The error is computed by the standard devi-
ation of AUC-values of the five Wikipedia datasets.

In Figure 3.7 we compare the unlink prediction precisions of these four degree combinations
across all methods for the complement score approach and the complement network approach.
The error bars indicate the standard deviation across the five datasets.

Varying the types of degrees leads to a drastic deviation within each prediction method.
For the inverse link prediction method, precision values go from slightly above the random
baseline – when using in-degrees – up to 0.6 or more when out-degrees are considered. The
precision values in Figure 3.7(a) are staggered: out-degrees perform best, followed by degrees,
out-degree/in-degree and in-degrees. By construction, the complement network method thus
performs best when considering node in-degrees. The deviation of precision is not as big as for
the inverse method and the ranking of degree combinations is more mixed.

3.3.4 Conclusion

We investigated the problem of predicting the link removal in networks such as the knowledge
network Wikipedia. We proposed two approaches that utilize link prediction methods and
rely on inverted problem descriptions of the link prediction problem. While our first approach
simply complements the prediction scores of a link prediction method our second approach
applies link prediction to the complement network. Our evaluation showed that, in general, the
first approach outperforms the second. However, despite the fact that our evaluation showed
that our approaches both outperform the random baseline we discovered that the problem
of predicting removal of links is generally harder than the problem of link prediction. This
observation also justifies the need for further research on the problem of link removal.

Results Our evaluations show that structural analysis makes a meaningful contribution for
the prediction of link removals. Using link prediction methods we have outperformed a ran-
dom predictor. In our evaluations the complement score approach combined with preferential
attachment performs best. Thus, an edge between nodes with a small degree is more likely to
be removed. Reasons for this could be that these articles are still evolving, thus their network
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structure changes because they are not ‘settled’ yet, or, that wrong connections were made
caused by the lack of understanding of the article content. Using only out-going node charac-
teristics, such as a node’s out-degree and out-going neighborhood achieved the best precisions
for the complement score approach. This could be interpreted as some kind of ‘you are who you
link to’ rule. Two articles are more similar if they link to the same articles. For link removal
this means, that two articles linking to very few common pages are likely dissimilar and thus
they should not be connected by a link.

To ascertain whether unlink prediction is of the same difficulty as link prediction, we
have also computed link prediction precisions for the five Wikipedia datasets. Actually, link
predictions with the same methods are more accurate, precisions around the 0.85 mark were
achieved. Thus, the problem of predicting link removals seems to be more difficult than link
prediction.

Weak ties The best-performing decay prediction method does not use any community charac-
teristics, such as the number of common neighbors or the union of neighbors. In the beginning,
we have hypothesized that two nodes should not be connected anymore if they have a low de-
gree or if they have a higher degree and have only very few neighbors in common. The first
hypothesis is somehow verified by the good precision value of preferential attachment. On the
other hand, few neighbors seem not to be a good indicator for link removal. Thus, the network
data must contain a few nodes pairs with little common neighbors that stay connected. These
links are weak links following Granovetter [Granovetter, 1973], that introduce shortcuts into
the network which lead to the small-world phenomenon. Considering solely the structure, one
cannot distinguish between links that should be removed and links that operate as weak ties.

Complement Score Outperforms Complement Network Our results show that the com-
plement score approach outperforms the complement network approach for all methods and
networks. The complement network model assumes that every non-edge is an intentionally un-
linked node pair and thus translates it to a connected node pair in the complement network.
This in praxis uncertain information – node pairs might just not be linked yet or they may
be somehow connected even if the link is not established – is translated to certain informa-
tion of connectedness in the complement network. We believe that this translation step makes
some strong assumptions that are generally not fulfilled. Also some of the characteristics are
not meaningful in the complement network. The diameter in the complement network is very
small, for instance it is reduced from 4 in the original example network to 2 in the complement
network in Figure 3.2.

3.4 Interplay of Link Addition and Link Removal

In the preceding section, we have seen that the problems of predicting link removals and
predicting link additions are two distinct prediction problems. Some of the structural charac-
teristics from the link prediction research are indeed useful to predict unlinks, but a deeper
understanding of link removal processes is still needed. This section provides a unified view of
both problems. Instead of considering each problem separately, we consider the interplay of
both problems to reveal interesting dynamics in knowledge networks.
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PPPPPPPPPRemove
Add

Negative Positive

Positive decay instability

Negative stability growth

Table 3.4: Classification of indicators by their ability to predict link addition and link removal.
“Add” and “Remove” refer to the type of event to be predicted. “Positive” and
“Negative” refer to positive and negative predictive power for the type of event.

We compare the predictive ability of individual features at the task of predicting the addi-
tion and removal of individual edges, and are able to identify four classes of indicators: those
that indicate growth of links, those that indicate decay of links, those that indicate the sta-
bility of links and those indicate the instability of links. We then use these insights to classify
the individual addition and removal events, according to their role in the knowledge network’s
growth. In the following we state our model and describe the experiments that we performed.

3.4.1 Modeling Structural Changes in Knowledge Networks

In the business sciences, a knowledge network is defined as a correlational knowledge structure
that is inherently symmetric because it connects entities that are related to another [Saviotti,
2009]. We align our definition of a knowledge network with the working definition of the
semantic web community, which assigns directions to links between knowledge items. Thus,
we define a knowledge network to be a directed graph N = (V,E) consisting of a set of vertices
V representing the knowledge items, and a set of edges E representing the links between them.
Individual knowledge items will be denoted i, j, etc., and a link from i to j will be denoted
(i, j). In general, links in knowledge networks are not symmetric, i.e., an edge (i, j) does not
imply that the inverse edge (j, i) is present as well.

Problem Description

Our goal is to determine which indicators are useful to explain the formation of new edges
and the removal of existing edges. Since we are not interested in modeling the appearance and
disappearance of individual knowledge items, we consider the set of nodes to be invariant over
time.

A way to model the growth and the decay of a network is to determine numerical indicators
that correlate with observed growth and decay in actual networks. As an example, the number
of common friends is used in social networks to predict the appearance of new ties. Thus, the
number of common neighbors is a feature that is used for link addition prediction in social
networks. Conversely, in the literature concerned with predicting the disappearance of links,
other individual features are evaluated at that task. In order to take into account both the
appearance and the disappearance of links, we will classify features by their performance on
both tasks, resulting in four classes of features, as depicted in Table 3.4:

• Stability features are those indicating that neither link addition nor link removal will
take place.
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• Instability features are those indicating that both link addition and link removal are
likely.

• Growth features are those indicating that link addition is likely whereas link removal
is unlikely.

• Decay features are those indicating that link removal is likely whereas link addition is
unlikely.

These four classes allow us to give a fine-grained characterization of individual features. For
instance, a feature such as the number of common neighbors may be well-known to be an
indicator for edge addition, but it is unknown whether it is also an indicator for the disappear-
ance or for the non-disappearance of edges. The number of common neighbors may actually
be a measure of growth, or of instability. Thus, the distinction of these four classes will also
allow us to shed a new light on existing link addition prediction features, to tell whether they
are indicators for the presence of edges or only for the change in the states of edges. In the
following, we describe several potential signals for link addition and link removal from the
literature.

Features

A large number of features for predicting link appearance and disappearance can be found
in the literature [Liben-Nowell and Kleinberg, 2003, Raeder et al., 2011, Lü and Zhou, 2011].
These features can be grouped by the theory or model that explains how these features behave
for the tasks at hand. Hypotheses (a)-(e) cover known models from the literature. The following
list contains both node-level features and node pair-level features. To construct numerical
indicators for node pairs from node-level features, we use the product of the feature values for
both nodes, e. g., d(i, j) = d(i) · d(j).

(a) Preferential Attachment

The model of preferential attachment states that links are more likely to attach to nodes with
a high degree [Barabási and Albert, 1999].
Hypothesis: The number of adjacent nodes is a good indicator for link addition.

Node degree: d(i) is defined as the number of nodes adjacent to i, regardless of link direction.

Joint degree: jd(i, j) is defined as number of nodes that are adjacent to node i or node j,
regardless of link direction.

(b) Embedding

The embeddedness of a node pair measures to what extent two nodes are part of a larger
cluster [Burt, 2000].
Hypothesis: The embeddedness of a link is suitable to predict the appearance of links and the
non-disappearance of existing links, i.e., it is an indicator for growth.

Common neighbors: CN (i, j) is defined as the number of common neighbors of node i and j.

Paths of length three: P3 (i, j) is defined as the number of paths of length three between
node i and node j.
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(c) Reciprocity

A link is reciprocated if the link in the opposite direction is present [Raeder et al., 2011].
Hypothesis: The presence of a link makes the addition of a link in the opposite direction more
likely and the removal of a reciprocal link less likely. Thus, it is an indicator for growth.

Back-links: back(i, j) is defined as a binary feature indicating whether a back-link exists, i.e.,
back(i, j) = 1 if (j, i) ∈ E and back(i, j) = 0 otherwise.

(d) Liability of Newness

The principle termed liability of newness states that newly formed links are less likely to persist
than older links and generally more volatile [Burt, 2000, Karney and Bradbury, 1995]. Also
new nodes are likelier to form unstable ties.
Hypothesis: The freshness of an edge or a node are good indicators for link change.

Edge freshness: eFresh(i, j) is defined as the time passed since the last add-event, i.e., the
last time that node i has been linked to j. Since the freshness denotes the last add-event,
links with a higher edge freshness value are considered as more fresh than others.

If an edge has never been present in the evolution of a network, the aforementioned feature
is undefined. Thus, we elaborate on the idea of liability of newness and propose the following
node feature.

Node freshness: We define nFresh(i) as the freshness of node i, denoting the last time that any
event related to node i occurred. Since the freshness of a node denotes its last add-event,
nodes with a higher freshness value are also considered as more fresh than others.

(e) Stability of Oldness

We consider a node as stable if its content or its incident edges remain relatively unchanged.
Generally, older nodes were found to be more stable with respect to their ties in the network
[Burt, 2000, Karney and Bradbury, 1995].
Hypothesis: The more stable nodes i and j are, the more stable the link (i, j) is, whether
present or not.

Edge age: eAge(i, j) is defined as the time passed since the first add-event, i.e., the first time
that the edge (i, j) was added. Accordingly, links with a higher edge age are considered
as older.

If an edge has never been present in the evolution of a network, the aforementioned feature is
undefined. Thus, we define the following node feature.

Node age: We define nAge(i) as the age of node i, i.e., the first time that any event related
to node i occurred. Accordingly, nodes with a higher node age are considered as older.

We summarize the features and the expected behavior with respect to the predictability of
new links and link removals in Table 3.5.

3.4.2 Methodology

In our evaluation we use again the largest dynamic knowledge network on the Web, Wikipedia.
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Model Feature New links Link removal Expected state

Preferential attachment Node degree d ↗ – Growth / instability
Preferential attachment Joint degree jd ↗ – Growth / instability

Embedding Common neighbors CN ↗ ↘ Growth
Embedding Paths of length three P3 ↗ ↘ Growth

Reciprocity Back-links back ↗ ↘ Growth

Liability of newness Edge freshness eFresh ↗ ↗ Instability
Liability of newness Node freshness nFresh ↗ ↗ Instability

Stability of oldness Edge age eAge ↘ ↘ Stability
Stability of oldness Node age nAge ↘ ↘ Stability

Table 3.5: Summary of hypotheses about the ability of features to predict link addition and
removal. “↗” indicates a positive correlation; “↘” indicates a negative correlation.

Wikipedia Articles Adds Deletes
[×106] [×106] [×106]

French 1.8 41.7 17.3
German 1.5 58.7 27.6
Italian 1.0 26.0 8.9
Dutch 0.8 15.3 4.7

Table 3.6: The datasets used in our evaluation. The number of articles also includes articles
that were removed.

Datasets

We use the directed article-hyperlink networks of four of the five largest7 Wikipedias. In the
directed article-hyperlink network of Wikipedia, a link between two articles i and j is present
if article i links to article j. We omit user pages and article discussion pages.

For each of the four Wikipedias we consider all add and delete events until August 2011.
An overview of the datasets is given in Table 3.6.

Prediction Methodology

Given the set of links Et1 present at a particular time t1, how can the links Et2 at time t2
be predicted accurately? This problem involves again the prediction of new edges E+ and the
prediction of deleted edges E− as defined in the preceding section

E+ = Et2 \ Et1 ,
E− = Et1 \ Et2 .

The problem of predicting new links E+ is called the link addition prediction problem, or
simply the link prediction problem [Liben-Nowell and Kleinberg, 2003]. Typically, the link

7http://meta.wikimedia.org/wiki/List_of_Wikipedias
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Wikipedia |E+| |E−|
[×106] [×106]

French 5.3 1.2
German 10.2 1.7
Italian 3.9 0.7
Dutch 2.3 0.5

Table 3.7: The size of our link addition and link removal test sets for the four Wikipedias we
consider.

addition prediction problem is solved by link addition prediction functions, i.e., functions that
map node pairs to numerical scores, based on the known edges in the set Et1 . The problem of
predicting the disappearance of edges can then be solved analogously by link removal prediction
functions.

To compare the prediction accuracy of different link addition prediction and link removal
prediction functions, we define a true test set and a false test set for each of the prediction
problems. The test set contains the node pairs to be predicted; the false test set contains node
pairs that must not be predicted.

For the link addition prediction problem, this means that node pairs in the true test set E+

must be distinguished from those that where not added, i.e., those in the false test set E+
false.

Analogously, the prediction of link removal aims at distinguishing links that are removed, in
the true test set E−, from those that are not removed, in the false test set E−false. The definition
of the two false test sets is analogous to Section 3.3.

To solve a prediction problem, one uses functions of the form

f : Et1 → R,

that take the structure of the network at time t1 as input to compute scores for all node
pairs in the test and false test sets.

When applied to the edge set Et1 , f is a good link addition prediction function when it
gives node pairs in E+ higher values than node pairs in E+

false. Analogously, f is a good link
removal prediction function when it gives edges in E− higher values than edges that are not
removed, in E−false. In Table 3.7 we give an overview of the number of edge additions and
removals in the test sets for our datasets.

The performance of a prediction function f at the two prediction problems can then be used
to classify it into the four categories of growth, decay, stability and instability; see Table 3.4.
Link addition prediction functions (link removal prediction functions) can then be evaluated
and compared.

Consistently, we the experiments in Section 3.3, we again use the AUC-value to measure the
predictive performance of a prediction function. As a reminder, the AUC-value of a predictor
is ranged between 0 and 1, where the perfect predictor received an AUC-value of 1.0 and a
random predictor receives and AUC-value of 0.5.

56



3.4 Interplay of Link Addition and Link Removal

Decay AUC Instability AUC

Low node degree −d 0.70 Nodes have been changed recently nFresh 0.71
Low joint degree −jd 0.69 Old edge eAge 0.65
Few paths of length three −P3 0.67 Edge has been changed recently eFresh 0.64

Stability AUC Growth AUC

Nodes have been unchanged for long −nFresh 0.71 High node degree d 0.70
Young edge −eAge 0.65 High joint degree jd 0.69
Edge has been unchanged for long −eFresh 0.64 Many paths of length three P3 0.67

Table 3.8: The three best performing indicators for the four classes are shown along with their
average AUC-values across the four datasets and the two prediction tasks.

3.4.3 Evaluation

In this section we report on experiments to determine which features are suitable signals for
link addition and removal.

We compute all eleven features described in Section 3.4.1 and compute the AUC-values
of the link addition and removal prediction tasks. Figure 3.8 shows the performance of the
features at the task of link addition and removal prediction for all studied datasets. Table 3.8
shows the top-three performing features for each of the four classes.
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Unlink AUC-valueLink AUC-value
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Figure 3.8: AUC-values for the link prediction and unlink prediction tasks are shown for all
features and all four datasets. Note that a below-random AUC-value can be turned
into an above-random one by the negation of the respective feature.

In the following, we compare our results with the projections of the hypotheses from Section
3.4.1.
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Figure 3.9: Link prediction and unlink prediction AUC-values for the indicators based on the
five models. The X and Y axes of each plot show the AUC-values of the link
and unlink prediction tasks, respectively. The two lines showing an AUC-value of
one half divide each plot into four quadrants, corresponding to the four classes of
indicators.

(a) Preferential Attachment

Hypothesis: The number of adjacent nodes is a good indicator for link addition.

Following the hypothesis, we expect a good link addition prediction performance for features
of preferential attachment. Figure 3.9(a) shows the AUC-values for the two preferential attach-
ment features. Our experiments show that preferential attachment features are indeed good
indicators for the formation of new links, as can be seen by the AUC-values above 0.5 for the
two features. As all features scored below the AUC-value of 0.5 for the prediction task of link
removal, we conclude that preferential attachment features are signals for growth. In terms of
the knowledge networks, this implies that popular knowledge items tend to become integrated
with more knowledge items.

(b) Embedding

Hypothesis: The embeddedness of a link is suitable to predict the appearance of links and the
non-disappearance of existing links, i.e., it is an indicator for growth.

Following the hypothesis, we expect a good link prediction performance and a bad unlink
prediction performance for features of embeddedness. Figure 3.9(b) depicts the AUC-values
for this feature for link versus unlink prediction. For all four networks, this feature is situated
in the lower right quadrant, implying that embedding is an indicator of growth. In terms of
the knowledge networks, this implies that indirect relationships tend to be made explicit by
direct knowledge connections.
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(c) Reciprocity

Hypothesis: The presence of a link makes the addition of a link in the opposite direction more
likely and reciprocal links are likelier to persist. Thus, it is an indicator of growth.

Following the hypothesis, we expect a good link prediction performance and a bad unlink
prediction performance. We depict the results for the binary feature of back-link back in
Figure 3.9(c). We observe a tendency of this feature to be correlated with the formation
of new links, but the AUC-values are only marginally different from the random baseline.
This confirms the fact that knowledge networks are inherently directed and that relationships
between knowledge items are not necessarily symmetric as opposed to links in social networks.
Therefore the feature of reciprocity does not fit into any of our four categories.

(d) Liability of Newness

Hypothesis: The freshness of an edge or a node are good indicators for link change.

Following the hypothesis, we expect a good link and unlink prediction performance for these
features. In particular the node freshness is a good indicator for the formation of new links
and the removal of links. The predictive performance of the edge freshness is good for the
link prediction task but rather random for the unlink prediction task. Therefore, we can only
confirm that the node freshness is an indicator of instability. In terms of knowledge networks,
this implies that new a new knowledge item is fragile, the connections to other knowledge
items will be changed more often.

(e) Stability of Oldness

Hypothesis: The more stable nodes i and j are, the more stable the link (i, j) is, whether
present or not.

Following the hypothesis, we expect a bad link prediction performance and a bad unlink
prediction performance for the age of a node and an edge. Our findings shown in Figure
3.9(e) and Figure 3.8 suggest that the age of an article is indeed correlated negatively with
the likelihood of link addition and link removal. On the other hand, the age of an edge is an
indicator of growth rather than of instability because it is correlated positively only with the
formation of new links. Therefore we can confirm only that the node age is a good indicator
of the stability of an edge. Old knowledge items in knowledge networks can thus be considered
as more stable, the established connections are more likely to remain.

Comparison of Prediction Problems

We can use our evaluation to make a remark on the problems of link addition and link removal
prediction. As a general rule, our results show that the problem of link prediction can be solved
to a much higher accuracy (AUC ≈ 0.85) than the unlink prediction problem (AUC ≈ 0.60).

On the level of the four different classes of prediction problem which generalize the link and
unlink prediction problem. We observe that the problem of growth prediction can be solved
well using embedding indicators (see Figure 3.9(b)), as can the instability prediction problem
(see Figure 3.9(e)). Since indicators for decay and stability can be derived from these two by
inversions, it follows that all four types of prediction problems can be solved well.
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Growth vs Instability

For the problem of link prediction, the features usually considered are not evaluated on the
task of unlink prediction. Unlink prediction is however, even if it is rarely included in evalu-
ation datasets, present in the majority of real-world networks. Thus, the distinction between
indicators of growth, which correlate with the addition of edges and the non-removal of edges,
and indicators of instability, which correlate with both the addition and removal of edges,
should be made. As an example, a social recommender system (“you may also know these
people”) should use indicators of growth rather than indicators of instability. Even if an in-
stable tie is likely to appear now, it is also likely to disappear later, and therefore should not
be recommended. Our results thus show that preferential attachment-based and embedding-
based indicators indicate growth and should thus be used for recommendation and other link
prediction-type applications, while node and link age-based measures should not. This result
is also in line with the link prediction literature, in which the best features are found to be
based on preferential attachment and path counts [Liben-Nowell and Kleinberg, 2003, Lü and
Zhou, 2011].

Link Versus Unlink Prediction

Note on Link Prediction False Test Set When looking at the auc-values at first glance on can
easily get the idea that unlink prediction is a lot more difficult than link prediction. Whereas
auc-values for Link Prediction are scored around 0.85, the best performing unlink prediction
method can only reach 0.65. Note that these two values cannot be compared directly, since the
set up for the two prediction problems is different. Whereas in the Link Removal Set Up, Links
that remain are compared with links that are removed, the Link Prediction set Up compares
links that are added versus random links that never appear in the network. The latter is by
definition much easier.

Link Prediction Outperforms Unlink Prediction As we can see, the distributions of many
link measures are highly skewed; many node pairs have the same small values whereas fewer
node pairs have high values. This does not ressemble a problem for link prediction, because
there the higher values are ranked better. Since the most succesful unlink prediction scores
were obtained by negating link prediction scores, the low-scoring node pairs from the depicted
distribution were shown. Since many node pairs have no common neighbors (60%) they will
be ranked randomly. Therefore, the resulting AUC-value will not achieve values comparable
with the link prediction problem.

3.4.4 Conclusion

Having performed experiments on four big Wikipedia datasets, we can state that indeed the ap-
pearance and disappearance of connections between items of knowledge in knowledge networks
follow predictable patterns. As we showed, the patterns can be understood as an extension of
link prediction models known in the literature, as well as of the much rarer link removal predic-
tion problem. However, we found that to understand the dynamics of knowledge completely, a
unified view of addition and removal must be adopted that distinguishes not two but four types
of changes, namely growth, decay, stability and instability. We were able to verify empirically
into which of these four categories the known prediction methods fit, showing that for all four,
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suitable indicators exist. In particular, we were able to classify link prediction functions into
those which actually indicate growth of the connectivity in a knowledge network, and those
which indicate only instability. By reviewing known models of link-based network evolution,
we were not only able to give a more detailed classification of known numerical indicators, but
also to propose the novel indicator of the node deletion coefficient, which indicates instability,
and is defined as the ratio of link deletion to link additions for a specific node.

3.5 Conclusions

In this chapter, we have studied the relationship between link and unlink prediction in two main
experiments. Whereas the link prediction problem has been studied in various research, the
unlink prediction problem has so far not been tackled in a general and structural manner. For
the first experiment, we have considered two transformations of the link prediction problem
into the unlink prediction problem. The Complement Score Model simply negates the link
prediction score, therefore links that receive a low link prediction score are likely to be removed.
The Complement Network Model computes the link prediction measures on the complement
network of the original graph. Links that are likely to appear in the complement network
can then be interpreted as potential unlinks in the original network. We have evaluated both
models on five different Wikipedia datasets. The Complement Score Model turned out to
be superior over the Complement Network Model for all considered prediction measures. We
have demonstrated that unlink prediction is feasible with the classic structural indicators lent
from link prediction. At the same time, the unlink prediction problem turned out to be more
than a simple transformation of the link prediction problem. Both problems are distinct and
only related prediction problems. In a second line of research, we have then analyzed the
interplay of both prediction problems. As opposed to considering each problem as a separate
prediction problem, we have provided a unified view which led us to categorize four different
link change states of growth, decay, stability and instability. We have tested the predictive
performance of different structural characteristics and categorized them into the four classes.
Negated Structural measures of the embeddedness of a tie, i.e. the negated number of common
neighbors (−CN) and the negated common neighbors of common neighbors (−P3) have shown
to be superior over all other. Further we found that these two measures are also good indicators
of the growth of a link – they are correlated positively with the likelihood of a new links and
correlated negatively with the likelihood of link removal. On the contrary, the node freshness
– the timestamp of the last edge addition for a node – was correlated positively for both
prediction problems; therefore we consider it as a measure of instability. The work in this
chapter has shown that unlink prediction is feasible with structural characteristics, but also
that it lacks the strong predictive results of link prediction. The predictive performance of link
prediction is significantly higher than for unlink prediction with the studied characteristics.

The work in this chapter was published in two papers:

• Julia Preusse, Jérôme Kunegis, Matthias Thimm, and Sergej Sizov. DecLiNe - Models
for Decay of Links in Networks. ArXiv e-prints, 2012.
Topic: Transformations of link to unlink prediction.

• Julia Preusse, Jérôme Kunegis, Matthias Thimm, Thomas Gottron, and Steffen Staab.
Structural dynamics of knowledge networks. In Proc. Int. Conf. on Weblogs and Social
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Media, pages 506–515, 2013.
Topic: Interplay of link and unlink prediction.
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4 Temporal Models of Knowledge Networks

4.1 Introduction

A non-negligible part of social media is concerned, not with exchanging personal information,
but with building knowledge bases. Such knowledge bases are for instance given by any part of
the semantic web, in which knowledge is represented in a systematic way. Most prominently,
the online encyclopedia Wikipedia represents one of the largest online communities dedicated
to building a knowledge base spanning all areas of human knowledge – Wikipedia contains over
four and a half million articles in the English language alone. While Wikipedia is a high-quality
and up-to-date knowledge base with many practical uses, the question of Wikipedia’s temporal
stability remains unanswered. In contrast to traditional encyclopedias, Wikipedia is evolving
very rapidly – articles are added, interlinked and revised constantly, reflecting the fast changes
in many areas such as politics, art, and popular culture. Since change is an inherently temporal
phenomenon, we may ask the question whether change in Wikipedia’s hyperlink structure is
mediated by temporal phenomena. To give pertinent answers to this question, we investigate
three temporal working hypotheses: (1) temporal changes are mediated by the qualitative
nature of past structure, (2) temporal changes are mediated by the recency of past edges and,
(3) temporal changes are mediated by the temporal evolution of the neighborhood of individual
nodes. To verify these hypotheses, we evaluate corresponding prediction algorithms, which
must perform well under each hypothesis. In particular, we note that changes in a knowledge
network can be of two fundamental types: the addition and the removal of edges. This leads
to two separate prediction problems, the link prediction problem, and the unlink prediction
problem.

Even though the links between articles of Wikipedia contain only a fractionally small part
of the encyclopedia’s total information, they can be used to get insight into the knowledge base
with great accuracy. For instance, the addition of links to a network can be predicted, making
it possible to suggest new connections between articles, and thus knowledge [West et al., 2009].
The accuracy of such link prediction algorithms is usually however not perfect. For instance,
the imbalance between existing and non-existing edges needs special attention [Lichtenwalter
et al., 2010], and typical accuracy values of link prediction algorithms attain values of 80%
percents, as measured by the common measure AUC-value [Lü and Zhou, 2011].

As we have seen in the last chapter, the accuracy of observed structural methods are even as
low as 60%. While this appears to be due to the fact that link prediction (and unlink prediction)
algorithms only consider structural feature of a knowledge network, we show incidentally that
this is not the case: The accuracy of link prediction can attain values as high as 95%, and that
of unlink prediction 70%. As will be seen, the key to achieving these results lies in the temporal
information. Whereas the last chapter has only considered measures of a snapshot of the data,
this chapter uses the history of addition and removal events to improve the classification of
links and unlinks.
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Research Questions

This chapter will answer the following research questions.

RQ 2 Does the exploitation of temporal data improve the classification of new links and un-
links?

If the timestamps of individual addition and removal events are given for a dataset, how can
this temporal information be exploited for the prediction of links and unlinks?

RQ 2.I What strategies would be adequate to exploit temporal informations as to classify new
links and unlinks?

Information of addition and removal events can be leveraged on different levels; one could use
the specific timestamp of an event, use only the ordering of events or exploit the qualitative
information how often a link has been added or deleted.

RQ 2.II Does the exploitation of temporal data improve the classification of new links and
unlinks?

Will the prediction results be significantly better than without temporal information? The
snapshot representation of a dataset does not provide any evidence to whether links that are
not in the snapshot have been present before. We hypothesize that information on unlinks,
that can be extracted from temporal data, should improve the predictability of new unlinks.

The structure of this chapter is as follows. Section 4.2 will review related research that in-
corporates temporal information for link prediction tasks. Section 4.3 is dedicated to research
question RQ 2.I and presents four models of the temporal evolution of knowledge networks.
The evaluation set up for the proposed models is defined in Section 4.4. The added-value of
temporal data, which corresponds to research question RQ 2.II, is then evaluated in Section
4.5. Finally, Section 4.6 concludes the chapter and discusses the results.

4.2 Related Work

4.2.1 Temporal Link Prediction

The temporal link prediction problem is defined as follows. Given linkage events of time
t1 . . . tN , which links will appear at time tN+1? Hence, the temporal link prediction prob-
lem uses temporal data for all events until tN to predict links that will appear until tN+1. In
contrast, the problem of link prediction uses only a snapshot of links present at time tN .

Related work on the temporal link prediction problem can be grouped into two categories
– weighted summary and temporal features. The first category uses only the timestamps of
edge events as input for the prediction algorithm. The second category of work deals with
highly-parallel networks for which a weighted summary of the temporal history of each edge
event is built. Both approaches measure characteristics of a single edge; they cannot be applied
to paths, such as the number of common neighbors, or even to weight a node’s neighborhood
by time. We review the two categories in the following.
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Temporal Features This line of work uses the first or last timestamp of an edge either
as a single feature or plugged into an ensemble learning method to derive the likelihood of a
particular edge. Tylenda et al. use the recency of a publication as an input feature for ensemble
learning methods to predict links in publication networks [Tylenda et al., 2009]. Two studies
on predicting decay in mobile phone communication networks define that links decay if no
communication was exchanged between actors for a particularly chosen time period [Raeder
et al., 2011, Hidalgo and Rodriguez-Sickert, 2008]. Preusse et al. have used a Wikipedia article’s
ratio of link removals and link additions to predict whether a link will be formed or will decay
[Preusse et al., 2013].

Weighted Summary This line of work deals with networks with highly-parallel edges such
as in communication networks. To infer the future number of interactions between two users,
a temporally weighted summary of the interaction history of the user pair is implemented
instead of just using the number of interactions between the two.

Targeting the problem to predict the next topic of an author’s publication, Sharan and
Neville implemented different kernel functions that weight the more recent topics on which an
author has published higher [Sharan and Neville, 2008]. They have shown that this predictor
achieves better results than a predictor that ignores the time that an item was published.

Spiegel et al. use tensor factorization to asses trends of data with parallel edges such as
product ratings or interactions [Spiegel et al., 2012]. They apply exponential smoothing to the
number of parallel edges in defined time segments to extrapolate the value to the target time
segment.

A costly low-rank approximation of the adjacency matrix that captures latent relationships
is presented in [Hayashi et al., 2009, Tong et al., 2008]. The dynamic representations are then
used for Bayesian inference.

Koren analyzed the user rating behavior for movies in Netflix [Koren, 2010]. He proposed
complex models that are based on observations such as that user preferences change from week
to weekend and that the overall user taste and the movie rating shifts over time.

There are many works that use time-series analysis to predict the occurrence of the next
event based on regularly re-occurring patterns. For instance in [Huang and Lin, 2009], methods
of time-series analysis were combined with static structural approaches to predict new links in
two highly-parallel event networks .

These methods cannot be applied to our status networks, because the history of an edge
consists mostly of only as few as one or two events: the addition and the removal of an edge.
As depicted in Figure 4.1 most edges in the knowledge network Wikipedia appear only once
(between 62% and 88% for all networks) or are additionally removed once. In average for 90%
of all edges only an addition and removal time stamp is given. Thus there are too few state
changes to use the described methods.

In [Potgieter et al., 2007, Cooke et al., 2006], two temporal versions of classic link predic-
tion characteristics, such as node degree, number of common neighbors and Adamic-Adar, to
predict interactions in a social network are proposed. The link prediction measures are tem-
porally weighted by the return, i.e. the ratio of the value at a defined start point and the value
at a defined end point, and the average of a characteristic over some defined time points. The
choice of the start point greatly influences the results of the weighted summary; finding an
appropriate start point for all node pairs seems very tough.
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Figure 4.1: The distribution of the number of state changes per edge is depicted. The y-value
corresponding to x=1 gives the number of edges that were added exactly once. We
have cut the distribution at x=14 and added all remaining status changes to the
corresponding y-value of x=15.

4.2.2 Related Problems

Link Decay In many networks, links cannot be removed but are rather considered to become
inactive or to decay. Two studies that predict decay in mobile phone communication networks
assume that links decay if no communication was exchanged between the actors for a par-
ticularly chosen time period [Raeder et al., 2011, Hidalgo and Rodriguez-Sickert, 2008]. Both
works conclude that links are more likely to persist when the connection is reciprocated and
when either both actors’ degrees are low or both degrees are high. Raeder et al. observed that
the “liability of newness” holds, i.e., the age of a tie is correlated with its persistence [Raeder
et al., 2011]). Viswanath et al. found that the longer two users have engaged in wall-to-wall
interactions on Facebook, the more likely they are to continue and thereby the less likely the
interaction link in Facebook is to decay [Viswanath et al., 2009]. We cannot use features such
as the interaction frequency, since links in a state network mostly change from present to
removed and thus the history of a tie is not useful. Further, this line of research deals with
derived link removals as the datasets themselves do not contain explicit unlinks.

Cross-Temporal Link Prediction Oyama et al. were the first to define the cross-temporal link
prediction problem [Oyama et al., 2011]. In contrast to temporal link prediction, where links in
a time slice TN+1 should be predicted, this problem aims at predicting links between different
time slices. Applications of this problem are entity resolution, where events for entities are
given for some time slices, but corresponding entities should be connected, and asynchronous
communications, where messages should be linked to the messages they reply to, which is not
given in many datasets or applications.
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4.3 Temporal Models of Structural Change

The knowledge captured in knowledge networks is very dynamic. New pieces of knowledge are
discovered and connections between existing knowledge items are made constantly. At the same
time, connections between knowledge items are also removed if they are obsolete or wrong.
We assume that the structural aspects of the knowledge are captured in the links between
individual knowledge items, and will thus only consider changes to the links disregarding the
actual changes in the content.

The structural evolution of knowledge follows predictable patterns, which fall into two main
lines: time-agnostic ones that do not build upon temporal features to predict the network future
and time-aware ones that exploit temporal trends to infer the future.

4.3.1 Hypotheses of Knowledge Evolution

In the following, we present the three hypotheses (H1-H3) stating which information in the
network influences the future, and the baseline hypothesis that time does not play a role (H0).

Time-Agnostic Baseline Hypothesis

H0: Future changes depend only on the network’s current state.

This hypothesis suggests that all information that is needed to infer the network’s future
is captured by the current state of the network. Existing approaches in the areas of link
prediction and unlink prediction compute structural indicators for articles and article links
and evaluate their performance on the actual future network. When temporal data is not
present in a dataset, this assumption is implicitly made. A very large fraction of studies on
link prediction consider only a static model of the network. As examples, the link prediction
survey by [Liben-Nowell and Kleinberg, 2003] as well as that by [Lü and Zhou, 2011] only
review methods based on this hypothesis.

Newer work on link prediction does exploit temporal information; this line of work is often
referred to as temporal link prediction. Work on temporal link prediction can be broadly
classified by the type of temporal information considered into three classes: works that take
the qualitative nature of changes into account, works that consider the time of the last edge
addition or removal event between any node pair, and works that consider the full add/remove
history between all nodes. In the following, we derive three hypotheses from these three classes.

Qualitative Hypothesis

H1: The appearance and disappearance of edges in the past influences the presence of edges in
the future.

Whereas the time-agnostic hypothesis uses only the current structure, this hypothesis states
that the information on links and articles that have been removed and are not present in the
current network, improves the predictability of the future network. As an example, an article’s
ratio of added and removed links was found to be a successful indicator for future link removals
[Preusse et al., 2013].
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Decay Hypothesis

H2: The timepoint of the appearance and disappearance of an edge in the past influences the
presence of an edge in the future.

We refine this hypothesis by whether the weight of edges should increase or decrease by
time, giving hypotheses of recency and longevity.

H2R: Two articles with recent new links are more likely to link to each other.

H2L: Two articles with older new links are more likely to link to each other.

Under the recency hypothesis, changes made long ago should affect the current network
dynamics less than as recent changes. Measures such as the elapsed time since the last inter-
action were shown to be suitable indicators for future activity between two actors [Hidalgo
and Rodriguez-Sickert, 2008, Raeder et al., 2011]. On the contrary, the liability of newness by
[Burt, 2000] asserts that new links are very fragile and the effect of older established edges
should be more indicative of future changes. Sharan and Neville built a weighted summary
to predict the topics that an author will next publish on [Sharan and Neville, 2008]. For this
application, the more recent publications appeared to be more important than the later onces.

Neighborhood Evolution Hypothesis

H3: The temporal evolution of the neighborhood of an article influences its future neighbor-
hood.

Based on the evolution of their neighborhood, knowledge items can be classified as growing
or stable with respect to new links or removed links. Trending items will change more as well as
their interconnections with other items, whereas for older knowledge items most connections
have been established. Thus, considering the local changes around a knowledge item, i.e. its
neighborhood, should give a good indication of its future. For instance, extrapolating the
event matrix to the future with exponential decaying weights of past events has been shown
to perform well [Spiegel et al., 2012], and work in collaborative filtering demonstrates the
usefulness of modeling time changing behavior throughout the lifespan of a bipartite rating
graph [Koren, 2010].

Modeling Structural Change Having defined one time-agnostic and three time-aware hy-
potheses, we now present corresponding models of link change. We capture the different levels
of temporal information from the hypotheses introduced in the previous section in each differ-
ent network representation. Whereas the time-agnostic hypothesis (H0) is best modeled using
the knowledge network’s adjacency matrix, the qualitative and decay hypotheses (H1-H2) will
be defined using weighted versions of it. The neighborhood evolution hypothesis (H3) is im-
plemented by sequences of different neighborhood sizes which are extrapolated to estimate the
future neighborhood of an article and consequently the network structure.

Link and Unlink Prediction Functions

The problem of link prediction is concerned with finding good indicators that predict whether
an edge will appear in a network or not. A particular set of link prediction features has proven
to be successful to predict the appearance of links in many different networks [Liben-Nowell
and Kleinberg, 2003, Lü and Zhou, 2011]. These link prediction features are generally defined
in a time-agnostic setting, i.e., without reference to appearance times of edges. In order to
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implement link prediction methods corresponding to the hypotheses H1 and H2, we will extend
these methods to take into account edge weights that are functions of an edge’s history. We
will restrict this study to the widely used (and supposedly best-performing) link and unlink
prediction algorithms. Other, more complex algorithms include the index of Katz [Katz, 1953],
graph kernels [Ito et al., 2005] and diffusion models [Kondor and Lafferty, 2002].

Work on the unlink prediction problem is much more sparse, and is mostly focused around
specific social networks, for instance Twitter [Kwak et al., 2012] and Facebook [Quercia et al.,
2012]. As these studies use very specific user information, e.g. personality traits or gender,
they cannot be used to predict link removal in networks other than the chosen social networks.
Another recent work classifies Wikipedia links into four categories: stable, instable, likely to
appear and likely to be removed [Preusse et al., 2013]. Whereas suitable structural indicators
for the formation of new links are found that reach an AUC-value of around 90% for some
datasets, the best-performing features that are indicative of edge decay achieve an AUC-value
of only 60%.

Definitions

Let a knowledge network be denoted as the directed graph G = (V,E) consisting of a set of
article nodes V and a set of directed hyperlinks between articles E ⊆ V × V .

In order to analyze the detailed temporal evolution of a knowledge network we need to
consider individual additions and removals of edges, which we both call state changes. Let
E ⊆ V × V × {+1,−1} × R be the set of state changes, where each state change is either
the addition of an edge or the removal of an edge. Each state change e ∈ E is of the form
e = (i, j,±1, t), where i is the Wikipedia article containing the link, j is the linked-to article, t
is the timestamp of the state change and the number +1 denotes an addition and the number
−1 a removal of the link. We consider only simple links; multiple parallel links are coalesced
into a single link in our treatment.

In order to take edge weights into account, it is useful to define the network’s adjacency
matrix. The asymmetric adjacency matrix A of the graph G is a |V | × |V | matrix with entries
of Aij = 1 denoting an edge from i to j, and entries Aij = 0 denoting no edge. When a link or
unlink prediction algorithm is defined in terms of the adjacency matrix, as many are, it can
be extended to take edge weights into account by replacing the matrix A in its definition by
a matrix W of the same size that contains edge weights.

Weighting of Edges

The regular (time-agnostic) link prediction scenario considers predictions measures based on
the network at a particular time. All commonly used prediction functions can be defined using
the adjacency matrix of the network as shown in Table 4.1, and are from two main categories:
features based on preferential attachment, and features based on the embeddedness of a link.
The principle of preferential attachment asserts that the number of new connections an article
forms is proportional to the number of connections formed so far. Particular measures count
the number of incoming links, the number of outgoing links, or their sum. On the other hand,
the embeddedness of an article pair measures to what extent the articles are part of a larger
cluster in the network. Whether two articles are well embedded is measured for instance by
the number of common neighbors or by the number of common neighbors’ neighbors.
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Feature Definition

Out-degree dout(i) =
∑

j∈V Wij

In-degree din(i) =
∑

j∈V Wji

Common neighbors CN(i, j) = [(W +WT)2]ij
Paths of length three P3(i, j) = [(W +WT)3]ij

Table 4.1: Overview of prediction features and their definition in terms of the weighted adja-
cency matrix W . The definition of the corresponding usual time-agnostic prediction
function is given by setting W = A.

In order to systematically investigate link and unlink prediction functions aligned with
the hypotheses H0, H1 and H2, we extend the most common time-agnostic measures to allow
weighted edges, with edge weights given by each model. We express these weights by replacing
the 0/1 adjacency matrix A by a matrix of weights W in the definition of each prediction
function. For hypothesis H3 (the neighborhood evolution hypothesis), we base the prediction
functions on an extrapolation of the evolution of an article’s neighborhood that does not fit
the expressions in Table 4.1.

4.3.2 Time-Agnostic Model (M0)

The time-agnostic baseline hypothesis states that future edges are influenced only by current
edges. In this model, the current state of the network can be represented by the adjacency
matrix A, and all link and unlink prediction algorithms can then be defined in terms of this
matrix. We define the features in the following.

Preferential Attachment Features Existing link prediction functions measure an article’s
in- and out-degree, which are defined as the number of articles an article links to and is linked
to respectively. As a function to predict the directed edge i → j, we thus use the out-degree
of i and the in-degree of j.

Embedding Features The embeddedness of an article pair measures to what extent the two
articles are part of a larger cluster. In analogy to other link prediction works, we quantify the
embedding of an article pair by the number of common neighbors, i.e., the number of articles
that both articles link to or are linked from. We also consider the number of paths of length
three P3(i, j) between articles i and j, measuring how many of i’s neighbors are connected to
j’s neighbors. For these embedding methods, we always ignore edge directions, i.e., use the
symmetrized matrix A+AT.

We summarize all features in Table 4.1, where we also give their definition in terms of the
weighted adjacency matrix W . Thus, the definitions of the time-agnostic prediction functions
are given for W = A.

4.3.3 Qualitative Model (M1)

The previous representation of the network by its adjacency matrix contains no evidence of
links that are not present anymore. Structural characteristics of this kind have been shown
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to perform well on the link prediction task, but do not work well for unlink prediction. The
latter is plausible because removed edges which may be the key to detect the removal of other
edges – analogously to link prediction where added edges are used to infer which other edges
will be added – are not contained in this network representation. Thus, hypothesis H1 states
that the appearance and disappearance of edges in the past influences the presence of edges
in the future. We propose a representation that captures links that have been removed: the
removal-adjacency matrix A− of a network. It is defined for an article pair i, j by

A−ij = 1⇔ ∃t : (i, j,−1, t) ∈ E ∧Aij = 0,

i.e., it indicates which edges have been removed in the network and are not present in the
current network.

We have defined a new weighting of the adjacency matrix, the removal adjacency matrix
A−, and can thus conclude the features summarized in Table 4.1 analogously.

Preferential Attachment Features The removal out-degree d−out(i) and the removal in-degree
d−in(i) are defined as the number of outgoing and incoming removal edges of article i. Equiva-
lently, they correspond to the definitions given in Table 4.1 when W = A−. In Wikipedia, we
have observed that some links are prone to be removed if already many links to this article
have been removed, justifying the use of these degree measures for unlink prediction.

Embedding Features Exploiting the structure of the removal and addition network, we define
new versions of the number of common neighbors and paths of length three. We define a new
common neighbor feature that is given by the number of neighbors that one article links to and
the other article is not linked with anymore. In the same way, the new paths-of-length-three
feature of an article pair i, j is defined as the number of unlinked neighbors of i that are linked
to neighbors of j ore vice versa.

We expect the path measures to be indicative for the removal of links. When the embedding
of two articles is removed, the link between the two articles should be more likely to be removed,
as well.

4.3.4 Decay Model (M2)

Whereas the qualitative model (M1) exploits information on whether a link has been added
or removed, we hypothesize that exploiting the timestamps of these events improves the clas-
sification of links and unlinks even further. For that, we introduce two ways to weight edges
by their timestamp: by recency and by longevity.

If edges are weighted by recency, the most recent edge receives the highest weight, whereas
the oldest edge receives the highest longevity value. We define the recency and longevity adja-
cency matrices as follows. First, all known edges (i, j) ∈ E are sorted by their timestamp in de-
scending order for the recency and in ascending order for the longevity weights. Consequently,
we obtain two orderings R and L for recency and longevity and define R(i, j) ∈ [0, |R| − 1]
as the position of an edge in the ranking R(i, j) and L(i, j) analogously. The recency and
longevity weighting of the weighted adjacency matrix AR and AL for for all edges present in
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the current network is then defined as

[AR]ij = (|R| −R(i, j))/|R|,

and analogously for AL. Thus, the most recent node pair has a recency value of one, whereas
the oldest node pair has a recency value close to zero. In the same way, we define A−R and A−L
as the recency removal matrix and longevity removal matrix to weight links that were removed
by recency and longevity, as well. We depict the recency and longevity weight of all links in
the Spanish Wikipedia as a function of their timestamps in Figure 4.2.
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Figure 4.2: The recency and longevity weights of all link events, i.e., edge additions and re-
movals, are given as a function of their timestamp for the Spanish Wikipedia.

Hence, we have defined two models in accordance with the decay hypothesis: the recency
decay model (M2R) and the longevity decay model (M2L), for which we derive the features
summarized in Table 4.1 analogously.

Preferential Attachment Features The recency and longevity degree as well as their removal
counterparts are then defined for the weight matrices W = AR and W = AL. This way, we
can distinguish between an article that has formed links to other articles recently or long ago.

Embedding Features For the paths features we will observe whether there is a difference
between recent and older paths between two nodes. Consider the example illustrated in Figure
4.3. Should the more recent common neighbors formed within the last hours of the left example

Figure 4.3: Two article pairs are contrasted: one article pair that has recent common neighbors
formed within the last hours (left) and one article pair with common neighbors
formed several years ago.
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influence the likelihood of a new link (i, j) positively or are older links formed several years ago
as depicted on the right more likely to trigger a new link? We weight all defined embedding
characteristics of the qualitative model (M1) by recency and longevity, respectively.

4.3.5 Neighborhood Evolution Model (M3)

Preferential attachment states that the number of new links of an article is proportional to
its degree and thus disregards its temporal evolution. An article’s degree does not capture
whether the article is growing or has stabilized.
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Figure 4.4: The evolution of the degree of nine sample articles is shown for a random subset
of articles in the Spanish Wikipedia whose degree is 100 at time 10.

Consider the two highlighted articles in Figure 4.4. Both have the same degree d of 100 at
time 10. When considering the degree evolution of both articles, the green article is growing,
whereas the red article has stabilized. However, preferential attachment estimates the same
number of new links for both articles. Thus, it fails to distinguish between growing and stable or
even decaying articles. This brings us to our third and last hypothesis that using the temporal
evolution of an article’s degree improves the prediction.

Based on the temporal evolution of the article’s degree, we estimate the number of new
out- and in-links that will be added and removed. We will suppose that the add and remove
events of the knowledge network’s history are partitioned by time in multiple slices, where
each slice represents the same time span.

Features We define the addition in- and out-degree d+in,k(i), d
+
out ,k(i) of an article i in slice

k as the number of new in- and out-links formed in slice k for article i. The removal in-
and out-degree of a node pair in a slice is defined analogously. Given the sequence of, e.g., all
addition in-degrees d+in,1(i), . . . , d

+
in,T (i) of article i for all slices 1, . . . , T , we employ exponential

smoothing to estimate the future amount of additions to the in-degree of node i in the future
slice T + 1 as

d+in,T+1(i) =

T∑
k=1

α+
in · (1− α

+
in)T−kd+in,k(i), (4.1)
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where α+
in ∈ (0, 1] is a smoothing factor. We also estimate removal in- and out-degrees with

Equation (4.1). For α±in/out = 1, only the last degree change is considered. Contrarily, for small

α±in/out the influence of past degree changes increases and all degree changes are more weighted
equally.

We expect the exponential smoothing to be a better approximation of an article’s future
degree than the classic preferential attachment measure.

4.4 Methodology

In order to test the statistical significance of our experiments, we will use multiple Wikipedias
datasets in different languages. The list of language Wikipedias we use is given in Table 4.2.
We exclude the three largest language Wikipedias due to their size, the English, French and
German ones.

Language Articles Adds Deletes Test slices
[×106] [×106] [×106]

Spanish 2.5 43.6 21.0 7
Swedish 1.9 21.7 3.8 3
Italian 1.2 26.0 8.9 7
Dutch 1.0 15.3 4.7 5
Polish 1.0 18.8 6.2 6

Table 4.2: The language Wikipedia datasets used in our evaluation. The number of articles
includes articles that were removed, and is therefore higher than the value reported
on the official Wikipedia statistics page.

In order to verify each hypothesis experimentally, we perform link prediction and unlink
prediction experiments. To do that, we need to split each language Wikipedia dataset into a
training set, which we use to compute the predictions, and a test set, which we use to evaluate
the prediction methods. Let E be the set of events (link additions and removals) present in
one language Wikipedia. We split the set of events into a training and equally-sized true and
false test sets E = Etraining ∪ Etrue ∪ Efalse.

Setup In order to measure the validity of a hypothesis, we aggregate the link prediction and
unlink prediction methods suggested by that hypothesis into an ensemble link prediction and
ensemble unlink prediction method. These ensemble algorithms are learned using regression
methods on the training data alone, as described below, and their performance at the respective
prediction task is thus an indication of the validity of their underlying hypothesis.

The big language Wikipedias have existed for over ten years, and thus the test set for
each of them spans a range of at least five years. Thus, it is not a good benchmark to predict
events at the end of the test set, when known edge additions and removal are almost 5 years
in the past. Thus, we split the test set itself into slices spanning equal amounts of time each,
and perform an experiment for each slice separately, in which the known events are all events
preceding the slice. The number of test slices is different for each network and is chosen to
ensure that each slice contains on average one addition and removal event per node. If the
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slice size is chosen too small, then the slices are too sparse, i.e., there are no events for most
nodes. We choose the number of slices as

#slices =

⌊
|Etest|
2 · |V |

⌋
and list the number of test slices for each dataset in Table 4.2. This gives a setup that corre-
sponds more closely to the typical case of a recommender system that needs to predict changes
in the network right now. For each slice of the test set, we then compute the accuracy of both
link prediction and unlink prediction using the AUC (area under the curve), and finally use
a statistical test to aggregate the AUC-values into a statement that tells us whether a single
method is better than another one. This allows us to compare each hypothesis to the baseline
method, as well as the individual hypotheses with each other.

Ensemble Prediction Methods Given the set of link prediction and unlink prediction meth-
ods defined for each model, we build ensemble link prediction and unlink prediction algorithms
separately. Each ensemble algorithm is learned by logistic regression on the set of individual
measures. In order to learn the regression weights, we again split the training set into a source
set and a target set, such that the target set covers the same period of time as the individual
test subsets described in the previous section.

If f1, f2, . . . , fk are the individual prediction functions suggested by a hypothesis, then the
ensemble prediction function is given by

f∗ = L(b+ a1f1 + a2f2 + . . .+ akfk),

where b and ai are the parameters of the ensemble method, which are learned by logistic
regression, and L(x) = 1/(1 + e−x) is the logistic function.

Evaluation Measure To measure the accuracy of a prediction function, we use the area under
the curve (AUC), defined as the area under the receiver operating characteristic (ROC) curve
[Bradley, 1997]. A random predictor yields an AUC-value of 0.5, a completely wrong predictor
an AUC-value of 0 and a perfect predictor yields an AUC-value of 1.

4.5 Evaluation

In order to verify each of the four hypotheses, we perform the following experiments. First, we
investigate the influence of the exponential smoothing parameter α of the prediction methods
behind model M3. In a second experiment, we compute the accuracy of prediction ensembles
using methods based on each hypothesis, and compare the accuracies statistically in order
to find out which hypothesis is correct, and which hypothesis gives a better model of change
in a knowledge network. In a third experiment, we derive and compute an upper bound for
prediction methods based on the neighborhood evolution model (M3).

4.5.1 Experiment 1: Fitting the Exponential Smoothing Factor α

In this experiment, we estimate the value of the exponential smoothing factors α±out and α±in
that best predict the actual degrees, where α+

out/in is the smoothing factor for weighting add-
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degrees and α−out/in is the smoothing factor for remove-degrees.

In order to use the fitted α±out and α±in in subsequent prediction experiments, we use only
the training data Etraining to learn α. To learn the optimal α values, we split the training set
into a source set and a target set, such that the target set covers the same period of time as the
individual test subsets described in the previous section. Given the add- and remove-degrees
of all additions and removals in all slices of the source set, we inserted all α±out , α

±
in in the range

(0, 1] with a step width of 0.01 into Equation (4.1) to obtain an estimation for the degrees
in the target slice. Having computed the degree estimation for overall 100 different values of
α±out , α

±
in , we compute the cosine similarity between the estimated and actual degrees in the

target slice. As an example, Figure 4.5 depicts the cosine similarity between the actual degrees
in function of each α and their preferential attachment values for the Spanish Wikipedia.
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Figure 4.5: The cosine similarities of the degree estimation by exponential smoothing with
varying coefficients α±out/in and the preferential attachment estimate is shown for

the Spanish Wikipedia.

Results The cosine similarity for each variant reaches a maximum for α±out , α
±
out ∈ [0.05, 0.3],

and the optimal exponential smoothing estimation is more similar to the actual degree than its
preferential attachment estimates for all degree variations. The small values of the exponential
smoothing coefficient α suggest that older information of an article’s degree should not be
discarded and should be included into an estimate of the future degree. In particular, since
all values of α are much smaller than 1.0, information on an article’s recent changes is not
sufficient to predict its future evolution. Figure 4.6 shows the resulting weights of each slice for
the Spanish Wikipedia. For in-degrees, current events play a bigger role than older ones. We
observe this effect consistently over all networks. The in-degree of an article can be interpreted
as its popularity or importance. Thus, the importance of an article is not a global phenomenon,
but can be better predicted by an article’s recent evolution. On the other hand, the out-degree
for additions and removals should be weighted more equally over time. This implies that an
article’s out-links are more stable over time.
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Figure 4.6: The weights of each slice is depicted for each optimal alpha for the Spanish
Wikipedia.

4.5.2 Experiment 2: Comparison of Temporal Models

In order to validate each hypothesis, and to compare the hypotheses with each other, we im-
plement the link and unlink prediction methods described in Section 4.3 and evaluate them
on the training/test split of each language Wikipedia. We evaluate five ensemble methods
using logistic regression of the logarithms of all features in each of the five models. The loga-
rithm of features is used to achieve a multiplicative combination of features, in line with the
observation that degree values are often combined multiplicatively to derive new prediction
functions, such as the product and ratio of node degrees. Our experiments have shown that a
logarithmic combination of features results in a better ensemble prediction for all cases. Since
the neighborhood evolution model (M3) does not provide features for the embedding of a link,
we also use the number of common neighbors and the number of paths of length three from
the time-agnostic model (M0) to make the resulting model comparable with the others.

Results Figure 4.7 depicts the AUC-values of all ensemble methods for all language Wiki-
pedias averaged over all test slices of each Wikipedia dataset. The regression weights of each
feature are given in Table 4.3 for the Spanish Wikipedia.

Apparently, exploiting temporal information for link prediction does not lead to a big
improvement for the prediction. On average, the recency decay model (M2R) performs best
but improves the AUC-value on average only from 0.93 to 0.94. Given that the link prediction
accuracy is already very high for the time-agnostic model (M0), an increase when exploiting
temporal information is still notable.

For the unlink prediction problem, a considerable improvement of prediction performance
is apparent. Whereas the time-agnostic model (M0) reaches AUC-values between a very small
0.53 and 0.60 for the best-performing network, time-aware methods reach AUC-values between
0.63 and 0.70. These AUC-values for the unlink prediction problem improve the results of
previous studies which had an AUC-value of 0.60 [Preusse et al., 2013].

To analyze whether the observed differences in AUC-values between methods are consistent
for all test slices, we compute significance values for all differences. Figure 4.8 shows the
differences between the AUC-values for link prediction (a) and unlink prediction (b) for each
dataset, along with the significance (p-value) of each difference.

Whereas some differences are small, e.g. between the time-agnostic model (M0) and the
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(a) Additions

(b) Removals

Figure 4.7: The AUC-values of the ensemble methods on the link prediction and unlink pre-
diction tasks.

qualitative model (M1) for link prediction, they are still significant, i.e., the qualitative model
(M1) consistently performs slightly better than the time-agnostic model (M0). For the link
prediction problem, the decay recency model (M2R) performs significantly best. The recency
of edges is thus a bigger driving factor for the formation of new edges than the longevity.

For the unlink prediction problem, the neighborhood evolution model (M3) is significantly
better than all other models. Furthermore, the time-agnostic model (M0) performs signifi-
cantly worse than any time-aware model. The difference between the decay model (M2) and
the qualitative model (M1) are very small and not significant. Notably, even if the temporal
information in the qualitative model (M1) is very simple, i.e., it only captures whether an
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Figure 4.8: Pairwise comparisons between methods. For each pair of methods, the color of its
cell denotes the comparison of both performances. The hue of the color indicates
the difference in average AUC-values, and the saturation denotes the significance
of the difference. Thus, significant differences are shown in green and red, and no
significant differences in white.

edge has been removed or not, the improvement over the time-agnostic model (M0) is already
apparent. Exploiting the temporal information further such as by weighting the evolution of
an article’s neighborhood, improves the prediction significantly but not by much in terms of
its AUC-value. Interestingly, the differentiation between recent and longer-lived edge events is
not important for unlink prediction. Thus, the information whether an edge has already been
removed is sufficient and can only be improved when incorporating the whole neighborhood
evolution.

4.5.3 Experiment 3: Upper Bound for the Neighborhood Model (M3)

Even with the best-performing method in our evaluation (M3), the problem of unlink prediction
can still not be solved with a comparable AUC-value as link prediction. We may thus ask the
question whether structural information is sufficient to predict unlinks after all. To answer
this question, we go back to the neighborhood model (M3). What if the actual number of new
out- and in-links for link additions and removals were known for all test slices? To find out,
we employ one ensemble method that utilizes not estimated but actual degrees and analyze
whether this will boost the performance of the unlink prediction problem significantly. Thus,
we implement a variant of the neighborhood model (M3U) in which the algorithm has access
to the actual degrees of all nodes in the test set. We stress that this is not an actual prediction
algorithm – it is merely a way of deriving an upper bound on the AUC-values of algorithms
that perform preferential attachment with estimated degrees of the nodes.

Results Figure 4.9 shows the AUC-values of the neighborhood model (M3) for each dataset
along with the corresponding upper bounds (M3U). As we can see, unlink prediction using
structural features could, in principle, attain AUC-values as high as 0.93. Thus, temporal
structural information, such as the degree of a node in the current slice, may lead to a big
improvement and demonstrates the theoretical feasibility of unlink prediction with structural
informations only. If an article’s current degree in a slice could be perfectly predicted, then
the shown AUC-values could be reached. Thus, the problem of predicting an article’s number
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Figure 4.9: The AUC-values of the ensemble neighborhood methods (M3) and the upper
bound derived from incorporating ground truth information from the test set into
the them (M3U) for the unlink prediction task.

of out- and in-links is an important problem and worthwhile to consider further. If it could be
solved better, the predictive performance of unlink prediction is likely to increase as well. At
the same time, this also shows the limitation of our exponential smoothing approach, as the
AUC-values of our proposed algorithm are far from the theoretical maximum.

4.6 Conclusion

Using temporal information in appearance and disappearance of links, we presented and im-
plemented three models of temporal change. In contrast to the time-agnostic setting, the
qualitative model captures which links have been removed. The decay model exploits the time-
stamps of state changes and the neighborhood evolution model uses the evolution of an article’s
neighborhood to reason about an article’s future. We have shown that temporal information
improves the classification of links and unlinks significantly. In particular, data on unlinks
should not be discarded, but serves as valuable indicator for new links and unlinks. Further,
we have demonstrated the theoretical feasibility of unlink prediction by using the actual neigh-
borhood size as opposed to an estimation for the neighborhood evolution model.

In conclusion, we can state the the incorporation of temporal information increases the
accuracy of both link and unlink prediction algorithms, and thus validates our three hypotheses
H1-H3. Put in another way, the future evolution of a knowledge network does not only depend
on its current state, but also on changes in its past. When exploiting temporal information,
predictive performance is improved slightly but consistently in the case of link additions, and
significantly for link removals. We presented two temporally weighted versions of the adjacency
matrix that can also be applied to any other prediction measure that operates on the adjacency
matrix.

For the link prediction problem, we improve the performance of state-of-the-art time-
agnostic methods by employing a recency weighting of all edges. The significance experiment
shows that the numerical differences are also significant across all datasets.
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Problem Model dout(i) d−out(i) din(i) d−in(i) CN(i, j) CN−(i, j) P3(i, j) P3−(i, j) Constant

M0 0.1284 – 0.7005 – 1.3976 – −0.0428 – 0.9712
M1 −0.0075 0.1624 0.4906 0.2341 1.3323 0.9968 −0.1668 0.2139 3.6664

Link M2R −0.1603 0.2673 0.4057 0.2257 1.4510 1.3411 0.4859 −0.0349 6.0930
M2L −0.2284 0.2934 0.3317 0.3074 1.2445 1.3215 0.5466 0.0087 5.7731
M3 0.1213 0.3612 0.6566 0.2416 1.4083 – −0.1009 – 2.5656

M0 0.2482 – 0.0190 – −0.1545 – −0.0736 – −0.3833
M1 0.0218 0.1312 −0.4149 0.3793 −0.1419 −0.0176 −0.0171 0.0345 0.7281

Unlink M2R 0.0281 0.1325 −0.4939 0.4113 −0.1525 −0.0020 0.0828 0.0178 0.3849
M2L 0.0206 0.1581 −0.3653 0.4059 −0.1346 −0.0446 −0.1159 0.0409 0.8775
M3 0.1345 0.2178 −0.4253 0.5480 −0.1113 – −0.1722 – 1.6555

Table 4.3: The regression weights of each feature for each model is given for the Spanish
Wikipedia. The weighted sum of the logarithms of all features are inserted into the
logistic function to compute the ensemble weight of each model. Each model has its
specific definition of the given values, cf. Section 4.3. If a feature is not used in a
specific model, this is indicated by ‘–’.

On the unlink prediction side, we improved the state of the art on the unlink prediction
task by 0.083 in terms of the AUC-value, corresponding to an increase of eight percentage
points. Further, we were able to show that in principle, temporal unlink prediction methods
may achieve AUC-values as high as 0.9, justifying the temporal and structural approach. In
particular, the prediction of the exact neighborhood size of an article could lead to tremendous
improvements for the unlink prediction problem. Even if it is not realistic to expect 100%
precision in the degree prediction task, we estimate that reasonable improvements may give
AUC-values of up to 80% for the unlink prediction problem.

Not all tested hypothesis were equally valid, and it is not the case that the most complex
hypothesis (M3) paint a more complete picture. For the unlink prediction task, M3 does give
the best predictive accuracy, but for the link prediction task, the qualitative hypothesis (M1)
and the recency decay hypothesis (H2R) seem to give better prediction methods. Comparing
the recency-based and the longevity-based hypotheses (H2R and H2L), we note that the re-
cency of in-links to an article is a larger driving factor of link changes than the recency of
out-links.

The work in this chapter was published in one paper:

• Julia Perl, Jérôme Kunegis, and Georg Ruß. If you want my future, don’t forget my past:
Temporal models of linked knowledge. Technical Report, 2014
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5 Predicting Link Additions and Removals in
Social Networks

Whereas in Chapter 3, we have studied the formation and dissolution of links in knowledge
networks, this chapter will analyze social theories and characteristics for changes of links states
in social networks.

5.1 Introduction

The formation, maintenance and dissolution of social relationships has been widely studied in
social networks ranging from married couples to criminal networks and high-school students
[Parks, 2007]. Even if it is still not clear whether individuals behave similarly or differently
in online and offline networks, the last century of sociological studies has developed several
highly-interesting theories and discovered influence factors that are worthwhile to consider
for online networks, too. To understand the evolution of a complex social system or a social
network we need not only seek to understand the factors that drive the formation of new ties
but also the factors that drive the maintenance or dissolution of existing ties and the interplay
between them. Whereas a lot of research studied the formation of new links, unlinks have
received much less attention, though they account for a high proportion of link changes [Myers
and Leskovec, 2014, Preusse et al., 2013].

In this work we present a theory-driven computational approach that allows for exploring
the different factors that explain the formation and dissolution of social ties in directed social
networks where latent or explicit user groups may exist. We depart from sociological theories,
describe how we operationalize these theories via quantifiable measures, and how we assess the
utility of these measures within a link and an unlink prediction task. Our work builds upon
a great body of previous research which mainly focused on the prediction of links in social
networks (see e.g., [Liben-Nowell and Kleinberg, 2003, Lü and Zhou, 2011]). Though, this
previous research has shown that simple principles like triadic closure are powerful predictors
for link formations, some of these principles conceal the information about the directionality
of links which is related to the potential motivation behind the formation of a link in directed
social networks. While attraction and support are fundamental different motivations for the
formation of social ties [Parks, 2007], both may have the same observable outcome, namely a
closing triad. If user i connects to user j because j is supporting i’s friends or members of i’s
group, that’s not the same as if i connects to j because i was anyway already interested in
many of j’s friends or group members.

In this work we go beyond existing research by exploring theoretically motivated factors
that may drive both, the formation and dissolution of social ties and analyze the interplay of
these factors.

Consistently, with our results from knowledge networks, cf. Chapter 4, we observe that
future changes in the structure of a social network are not only driven by the link network,
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but are also largely influenced by past network connections. Especially the unlink prediction
greatly benefits from the usage of unlink information.

The contribution of this chapter are twofold: First, we present an overview of social theories
that aim to explain the formation and dissolution of social ties in a network; we present
a computational approach for quantifying them and demonstrate the utility of our approach
within an interesting case study about the evolution of the social network of German politicians
on Twitter. Second, we present our empirical results on the impact of different theoretical
influence factors on the formation and dissolution of ties in this social network. Though our
empirical results are limited to one specific dataset, they clearly show interesting differences
in the performance of the measures that operationalize the factors for both tasks.

We use our approach to conduct an empirical case study on the social network of German
politicians on Twitter before, during and after the German federal election 2013. We use this
dataset for two reasons: First, each politician belongs explicitly to one group – his or her
political party – which allows us to compare group-specific and social-network-specific oper-
ationalizations of different factors. Second, the election was an external event that triggered
many unlink-events and new links.

Research Questions

Concretely we address the following research questions:

RQ 3 Which structural characteristics predict link formation and dissolution in directed social
networks with latent or explicit groups?

In the related work, some characteristics were shown to be indicative for the formation of a
tie, while other characteristics were found to correlate with the dissolution of a tie. One can
then asses which influence factors have the highest impact on the prediction of new links and
unlinks.

RQ 3.I Which influence do structural characteristics have on the prediction of new links and
unlinks?

While many datasets provide only a snapshot of the network that does not lent itself to derive
unlinks [Kunegis, 2013], a dataset consisting of multiple snapshots can be used to derive links
and unlinks.

RQ 3.II What is the added value of unlink data for link and unlink prediction?

This research question targets the question of how useful this additional unlink information
is, i.e., how much the prediction of new links and unlinks is improved when unlink data is
exploited.

This chapter is structured as follows: First, we related our work to existing research on link and
unlink prediction. In Section 5.3, we present our approach to study the link evolution of directed
social networks and the sociological background and theories which build the foundation of it.
Next, we describe the prediction tasks which we used to assess the utility and added value of
different factors and measures. We present our dataset and empirical results on the evolution
of the social network of politicians in Section 5.4 and thereby answer research questions RQ
3.I and RQ 3.II. Finally, we conclude our work in Section 5.5.
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5.2 Related Work

The problem of predicting the appearance of links in networks has received substantially
more attention than the problems of predicting their removal (see e.g., [Liben-Nowell and
Kleinberg, 2003] and [Lü and Zhou, 2011] for a good overview). Examples of well-known and
well-performing structural indicators for link prediction are the number of common friends,
the number of friends and the ratio of the number of common friends and the two persons’
neighborhood sizes. Advanced machine learning algorithms for link prediction include the index
of Katz [Katz, 1953], graph kernels [Ito et al., 2005] and diffusion models [Kondor and Lafferty,
2002].

Previous research on the dissolution of social ties has explored individual properties of
users and the extent to which these properties correlate with the probability of a user to
loose friends. For example, an analysis of the unfriending behavior in Facebook found that
friendships which involve neurotic or introverted users and friendships between people who
differ greatly in age are more likely to break [Quercia et al., 2012]. Further, the authors found
that friendships which are well-embedded in the social network of both users and friendships
where both users share a common female friend are more robust. [Incite, 2011] and [Sibona
and Walczak, 2011] conducted surveys to reveal the motivation of individuals to dissolve social
ties. [Incite, 2011] found the following three top reasons for Facebook users to remove friends:
offensive comments (55%), don’t know well (41%), trying to sell something (39%). [Sibona
and Walczak, 2011] found that people who posted often about unimportant topics and people
who often posted about controversial or inappropriate topics were more likely to loose friends
[Sibona and Walczak, 2011]. Additionally, they observed that the initiator of a friendship
request is unfriended much more often than expected and that it is likelier that the receiver
of the friendship request ends the friendship than the other way around.

In contrast to the above mentioned research, we focus on sociological theories which mani-
fest in the structure of a social network and may help to explain the formation and dissolution
of social ties rather than studying individual properties of users. The advantage of this struc-
tural approach is that it is domain-independent and can thus be applied to any directed social
network.

Most similar to our work, [Kwak et al., 2012] and [Kivran-Swaine et al., 2012] explored
structural and interaction features of Twitter users to ascertain when users decide to unfollow
others. The findings in [Kwak et al., 2012] suggest that ties persist when a user is acknowledged
by the relational partner or when the users share followers and followees. The acknowledgment
was measured by retweeting information. In [Kivran-Swaine et al., 2012] the authors observed
that the more follower a user has, the more likely he or she will resolve an incoming tie. Further
reciprocity of follower relationship is correlated positively with the persistence of a tie. Finally,
the more common followers and followees two users have and the denser their surrounding
network is, the higher the likelihood that the tie between them will persist.

Even if both aforementioned works have studied structural properties that characterize
unlinks, they have not evaluated the properties in a prediction set up. Thus, it remains unclear
how well these characteristics are suited to predict unlinks. This is probably related with the
fact that in order to perform a predictive analysis, at least three consecutive snapshots of a
network are needed, and in order to exploit past unlinking behavior, even four, as described
in Section 5.3.4.

One recent work on structural characteristics of unlinks performed a data analysis for
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friendship relationships between 32 freshmen over one year at seven different points in time
[Snijders and Steglich, 2013]. This work trains a p* model to characterize unlinks and links in
the dataset. Though that approach is very powerful, it does not scale well. The corresponding
software package1 is applicable to networks with 10 to 1,000 nodes and thus cannot even be
applied to the dataset used in our study.

To summarize our work goes beyond previous research by presenting a theory-driven struc-
tural approach for link and unlink prediction in directed social networks which we evaluate
within two predictions tasks: a link and an unlink prediction task.

5.3 Modeling the Formation and Dissolution of Ties

In the following section we present our approach that allows to analyze the formation and
dissolution of ties in directed social networks. Firstly we review theories from sociology that
aim to explain factors or phenomena that drive the formation or dissolution of ties in social
networks. Finally, we describe how we conceptualize these theories in form of quantifiable
measures and assess the utility of these measures within a link and an unlink prediction task.

5.3.1 Social Theories

According to the Dunbar number we are only capable of maintaining a certain number of
relationships [Dunbar, 1992]. Therefore, we have to decide on a regular base which relationships
to maintain and which to dissolve. Many of the studies that have targeted the understanding
of personal relationships have focused on individual characteristics of actors rather than on
describing actors as embedded in larger social networks. These two approaches correspond to
action theories and structuralist theories [Parks, 2007].

Action Theories: Action theories emphasize the individual variability and choice of each ac-
tor in order to explain personal relationships. This theoretical branch assumes that individuals
choose whom to interact with according to personal preferences to maximize their personal
benefit. The Social exchange theory (originally proposed in [Homans, 1958]) is a prominent
representative of this category. Social Exchange theory suggests that individuals choose to
form the relationship they expect to profit from the most, or to have the lowest cost [Homans,
1958, Garlaschelli and Loffredo, 2004, Emerson, 1976]. According to this theory, individuals
will stick to a relationship if they are rewarded and no other relationships provide better
opportunities at lower costs.

Structuralist Theories: Structuralists explain individual behavior by the larger social struc-
tures that a person is embedded in. They see individual behavior not as the product of personal
choice but rather as one’s position held in a social network. People with the same position or
function are assumed to behave similarly regardless of personal traits.

In this work we define changes of actors or entities in the network based on structuralist
theories - i.e., we treat all users in the network the same and seek for general network mech-
anisms that explain the network evolution rather than focusing on individual differences. We

1http://www.stats.ox.ac.uk/~snijders/siena/
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will use our approach later to explore the linking and unlinking behavior of politicians in Ger-
many. Further, we choose a structural approach because social relations in political networks
are very central since power is primarily defined in relational terms. Therefore, almost all
political analysts are structuralists according to Knoke [Knoke, 1990].

5.3.2 Formalization

To analyze the dynamics of user relationships, either a dataset with users and their addition and
removal events is directly given or the link changes have to be inferred by multiple snapshots
of a dataset. In the following, we describe how to derive the formation of new links and unlinks
for a dataset with multiple snapshots. Given the data for each snapshot s = 1, 2, . . . , n, we
define a network Ns = (V,Es) which contains a snapshot-independent set of users V . The
snapshot-dependent edges Es between users represent directed social relationships in each
snapshot s

(i, j) ∈ Es ⇔ i is a follower of j in snapshot s.

Note that there are no parallel edges in each network, since a user can only follow another
user once. The group memberships is modeled as a function m which assigns a set of groups
G to each user v ∈ V

m : V → 2G.

Note that we assume that the group membership of a user remains consistent for all snapshots,
thus we definem(i) independent of the snapshot id s. In order to analyze the temporal evolution
of social relationships in the given dataset, we need to extract individual additions and removals
of edges, which we both call state changes. We define the set of state changes E as

E ⊆ V × V × {+1,−1} × {1, 2, . . . , 4},

where each state change is either the addition of an edge or the removal of an edge in a
snapshot s ∈ {1, 2, . . . , n}. Let N0 = (V, ∅) be the empty network. We then define E as the
union of the set of addition events E+ and the set of removal events E− which are defined as

E+ =
n⋃
s=1

{(i, j,+1, s) : (i, j) ∈ Es ∧ (i, j) /∈ Es−1} ∪

E− =

n⋃
s=2

{(i, j,−1, s) : (i, j) ∈ Es−1 ∧ (i, j) /∈ Es}.

Thus, E represents all edges as additions that were not present in the network before and all
edges as removals that are not present in the current network anymore. Note in particular that
edge removals can only be extracted from snapshot 2 onwards.
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5.3.3 Conceptualization of Social Theories

In the following section we discuss structural theories mainly lent from [Parks, 2007]2 that aim
to explain the life cycle (i.e., the formation, maintenance and dissolution) of social relationships
in a social network and we explain how we transform the theories into factor categories (short
factors). We categorize the measures in nine factor categories that are depicted in Figure 5.1.
The Activity factor (out-going link from i in Figure 5.1) describes the general tendency of user i

AttractionBack-Attraction

Support

Back-Support

Activity Popularity

Similarity

Social Embeddedness

Reciprocityi j

Group

Friends

Group

Friends

Figure 5.1: A visualization of network factors that can influence the formation of the tie (i, j)

to link/unlink and the Popularity factor (incoming link to j in Figure 5.1) depicts the tendency
of user j to receive links or unlinks. These two factors are in line with the theory of preferential
attachment [Barabási and Albert, 1999, Holland and Leinhardt, 1981] and only depend on one
user rather than a user pair. Thus, the activity factor cannot distinguish between the formation
of the tie (i, j) and the formation of the tie (i, k) as both ties start from user i. The popularity
factor cannot distinguish between the formation of the tie (i, j) and the formation of the tie
(k, j) as both ties have user j as target.

The Similarity between users i and j is a symmetric factor that depicts how similar the
two users are. According to the theory of homophily [Lazarsfeld and Merton, 1954] individuals
are likelier to bond if they are more similar and relationships between dissimilar individuals
are likelier to dissolve [McPherson et al., 2001]. Based on empirical evidence [Parks, 2007],
we further define the Reciprocity factor. This factor captures the tendency of individuals to
reciprocate relationships, may it be linking or unlinking.

Triadic closure as a consequence of balance theory [Heider, 1958, Holland and Leinhardt,
1981] can be understood as the tendency of individuals to align their preferences with friends
or relational partners. Social Embeddedness quantifies the embeddedness of a relationship in
terms of the relational partner’s friends. The more common friends or common friends of friends
two users share, the likelier a tie will form [Parks, 2007]. On the other hand, the dissolution
of a tie is likelier when the social embedding is low [Parks, 2007]. Social embeddedness is an
undirected network concept - i.e., the social embedding of the relationship (i, j) is the same as
of (j, i).

2Parks introduced the six effect categories of network distance, network overlap, cross-network contact, cross-
network density, attraction to partner’s network and support from partner’s network.
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5.3 Modeling the Formation and Dissolution of Ties

To better explain the directed nature of the dataset at hand, in accordance with [Parks,
2007] we further introduce the concepts of Attraction (link from i to network of j) and Support
(link from network of i to j) to assess the like or dislike for the partners network or respectively
the amount of support that members of one’s network have for the partner. Additionally, the
factors of Back-Support (link from j to network of i) and Back-Attraction (link from network
of j to i) quantify the inverse effects. Since the goal of this work is to quantify structural
changes in directed social networks, the predictiveness of the back-measures might be radically
different from the predictiveness of support and attraction. Only in networks with a very high
amount of reciprocal connections, both the attraction or support measure and its respective
back-counterpart would be highly correlated. For the latter four categories we use two different
types of relationships between users (group-based and friendship-based relations) to quantify
the amount of support or attraction. The group of a user i contains all users who are members
of the same group as i, whereas the friends of i include all users who have a bidirectional
relationship with i.

In the following we discuss each factor in detail and present measures that help to opera-
tionalize them. Without loss of generality, all measures below are defined for a user pair (i, j).
Note that our network is directed and we aim to predict the formation and termination of
directed links. Further note, that some powerful theories such as balance theory or homophily
(and the related measures such as common neighbors and Jaccard similarity) are more suitable
for undirected networks, since those theories may only indicate that it is likely that a new link
will be created or removed between two users i and j but not if i will link to (or unlink from)
j or the other way around.

Activity

The activity of the source user may impact the probability that a new link is created from
the source user to any other user. The idea is simply that more active users are more likely
to create new links, while users that often dissolve links are more likely to dissolve more
links in the future. In the literature the activity factor is often also referred to as productivity
[Holland and Leinhardt, 1981] of an actor or out-degree activity [Snijders and Steglich, 2013].
Again, this simple measure explains the change of links based on the structural properties of
individual users rather than pairs of users. Thus, the activity factor cannot distinguish between
the formation of the tie (i, j) and the formation of the tie (i, k) as both ties start from user i.

We measure the general willingness of user i to form new links by the number of users
he linked to in the past (cf. A+). Analogously, we quantify i’s general willingness to resolve
relations by the number of users he unlinked in the past (cf. A−).

Popularity

The popularity factor (often also referred to as preferential attachment [Barabási and Albert,
1999] or attractiveness [Holland and Leinhardt, 1981]) states that the number of new links
a user receives is proportional to its current link in-degree. Hence, high in-degree users are
more likely to be picked by other users who want to create new links. In our work we make
the following analog assumption for unlinks: The probability that a user j will be unlinked
is proportional to the number of links which have been dissolved with j in the past (i.e., its
unlink in-degree) We define the popularity of j by the number of all incoming links (cf. P+).
Analogously, we define the unpopularity (cf. P−) by the number of unlinks to j from any user.
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Similarity

According to the theory of homophily, user similarity is an important driving factor for the
formation of new links and the dissolution of links. Homophily states that individuals are likely
to bond with others that are similar to themselves ([Lazarsfeld and Merton, 1954, McPherson
et al., 2001]). Consequently we hypothesize that dissimilarities may lead to the dissolution of
ties.

We define two measures of similarity: the interest similarity and the perceived similarity
of two users and visualize them in Figure 5.2. We take the set of users that a user links to
as a proxy for his/her interest; thus the set of shared out-links is an indicator of the interest
similarity (Simint). Note that we focus on the link network here rather than the unlink network,
because in our dataset unlinks were too sparse for identifying users who were unlinked by the
same set of users. The perceived similarity (Simper) is a measure of how similar other users
perceive two users. Thus we take the shared in-link relationships of two users as a measure of
their perceived similarity. Further, we define two normalizations where the proposed measures
are either divided by the sum of incoming links of the two users or by the sum of the outgoing
links of the two users (cf. SimperN and SimintN). Finally, we define Simgroup as a binary indicator

Figure 5.2: The measure for interest and perceived similarity are visualized. The interest sim-
ilarity (Simint) measures the common out-links, whereas the perceived similarity
(Simper) measures the common in-links.

of whether user i and j are members in the same group and may therefore be similar.

Reciprocity

Reciprocity describes the tendency of people to form symmetric relationships - i.e., if only
an unidirectional relation is present, then it is likely that a new link is established to obtain
a bidirectional relationship. On the other hand, unidirectional unlinks of a bidirectional link
may indicate that the other direction should be resolved as well [Parks, 2007]. This factor is
also in line with the balance theory [Heider, 1958, Holland and Leinhardt, 1981] which states
that people tend to align their preferences with others.

We define two binary measures of reciprocity. One simply indicates if j links to i (R+) and
one indicates if j has unlinked i (R−) .

Social Embeddedness

Several studies show that relationships are unlikelier to resolve when the cross-density of two
partners’ networks is high - i.e., if the partner’s networks are well-connected [Parks, 2007,
Milardo, 1987]. This indicates that the “social support” of the neighbors of the two users
is important to determine if they will connect or disconnect. Theories such as the triadic
closure [Simmel, 1950, Heider, 1958] state that a high network overlap between two actors
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should increase the likelihood of the two actors getting connected. We use the network overlap
between two users and the cross-density to estimate the social embeddedness of a tie between
two users. Note that these measures are symmetrical and only help to predict that a link
should be created or removed between two users i and j. However, one cannot infer the actual
direction - i.e., whether i will link to j or the other way around.

To quantify the network overlap of two users i and j we define the following three mea-
sures on the friend network of i and j: the number of common neighbors (NCn), the Jac-
card coefficient(NJa) and the Adamic-Adar characteristic (NAd) [Liben-Nowell and Kleinberg,
2003].

NCn(i, j) = |CN(i, j)|, (5.1)

NJa(i, j) =
NCn(i, j)

|{k : k ∈ N(i) ∨ k ∈ N(j)}|
, (5.2)

NAd(i, j) =
∑

{k∈CN(i,j)

1

log |{l : {l, k} ∈ EF }|
, (5.3)

where N(i) is defined as the set of all users that have reciprocal relationships with i and
CN (i, j) is the set of common neighbors of i and j. Note that we use the friendship graph -
i.e., the reciprocal connections that both users have formed, as suggested by [Parks, 2007].

The cross-network density characterizes the amount of linkage between friends of user i and
friends of user j. Thus, this characteristic counts the number of links that form paths of length
three (P3) between i and j. The different kinds of paths of length three that are depicted in
Figure 5.3:

• Cross-network links (CNe) between i’s exclusive network and j’s exclusive network, (de-
picted in red in Figure 5.3) indicate how friends of the users are clustered.

• Cross-common-neighbor links (CCn) between i’s and j’s common neighbors (depicted in
green in Figure 5.3) reveal the amount of connectedness between the common friends.
The more connections among the common neighbors, the more the common neighbors
form one big cluster.

• Cross-asymmetric links (CAs) from common neighbors to either partner’s exclusive net-
work, (depicted in blue in Figure 5.3) indicate the number of asymmetric common friends
which have connection to the network of only one of the two users.

Since the three defined link types provide interesting insights into the cross-network con-
nections between two users, we consider all three link types and the classic P3 measure. For
all cross-link types, we define the density - i.e., the number of actual links of the four types
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i j
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Figure 5.3: The three different types of paths of length three are depicted for a small toy
network.

divided by the number of possible links, as follows.

CP3(i, j) =
|{{k, l} ∈ EF : {i, k}, {l, j} ∈ EF }|

|N(i)| · |N(j)|
(5.4)

CNe(i, j) =
|{{k, l} ∈ EF : {i, k}, {l, j} ∈ EF ∧ k, l /∈ CN(i, j)}|

(|N(i)| − |CN(i, j)|) · (|N(j)| − |CN(i, j)|)
(5.5)

CCn(i, j) =
|{{k, l} ∈ EF : k, l ∈ CN(i, j)}|(|CN(i,j)|

2

) (5.6)

CAs(i, j) =
|{{k, l} ∈ EF : k ∈ CN(i, j) ∧ l /∈ CN(i, j)}|
|CN(i, j)| · (|N(i) ∪N(j)| − |CN(i, j)|)

. (5.7)

The divisor of each measure is given by the number of possible cross-links for each of the
four different link types. Similarly as for the network overlap, we cannot exploit reciprocated
unlinks, to quantify the extent of cross-unlinkage.

Attraction

Attraction to the partner’s network captures the amount of positive or negative affinity from
user i to the network of j. Social science research suggests that disliking a person that is
important to the partner, carries some potential for relationship dissolution [Cleek and Pearson,
1985]. Attraction is an asymmetric relation and can be positive (if i linked to many friends or
members of j’s group) or negative (if i unlinked many friends or members of j’s group).

To quantify the positive or negative affinity of user i to the network of j, we use the link
and unlink behavior of i as a proxy. We define the positive affinity of i to j by counting the
number of j’s friends who i links to (AttF+) and by counting the number of members of j’s
group who i links to (AttG+). Analogously, we measure the negative affinity between i and j
by counting the number of j’s friends who were unlinked by i (AttF−) and by counting the
number of members of j’s group who were unlinked by i (AttG−).

The back-attraction is the amount of attraction that i receives back from the friends or
members of j’s group. Therefore, it is the reciprocal effect of attraction. To quantify the back
attraction we count the number of j’s friends that link to or unlinked i (BAttF+ or BAttF−)
and the the number of members of j’s group that link to or unlinked i (BAttG+ or BAttG−).
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Support

Support is defined as the amount of positive or negative affinity from user i’s friends or members
of j’s group. Therefore, it characterizes the attitude of i’s network towards j. Social science
research suggests that relationships are likelier to be established with well-supported persons
and that a missing support can lead to the dissolution of the relationship [Wellman et al., 1997].
Support is an asymmetric relation and can be positive (if e.g. many friends or members of i’s
group link to j) or negative (if e.g. many friends or members of i’s group unlink j). We assume
that link-relationships are an indicator for supporting behavior and unlinks are an indicator
for nonsupporting behavior. We define the support user j receives from the perspective of user
i as the number of i’s friends who link to j (cf. SupF+) and the number of members of i’s
group who link to j (cf. SupG+). Analogously, we define the nonsupport user j receives from
the perspective of user i as the number of i’s friends who unlink j (cf. SupF−) and the number
of members of i’s group who unlink j (cf. SupG−).

The back-support is the amount of support that j gives back to the friends and members
of i’s group. Therefore, it is the reciprocal effect of support. To quantify the back-support, we
count the number of i’s friends that link to j or are unlinked by j (BSupF+ or BSupF−) and
the number of members of i’s group that are linked to i or unlinked by i (BSupG+ or BSupG−).

5.3.4 Prediction Methodology

In order to assess the utility of the defined measures, we perform link and unlink prediction
experiments. The general methodology for prediction problems is as follows: given node pairs
in the training set, the aim is to predict node pairs in the true test set against node pairs
in the false test set. For the link prediction problem the new links that do appear (true test
set) must be distinguished from node pairs that do not appear (false test set). In the unlink
prediction scenario, the true test set contains links that are removed and the false test set
consists of links that remain in the network. A good link or unlink prediction measure assigns
higher values to node pairs in the true test set than to node pairs in the false test set.

We perform the link and unlink prediction experiment on network data consisting of 4
consecutive snapshots (s = 4). Note that our methodology can also be adapted to a dataset that
consists of more than four snapshots. Figure 5.4 summarizes the three steps of our methodology.
We split the dataset into training and test sets as follows: the training sets for both prediction
problems consist of all edge events that are present at time s = 3. The true test set for link
prediction consists of all links that are not present in the third snapshot and are present in
the fourth snapshot. The corresponding false test set contains non-links, i.e. node pairs that
are neither connected in the training set nor in the true test set. Note that we use a sample
of non-links of the same size as the true test set which we randomly selected from the largest
connected component of the network.

For unlink prediction, the true test set consists of all links that are present in the third
snapshot and not present in the fourth snapshot. Conversely, the false test set contains a
random sample of links that are present in the third and fourth snapshot. This random sample
has again the same size as the corresponding true test set.

Assessment of Single Measures and Combinations of Measures: We assess the utility of
individual measures and the combination of several measures by comparing the AUC-values
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Figure 5.4: The three stages of our methodology are depicted. First, add and remove events
are extracted from the snapshots. Second, the parameters of the logistic regression
are trained. Third, the prediction is performed.

of the prediction functions including the corresponding measure(s). The AUC-value is defined
as the Area Under the ROC-Curve and is ranged between 0 and 1, where 1 indicates a perfect
prediction; a random baseline model would lead to an AUC-value of 0.5 [Bradley, 1997].

To combine several prediction measures, we train a logistic regression with multiple pre-
diction measures. We perform the following greedy approach to select the best combination
of different measures for the logistic regression. For each prediction problem, we first choose
the single best performing measures. Iteratively, we test the combination with the greedy se-
lected measure(s) to asses which additional measure leads to the largest performance gain.
This measure selection procedure is performed until we have chosen twenty measures.

To train the parameters of the logistic regression, we split the dataset again into a source and
a true and false target set. The source set consists of all edge events in the first two snapshots
and the true target set contains the user pairs that are added in the third snapshot for link
prediction and the user pairs that are removed in the third snapshot for unlink prediction. The
respective false target sets are formed by random-non links for link prediction and remaining
links for unlink prediction. Note that for our proposed methodology at least four snapshots
are required to perform parameter training and prediction. The source set must consist of two
snapshots, because the parameters need to be trained with unlink measures which are only
observable after the second snapshot.

The true and false target set for the link prediction consist each of 814 node pairs; the
true and false test set contain 749 node pairs. Thus, there are fewer new links in the fourth
snapshot than in the third snapshot. For unlink prediction, each target set contains 551 links
and each test set contains 552 unlinks. Hence, the number of unlinking events is stable for the
third and fourth snapshot.
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5.4 Empirical Study

We will use a Twitter dataset of German politicians from before, during and after the election to
empirically evaluate our approach. First, we describe the Twitter follower network in general
and the selected Twitter dataset in particular. Second, we discuss the empirical results we
obtained when applying our approach to the dataset.

5.4.1 The Twitter Follower Network

Twitter is a microblogging service that is well-known for the fast propagation of news [Osborne
et al., 2012]. It’s Alexa-rank is 9 3 and it has been extensively analyzed for its content, structure
and structural changes. Research on Twitter content and interactions includes diverse topics
such as real-world event identification [Becker et al., 2011], study of conversational practices
[Boyd et al., 2010, Wu et al., 2011, Lietz et al., 2014], political polarization during the US
election in 2010 [Conover et al., 2011], or driving factor for user’s retweet behavior [Suh et al.,
2010, Naveed et al., 2011].

Everyone can create a Twitter account and post tweets which can be up to 140 characters
long and thus give Twitter the name of a microblogging service. Registered users on Twitter
can interact with each other by three means: they can follow other users, they can retweet
the tweets of other users, or they can mention a user in a post. The follow relationship is not
necessarily symmetric, user a can follower user b but b does not follow a. Then, a is said to be
a follower of b and b is the followee of a. This relationship is illustrated in Figure 5.5. Users

“a follows b”

a b

follower

followee

Figure 5.5: Visualization of the follower relationship from a to b.

can also unfollow other users to not follow their latest tweets anymore. The underlying social
network of Twitter consists of follower relationships and is, in contrast to many online social
networks, not symmetric.

5.4.2 Dataset

GESIS4 provides a Twitter dataset of the network of German politicians from before and after
the German federal election in 2013 which was recently published in [Lietz et al., 2014]. The
dataset consists of four snapshots that were taken in monthly intervals. Two snapshots were
taken from before the election and two capture the network of politicians after the election. The
snapshots were obtained by crawling all followers of 961 German candidates for the election at
four timepoints [Kaczmirek et al., 2013]. Although unlinks and links are not explicitly captured
in the dataset, they can be easily derived when comparing neighboring snapshots. Our dataset

3http://www.alexa.com/siteinfo/twitter.com on June, 2nd 2014
4http://gesis.org
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contains Twitter users from six different political parties, see Figure 5.6(a). The Piratenpartei
is the largest fraction and also the most active one followed by Bündnis90/DieGrünen. 77.17%
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Figure 5.6: The number of politicians per party that have a Twitter account, the average
number of new links and unlinks per party and the temporal evolution of the
number of new links and unlinks per party. The election was between the second
and the third snapshot. One can see that the Piratenpartei is the largest party on
Twitter. Bündnis90/DieGrünen and the Piratenpartei are also the most dynamic
parties which create and resolve most links. From the dissolution of links over
time one can easily see who were the big looser of this election - the FDP and
Bündnis90/DieGrünen. Interestingly, the election triggered many unlinks, but did
not (or only slightly) impact the formation of new links.

of the overall 2,799 new links in the dataset are between politicians of the same party. Figure
5.6(d) gives and overview of how the party-internal links are distributed per party. The link
formation frequency of each party per snapshot is displayed in Figure 5.6(d). For Die Piraten-
partei and Bündnis90/DieGrünen the number of new links per snapshot remains constantly
high with around 200–300 new links per snapshot. On the other hand, the link formation
activity for Die Linke and FDP goes down after the election (between snapshot ID 2 and 3).

The number of unlinks per party and snapshot are displayed in Figure 5.6(e). All parties
except Die Piratenpartei show an increase in the number of unlinks after the election; in
particular FDP and Bündnis90/DieGrünen. Interestingly, the election seems to have greater
influence on the unlinking behavior of politicians than on their linking behavior. For the FDP
and Die Piratenpartei, the number of unlinks even exceeds the number of new links after the
election. It is also interesting to note that not only most links are created within a party but
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#Unlinks % Name Party

163 10.181% tarzun Piratenpartei
105 6.558% Markus Kompa Piratenpartei
73 4.560% Vincent Thenhart Piratenpartei
62 3.873% Lars F. Lindemann FDP
41 2.561% Martin Lindner FDP
36 2.249% Dr.Toni Hofreiter Bündnis90 / Die Grünen
36 2.249% Le55ing Piratenpartei
28 1.749% René Rottmann Piratenpartei
25 1.562% Peter Meiwald Bündnis90 / Die Grünen
22 1.374% Miriam Seyffarth Piratenpartei

591 36.914%

Table 5.1: The ten politicians that received the most unlinks are given along with their political
association, the number of unlinks they received and the relative number of unlinks
with respect to all unlinks in the test set.

also most links are removed within a party (83.64% of the overall 1,601 unlinks in the dataset
are party-internal).

Table 5.1 shows the ten politicians that received the most unlinks. The ten politicians
receive 36.914% of all unlinks that overall all 961 politicians received.

5.4.3 Experiment 1: Predictive Performance of individual Measures

In the first experiment, we evaluate the performance of individual measures for the link and
unlink prediction problem. All AUC-values are given in Table 5.2. Note that we have defined a
measure to have a positive (marked by P) influence on the prediction if its AUC-value is bigger
than 0.6; the influence is defined as negative (marked by N) if the AUC-value is smaller than
0.4. If the AUC-value is between 0.4 and 0.6 no influence can be identified since the measure
performs similar to what we would expect from a random guesser which would have an AUC
of 0.5.

Our results clearly show that most measures are useful for link predictions and can out-
perform a random baseline. However, for unlink predictions only few measures turn out to
be useful and those measures tend to be based on unfollow information rather than on follow
information. This indicates, that (1) information about past links are essential for predicting
future unlink events while their benefit for predicting future links is marginal and (2) unlink
prediction is a much more difficult problem than link prediction, partly because of how the
false test set is constructed. While one chooses a random set of non-links as false test set in
the link prediction task, one has to choose a random set of nodes which remain connected as
false test set in the unlink prediction task. Differentiating between an actual new link and a
completely random and unconnected node pair is much easier than differentiating between two
pairs of nodes which were both connected in the past and where one link is removed while the
other one remains. In other words, explaining why someone who works for party A in city X is
not friend with a random politician of another party B at the other end of the country is easier
than explaining why that person terminated his friendship with one of his party fellows in his
city but not with the other one. In the following, we describe the best-performing measures
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Category Measure Description Link influ. Unlink influ.

Activity
A+ (links from i to any politician) 0.723 P 0.569 –
A− (unlinks from i to any politician) 0.684 P 0.705 P

Popularity
P+ (links to j from politicians) 0.746 P 0.422 –
P− (unlinks to j from politicians) 0.614 P 0.500 –

Similarity

Simint (users that i and j follows) 0.907 P 0.467 –
Simper (users that are followers of i and j) 0.796 P 0.382 N

Simgroup (binary: Are i and j in the same party?) 0.862 P 0.506 –
SimintN (normalized interest similarity) 0.913 P 0.457 –
SimperN (normalized perceived similarity) 0.783 P 0.436 –

Reciprocity
R+ (Does j follow i?) 0.582 – 0.497 –
R− (Has j unfollowed i?) 0.582 – 0.489 –

Social Embeddedness

NCn (number of common neighbors) 0.825 P 0.432 –
NJa (CN weighted by neighborhood union) 0.828 P 0.447 –

NAd (CN weighted by degree of common neighbors) 0.827 P 0.435 –
CP3 (linkage between neighborhoods) 0.800 P 0.416 –
CNe (linkage between non-shared neighborhood) 0.719 P 0.449 –
CCn (linkage between common neighborhood) 0.798 P 0.428 –
CAs (linkage between asymmetric neighborhood) 0.822 P 0.415 –

Attraction

AttG+ (links from i to members of j’s party) 0.906 P 0.560 –
AttF+ (links from i to j’s friends) 0.837 P 0.449 –
AttG− (unlinks from i to members of j’s party) 0.743 P 0.669 P
AttF− (unlinks from i to j’s friends) 0.539 – 0.613 P

Support

SupG+ (links from i’s party to j) 0.917 P 0.483 –
SupF+ (links from i’s friends to j) 0.847 P 0.410 N
SupG− (unlinks from i’s party to j) 0.673 P 0.552 –
SupF− (unlinks from i’s friends to j) 0.605 P 0.501 –

Back-Attraction

BAttG+ (members of j’s party that follow i) 0.890 P 0.515 –
BAttF+ (friends of j that follow i) 0.897 P 0.449 –
BAttG− (members of j’s party that unfollow i) 0.640 P 0.584 –
BAttF− (friends of j that unfollow i) 0.584 – 0.524 –

Back-Support

BSupG+ (members of i’s party that j follows) 0.887 P 0.505 –
BSupF+ (friends of i that j follows) 0.893 P 0.470 –
BSupG− (members of i’s party that j unfollows) 0.726 P 0.572 –
BSupF− (friends of i that j unfollows) 0.646 P 0.480 –

Table 5.2: The AUC-values of individual measure defined in Section 5.3.3 are given for the
link and unlink prediction problem. The description of all measures relates to a
tie (i, j) for which the likelihood to be added or removed should be characterized.
The five highest AUC-values for each prediction problem are written in bold. The
P symbol indicates that the predictive influence of the characteristic is positive, N
indicates a negative influence and ’–’ indicates that the measure has no influence
for the prediction.

for both problems in detail.

Link Prediction The number of links from members of i’s party to j (SupP+), is the best-
performing measure (AUC = 0.917) to predict new links (i, j). This means, i’s probability
of creating a tie with j increases with the number of i’s party colleagues who established a
tie with j. This suggests, that the follow behavior of individual politicians is in line with the
follow behavior of their party. Since most new relations (85.71%) are created within a party,
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we can conclude that politicians who are popular within the party are also more likely to be
followed. If social ties are created across parties, individual politicians follow those politicians
which are also supported by other members of their party.

The interest similarity (Simint) and the normalized similarity (SimintN) perform very well
with AUC-values of 0.907 and 0.913 respectively. This indicates that users who are interested
in the same users are more likely to follow each other. It is interesting to note that the perceived
similarity and normalized perceived similarity perform much worse, while they are superior
for predicting unlinks. This indicates, that the link formation behavior of politicians is more
in line with what the people they observe do (i.e., their friends, party colleagues or users they
follow) than their unlinking behavior. One potential explanation for this observations is social
influence and group conformity - i.e., politicians potentially adapt their link creation behavior
in order to fit within a group. An alternative explanation is homophily. That means, politicians
potentially select friends or party colleagues who have similar interests and therefore create in
part links with the same people. It is interesting to note that the unlink behavior of politicians
does not show any evidence of the presence of group conformity or homophily. This suggests
that social influence plays a smaller role in decisions about the dissolution of social ties than
in decisions about the formation of social ties. However, further experiments are necessary
to quantify the effect of social influence and group conformity on the social tie formation
and dissolution behavior of people, since our observational data does not allow to encapsulate
platform-specific effects such as friend recommendations which definitely impact the data we
observe.

The attraction from i to members of j’s party (AttP+) performs also very well with an AUC-
value of 0.906. This indicates that i’s probability of establishing a relation with j increases with
the number of links that i has already established to members of j’s party. This indicates, that
users are persistent in their cross-party-linking behavior. They either continue establishing
links within their party or if they establish cross-party links then they continue focusing on
the same parties as their party colleagues. The fifth best measure with an AUC-value of 0.897
is the Back Attraction Friend measure (BAttF+) which is defined as the number of friends
of j that follow i. Around half of the links are reciprocal (51.12%). That means, that Back-
Attraction and Attraction do not necessarily suggest the same links and unlinks. Hence, the
attraction that i receives back from j’s friends is a better indicator for the formation of new
links than its counterpart, the attraction of i to j’s friends (AUC = 0.837).

Unlink Prediction The number of politicians that i has unfollowed (A−), is the best-performing
measure (AUC = 0.705) to predict the dissolution of links (i, j). Politicians that have unlinked
many politicians in the past are more likely to dissolve further links. Since this measures is
independent of j, it cannot be used to predict which link i will dissolve, but rather expresses a
general tendency of user i to unfollow other users. However, this also implies that all structural
measures that take both users into consideration perform worse than the activity measures of
individual nodes. This suggests, that no single structural power pattern (such as triadic closure
in the link prediction task) exists for the unlink prediction task. Interestingly, the dissolution
of ties can be better explained by user i dropping many relationships than by user j being
unlinked by many users, as the AUC-value of A− is 0.5 for the unlink prediction problem. In
general, in-degree measures of j are bad predictors for unlinks. This also becomes apparent
for the in- and out-degree unlinking distributions. Even though both distributions are skewed,
the out-degree distribution appears to be more skewed. This means, while there are few users
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who produce most unlinks, the amount of unlinks which individual users receive is more evenly
distributed. This again confirms our observations that the unlinking behavior of users is less
driven by social influence and group conformity since those factors would lead to situations
where some users are unlinked by the majority of people.

The second and third best measures are attraction measures; the number of unlinks from
i to members of j’s party (AttP−) performs well with an AUC-value of 0.669. Hence, when
user i has already unfollowed many users from the same party as j, i is also likely to drop
the follower relation to j. Further, the number of unlinks from i to friends of j (AttF−) is
also among the most predictive unlink measures with an AUC-value of 0.613. Thus, while the
unfollow behavior of users seems to be driven by individual decisions, their decisions are far
from being random since users show a persistent unlinking strategy.

As discussed before, contrarily to the link prediction task, the perceived similarity of two
users (Simper) is ranked among the top five indicators of the unlink prediction task. An AUC-
value of 0.382 states that the lower the number of shared followers, the likelier an unlink will
occur; thus minus the number of shared followers achieves an AUC-value of 0.618.

5.4.4 Experiment 2: Predictive Performance of Combinations of Measures

In Experiment 1, we measured the predictive performance of single measures. The goal of this
experiment is to find the best subset of measures for each task. We use a greedy approach to
select the best combination of measures – i.e., we start with the best measure and extend this
set by adding the measure which increases the AUC-value most.

Link Prediction Unlink Prediction

Pos AUC Meas. AUC Meas.

1 0.915 SupG+ links from i’s party to j 0.710 A− unlinks from i to any politician
2 0.943 AttG+ links from i to members of j’s party 0.716 SupF+ links from i’s friends to j
3 0.950 SimintN normalized interest similarity 0.725 P+ links from politicians to j
4 0.952 R+ Does j follow i? 0.751 AttF- unlinks from i to j’s friends
5 0.959 SupF+ links from i’s friends to j 0.756 SupG- unlinks from i’s party to j
6 0.961 AttG- unlinks from i to members of j’s party 0.760 R− Has j unfollowed i?
7 0.963 CNe linkage between non-shared neighborhood 0.764 R+ Does j follow i?
8 0.965 Simper users that are followers of i and j 0.765 AttG+ links from i to members of j’s party
9 0.967 CCn linkage between common neighborhoods 0.768 BSupF+ friends of i that j follows
10 0.967 Simint users that i and j follow 0.769 SimperN normalized perceived similarity

Table 5.3: The top ten measures in the selected subset for each prediction problem are given
along with the respective AUC-values.

Table 5.3 shows the top ten measures and the corresponding AUC-values that can be
achieved for each prediction problem. One can see that for the link prediction task the best
performance that can be achieved when selecting a subset of 20 measures is 0.971, while for
the unlink prediction task the best performance using a subset of 20 measures is 0.790. This
shows that also for the unlink prediction task we can clearly outperform a random baseline
(AUC=0.5). Our results clearly demonstrate that the unlink prediction task is much more
difficult than the link prediction task. This can in part be explained by the fact that most
research about the evolution of networks focused on the formation of new ties rather than
the dissolution. Consequently, powerful structural patterns (such as triadic closure) have been
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discovered for link networks and they work well for the link prediction task, but similarly
strong structural patterns for the unlink prediction task are missing. However our results show
that novel measures which are based on the unfollow-network rather than the follow network
can help to address this problem and allow achieving a good performance. Nevertheless, the
performance gap between link and unlink prediction still seems to be profound. But when
comparing these two prediction tasks one also needs to take into account how the false test
set is constructed (cf. Section 5.4.3). This explains why it is not fair to directly compare the
performance of link and unlink predictions.

5.4.5 Experiment 3: Added value of unfollow information

In Experiment 3 we aim to quantify the added value of unlink information for the link and
the unlink prediction task. Therefore, we ask the question of how well future changes can
be predicted using measures based on information about currently existing links compared
to measures that exploit information about past links (i.e., links which previously existed but
were removed). Our results in Experiment 2 suggest that measures based on information about
past links are especially useful for the unlink prediction task, where unlinks should also be
trained on unlinking data5. As in Experiment 2 we select the best subset of measures for the
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Figure 5.7: The added value of unlinks for link and unlink prediction. A value pair of (X,Y)
corresponds to the AUC-value (Y) of the top X measures. One can see that unlink
measures help to increase the performance drastically in the unlink prediction task,
but only have a marginal effect in the link prediction task.

link and the unlink prediction task. However, we change the base set from which the measures
are selected as follows: once we only use measures based on currently existing links in the base
set and once we also include measures based on information about past links. The results of
the greedy measure selection are displayed in Figure 5.7. A value pair in this figure corresponds
to the the AUC-values (y-axis) of the top N measures (x-axis). Our results show that for the
link prediction task the added value of information about past links is marginal. However,
for the unlink prediction task the performance can be significantly improved when including
measures based on information about past links. This nicely shows that the future evolution
of the network is not only influenced by present links, but also by past links.

5The alternative would be to train the classifier on link data only and assume that links for which we predict
low ranks will be removed.
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5.5 Conclusion

In this work we have analyzed theoretically-motivated factors to explain the formation and
dissolution of ties in directed social networks. We departed from relational sociology and devel-
oped a computational approach that conceptualizes different factors and theories to quantify
the likelihood of the creation and dissolution of social ties. Our approach exploits the struc-
tural information of social networks and allows to incorporate additional relations between
users which might emerge when users form explicit or implicit groups. We tested the predic-
tive performance of different factors by defining two prediction tasks: an unlink and a link
prediction task. Finally, we demonstrated the utility of our approach in an empirical case
study using consecutive snapshots of an interesting social network of German politicians on
Twitter.

Consistently, with our results from knowledge networks [Preusse et al., 2013], we observe
that future link changes are not only driven by the link network, but are also largely influenced
by past network connections. Especially, the unlink prediction greatly benefits from the usage
of unlink information.

Our empirical results clearly show that the follow behavior of individual politicians is in
line with the follow behavior of their party. A politician is likelier to create a tie with j when
more of his party colleagues also established a tie with j. This indicates, the usefulness of our
approach to exploits group membership information such as the party affiliation especially for
the prediction of the formation of new social ties.

We further find that while the same factor may drive the formation of links and unlinks,
there are interesting differences in how the measures that operationalize these factors con-
tribute to both tasks. For example, our results indicate that for predicting if a link between
two politicians i and j will be established in the future, one should focus on the interest similar-
ity between those politicians (i.e., how similar are the people they follow) while for predicting
if they will unlink focusing on the similarity between users who follow them is more promising.
This indicates, that the link formation behavior of politicians is more in line with what the
people they observe do (i.e., their friends or users they follow) than their unlinking behavior.
One potential explanation for this observations is social influence and group conformity - i.e.,
politicians potentially adapt their link creation behavior in order to fit within a group. An al-
ternative explanation is homophily. That means, politicians potentially select friends or party
colleagues who have similar interests and therefore create in part links with the same people.
It is interesting to note that the unlink behavior of politicians does not show any evidence for
the presence of social influence, group conformity and homophily. The unfollow behavior of
politicians is not driven by what the people who they form a group with do, but seems to be
more driven by individual decisions.

However, one needs to note that one potential explanation for that is that online social
networks like Twitter influence the formation of new ties via friend recommendations which are
based on the social ties that friends of a user created in the past. On the contrary, information
about the removal of social ties is concealed. Therefore, users cannot easily observe who was
unfollowed by most of his/her friends or group members, but they will likely see who was
followed by many of their social contacts. The impact of the platform which generates the
data is always a limiting factor of observational studies like ours and experiments are required
in order to answer the question of whether the link and unlink behavior of users would still
be driven by different factors if they would be handled in the same way by the platform.
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Though our empirical results are limited to one specific platform and the biases which are
introduced by the platform, our approach is general and can be applied to other observational
and experimentally generated data depicting the evolution of social networks.

Though, our results suggest that unlink predictions are much more difficult than link predic-
tions (amongst others due to the differences in the evaluation setup as we extensively discussed
in Section 5.4.3), our results show that our approach allows to decrease the performance gap
between link and unlink predictions when including novel measures which are based on the
unlink-network. Finally, we hope that our approach helps to enhance our understanding about
the hidden factors that drive the formation of links. Simple principles like triadic closure are
powerful predictors for the link prediction task but conceal the information about the direc-
tionality of links which is related to potential theoretical explanations behind the formation
(and also the dissolution) of new links.

Discussion

Different Paths of length three In former experiments, we have only measured the number
of paths of length three and did not distinguish between the different kinds of paths that are
visualized in Figure 5.3. For the Twitter data set we have computed all four paths of length
three measures. In particular, there is no notable difference in the predictive performance of
CCn, CNe and CP3. However, CAs performed slightly better than the other three measures
for the link prediction problem. For the unlink prediction problem, the four measures perform
very similar, thus for this data set and prediction problem, one doesn’t need to compute all
four paths measures and can only compute the classic path of length three feature.

Party-specific Predictors As [Lietz et al., 2014] discovered, the observed political parties
behave very differently. Instead of training a joint predictor for all parties, one could train
a single predictor for each party. In this research, we were not interested in deriving party-
specific characteristics, but in general patterns that explain the formation and dissolution of
ties. The dataset at hand can also not be used to train classifiers for each party, since there
are too few data points for all but the pirate party.

Comparison with Link Changes in Knowledge Networks The symmetry for link changes in
social networks is a bigger driving factor than for link changes in knowledge networks. This
is in accordance with the intuition that knowledge is organized more hierarchical, whereas
balance and thus symmetry is more important for the formation and dissolution of ties in
social networks [Parks, 2007, Heider, 1958].

The work in this chapter was published in one paper:

• Julia Perl, Claudia Wagner, Jérôme Kunegis, and Steffen Staab. A theory-driven ap-
proach for link and unlink predictions in directed social networks. Technical Report, 2014.
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6.1 Introduction

Whereas chapters 3–5 have dealt with two transformations of non-edges, namely the additions
of new links and the removal of links, this chapter will study the existence of particular non-
edges. Online social networks allow people to connect with each other, forming a network. In
most online social networks, only positive links between people are allowed such as friendship,
trust and the following relationship. Relationships between people may also be of a negative
type, for instance enmity as opposed to friendship, and distrust as opposed to trust. A very
small number of online social networks actually do allow such negative links. Among them is
Slashdot, a technology news website that lets its users tag other users as friends and foes, as
well as the product review site Epinions that allows users to trust and distrust each other. In
both cases, the negative link feature results in directed signed links between users that can be
interpreted as approval and disapproval links, and that are used in the user interface of the
two websites to decide which content is shown to users.

On Slashdot, the posts of users tagged as foes are given a lower score, and may thus be
hidden. On Epinions, the trust and distrust information is used to determine the reviews shown,
using an undisclosed algorithm. The negative links are thus used on both sites to enhance the
site’s content, and a negative link feature could similarly enhance he content shown on many
websites.

Negative Links in Social Networks Social networks provide their users with a variety of
functionality for connecting with other users. Examples of these features are friends on Face-
book, circles on Google+ and followers on Twitter. Explicitly created connections in social
networks can be displayed in the user profile and some users might want to boost their status
by collecting as many visible contacts as possible. Besides consequences for the status of these
users, these explicit social connections deeply influence the user experience within the social
networking platform and the ability to interact with other users. The nature of an explicit link
between two users is therefore dependent on its platform-specific implementation.

Here, we limit our investigation to links between users that are intended to more be per-
manent and therefore describe a long-lasting connection. This excludes links between users
and other entities that form bipartite networks, e.g., ratings of movies, articles, comments,
etc. Ratings of persons in dating sites [Kunegis et al., 2012] fall in this category too, since
the rating and rated users have different roles. The same holds for one-time events such as
elections, e.g., the elections of administrators in Wikipedia [Leskovec et al., 2010a].

Permanent social links between two users can be divided into two types according to their
functionality, that can be described as positive and negative. It can be observed that large social
networks such as Facebook and Google+ provide positively connotated linking functionality
called friend, contact, or multiple circles with user-defined labels. These links are the defining
concept for social networks, and they are crucial for them since they determine the visibility
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of user-generated content for the creator and for potential readers. It is this functionality that
makes the platform social since the user is supported in his interaction with selected other
users. In the following, we define links that increase the visibility of users and content or which
increase the ability to interact as positive links. Consequently, the links that decrease visibility
of content or which decrease the ability to interact are called negative links. Negative links
are associated with disapproval for another user. Labels for explicit negative links in social
networks are for instance enemy, foe, distrust, ignore, hide and block. As negative aspects of
a community are rarely advertised, these negative links are much less used and known than
positive links. This might be one reason why only few social networks with negative links are
publicly available for study and research.

Since many online social networks are however reluctant to implement a negative link
feature, as shown by the very small number of sites featuring them, the question arises whether
negative links have an added value for the network or whether their purpose can be replaced
by a prediction algorithm that determines the negative social links automatically from the
known, positive links. Such an algorithm could be applied to any online social network that
does not want to allow explicit negative links, and would increase the accuracy of news streams,
content filters and recommender systems embedded in these online social networking sites.
However, two available social networks that contain positive and negative links are Slashdot
and Epinions.

Research Questions

Based on these premises, this chapter investigates the following research question: Can the
negative links allowed in Slashdot and Epinions be inferred from the positive links only? In
particular, we study the following research questions:

RQ 4 Which structural characteristics are indicative for latent negative links in social net-
works?

For the first scenario, we assume that only the positive links, e.g. all friendships in a network,
are given. The goal of this research is to find characteristic patterns for negative links in the
network consisting of only positive relationships.

RQ 4.I Which structural indicators infer negative links from only positive links?

Some networks do not allow the user to label relationships as negative. Therefore we ask what
the added value of the negative link feature for the prediction of negative links is. For that
we compare two settings: How much easier is it to predict latent negative ties, when some
negative information is used in contrast to the sole usage of only positive ties.

RQ 4.II What is the added value of the negative link feature?

The predictive performance of the two prediction settings will be compared to obtain the added
value of the negative link feature.

This chapter is structured as follows. First, we review the related work on negative links in
social networks in Section 6.2. To tackle our main research question, we will then introduce
the latent negative link prediction problem and functions that solve the problem in Section
6.3. In Section 6.4, we present the evaluation methodology for the prediction problem. We will
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evaluate the proposed prediction functions using Slashdot and Epinions data in Section 6.5 to
answer research questions RQ 4.I and RQ 4.II. Finally, we conclude this chapter in Section
6.6.

6.2 Related Work

For the work of this chapter, we briefly review the relevant related work in the area of link
prediction and link sign prediction.

Link Prediction Measures A major model of network analysis is preferential attachment, i.e.,
the rule that new edges are more likely to be attached to nodes with high degree [Barabási and
Albert, 1999]. Another important model is that of a high clustering coefficient, i.e., the rule
that typical networks contain a much higher number of triangles than predicted by a random
graph model, and thus edges tend to connect nodes that have a high number of common
neighbors [Watts and Strogatz, 1998]. A high clustering coefficient is one component of the
small-world network model, and can be generalized to signed graphs to give balance theory,
stating that triangles are likely to be balanced, i.e., to contain an even number of negative
edges [Harary, 1953, Heider, 1958].

The preferential attachment model can be used to derive link prediction functions based
on node-based centrality measures, such as the degree of nodes and PageRank [Brin and
Page, 1998], whereas the clustering model leads to link prediction functions that compare the
neighborhood of two nodes, such as the number of common neighbors and the cosine similarity.

Link Sign Prediction In the case where negative edges are allowed in a network, the problem
of predicting the sign of new edges, given the known positive and negative edges is called the
link sign prediction problem, and has been extensively studied [Kunegis et al., 2009, Leskovec
et al., 2010b, Leskovec et al., 2010c]. In the link sign prediction problem, the known network
contains both positive and negative edges, and thus sign information can be used for prediction.
For instance, the multiplication rule lent from Balance Theory [Heider, 1958, Harary, 1953]
stating that the enemy of my enemy is my friend can be used [Kunegis et al., 2009]. Leskovec et
al. compare the number of triangles that are explained by balance theory and Status Theory to
develop a better understanding of the underlying mechanisms that cause positive and negative
links [Leskovec et al., 2010b]. Status theory states that a positive link from i to j indicates
that j has a higher status than i and a negative link (i, j) indicates that j has a lower status
than i

In a study on Epinions, user and interaction features (e.g. who replied to whom, who
commented to which post, which comments are competing) were trained to predict trust
among Epinions users. Hence, no trust or distrust information was used to predict the actual
trust labels. A model of trust propagation that incorporates trust and distrust information is
presented by [Guha et al., 2004]. These types of methods can however not be applied in the
problem studied here, since in our case only positive edges are known.

A related problem is that of predicting the sign of new links, given both positive and
negative links in a network [Yang et al., 2012]. In addition to the network itself, the method
described in that work uses interaction information to achieve its prediction, as well as a small
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sample of signed edges. Thus, the method cannot be applied to our scenario, since we assume
no negative links are possible in the network.

6.3 Modeling Latent Negative Links

6.3.1 Slashdot & Epinions

Slashdot is a technology news platform where users can post and read other users’ news articles
and comments [Kunegis et al., 2009]. On Slashdot, users can create two types of explicit and
directed social links between themselves and other users. These are labeled friend and foe. Both
link types allow the user to change the visibility of the content the linked user has created.
Although the effect of a link is not predetermined but user configurable the convention is that
the friend link increases the content visibility, the foe link decreases content visibility of the
target user. Therefore the friend link is a positive link, while the foe link is a negative link. The
friend and foe link types are also called fan and freak from the point of view of the targeted
user. The signed social network of Slashdot is called the Slashdot Zoo on Slashdot itself, and
can be considered an extension to Slashdot’s sophisticated moderation system [Lampe and
Resnick, 2004].

Epinions is a website that collects community-created product reviews [Massa and Avesani,
2005]. Two types of links can be created by one user to a target user. One link is labeled trust
the other link is labeled block (or formerly, distrust). These links influence the visibility of
product reviews that are authored by the target user. The user who has created the trust
link sees the reviews of the trusted user at a higher position in the list of all relevant reviews.
Therefore this link is considered to be a positive link. Reviews by users that are blocked are not
presented to the user, making it a negative link. The positive and negative links on Epinions
are also used to predict a global trust score for individual users.

6.3.2 Definitions

Let N = (V,E,w) be a social network (Slashdot or Epinions) with V the set of users, E the set
of directed links between users, and w : E → ±1 the edge sign function, with w((i, j)) = +1
denoting that user i approves of user j and w((i, j)) = −1 denoting that user i disapproves of
user j. The fact that two nodes i, j ∈ V are connected (in either direction) will be denoted by
i ∼ j, and the fact that i and j are connected by a directed edge (i, j) by i→ j. The degree of
vertex i ∈ V , i.e., the number of vertices connected to i (in either direction) will be written as
d(i). The out-degree of node i, i.e., the number of nodes pointed to by i is denoted as dout(i).

At the task of ordinary link prediction, in which future links must be predicted from current
links, both node-based and neighborhood-based measures are used. A link prediction function
is defined to take as input a node pair (i, j), and returns a numerical score indicating how
likely a new edge is to appear between i and j.

6.3.3 Link Prediction Functions

Link prediction functions can be divided into neighborhood-based and centrality-based func-
tions, based on whether they include only vertex-based features of vertex-pair-based features.
In the following, we list the link prediction functions used in our experiments, which corre-
spond to the most common general link prediction functions used in the literature, and can
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be found for instance in [Liben-Nowell and Kleinberg, 2003] and [Zhang et al., 2012]. The two
nodes for which a link prediction score is to be computed will be called i and j.

Neighborhood-based Functions

These link prediction functions are based on comparing the neighboring nodes of i and j. In
addition to the cosine similarity defined in Equation (6.5), we use the following neighborhood-
based link prediction functions.

The number of common neighbors between i and j is defined as

fCN(i, j) = |{k | i ∼ k ∧ k ∼ j}|, (6.1)

which equals the number of paths of length two between i and j.

Analogously, the number of paths of length three between i and j is defined as

fP3(i, j) = |{(k, l) | i ∼ k ∧ k ∼ l ∧ l ∼ j}|, (6.2)

where the sequence (i, k, l, j) forms a path of length three from node i to node j.

The Jaccard coefficient measures the amount of common neighbors divided by the number
of neighbors of either vertex [Liben-Nowell and Kleinberg, 2003]:

fJacc(i, j) =
|{k | k ∼ i ∧ k ∼ j}|
|{k | k ∼ i ∨ k ∼ j}|

(6.3)

The measure of Adamic and Adar counts the numbers of common neighbors, weighted by
the inverse logarithm of each neighbor k’s degree [Adamic and Adar, 2001]:

fAdad(i, j) =
∑

k∼i∧k∼j

1

log(d(k))
(6.4)

The cosine similarity is defined as the cosine between the two adjacency vectors of i and
j, where the adjacency vector of a vertex is the 0/1 vertex-vector indicating to which vertices
a given vertex is connected. The cosine similarity can be expressed in the following manner

fcos(i, j) =
|{k | i ∼ k ∧ k ∼ j}|√

d(i)d(j)
. (6.5)

This measure thus weights the number of common neighbors that two nodes share by the
weighted degree of both nodes.

The final two common proximity-based link prediction methods are graph kernels. They
can be either defined as functions of the adjacency matrix A of the network, or as sums over
all paths from i to j. The symmetric adjacency matrix A of the graph G = (V,E) is defined
as the |V | × |V | 0/1 matrix defined using Aij = 1 when i ∼ j and Aij = 0 otherwise. Both
graph kernels have a parameter α, which we set to the value 0.85/‖A‖2, i.e., slightly less than
the inverted spectral norm of the adjacency matrix.

The exponential graph kernel is defined as the exponential function of the adjacency ma-
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trix [Kondor and Lafferty, 2002]

fEXP(i, j) =
[
eαA

]
ij

=
∑

p∈P∗(i,j)

α|p|

|p|!
. (6.6)

The Neumann graph kernel is defined using matrix inversion [Kandola et al., 2002]

fNEU(i, j) =
[
(I− αA)−1

]
ij

=
∑

p∈P∗(i,j)

α|p|. (6.7)

The basic idea behind these two measures is that longer paths between the node pair i and j
should be weighted lower than shorter paths, because the closer neighborhood of two nodes is
more indicative for the formation of a tie than nodes that are only reached via several hops.
These expressions make use of the notation P∗(i, j) for the (generally infinite) set of all paths in
the network from node i to node j, and of the notation |p| for the length of a path p ∈ P∗(i, j).

Node-based Centrality Functions

Centrality-based link prediction functions are defined as products of centrality measures of
the two vertices i and j; different choices of centrality measures lead to different link predic-
tion functions. In addition to the PageRank product defined in Equation (6.9), we use the
preferential attachment value.

The preferential attachment model states that the likelihood of a new node i to connect
to node j is proportional to the degree of node j [Barabási and Albert, 1999]. Thus, the
preferential attachment score is defined as

fPA(i, j) = d(i)d(j). (6.8)

PageRank [Brin and Page, 1998] is a centrality measure in a directed network defined as
the solution PR(i), i ∈ V of

PR(i) =
1− α
n

+ α
∑
j→i

PR(j)

dout(j)

where α is a parameter set to 0.85 [Langville and Meyer, 2006]. The general idea behind the
PageRank measure is that the more incoming connections a node receives, the more popular it
is which is then reflected in a high PageRank value. However, it depends on which nodes link
to an article. If popular nodes link to a node i, then the popularity of i will be higher than
the popularity of a node that only unpopular nodes connect to. The PageRank values are all
positive by construction. The PageRank product link prediction function is then defined as
the product of the two nodes’ PageRanks

fPR(i, j) = PR(i)PR(j). (6.9)
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Figure 6.1: Scatter plots of the cosine similarity and the PageRank product with points colored
according to their inclusion in the set of unknown positive edges Pb, the set of
unknown negative edges N and the set of non-edges O.

6.3.4 Initial Analysis

Let P be the set of positive edges and N the set of negative edges, i.e., E = P ∪ N and
P ∩ N = ∅. To perform an initial analysis of the datasets, we split1 the set of positive edges
P randomly into two sets Pa and Pb such that |Pa| = 3|Pb|. We then consider Pa the set of
known edges (all positive), Pb the set of unknown positive edges, N the set of negative edges
to predict, and finally a randomly sampled set O of node pairs not in E with size |O| = |Pb|.

We can now compute the PageRank product and the cosine similarity for all node pairs
in the sets N , Pb and O, based on the known edges Pa. Figure 6.1 shows the scatter plot of
the nodes pairs of the three unknown sets plotted in function of their PageRank product and
cosine similarity values.

Two observations can be made:

• Most node pairs in the non-edge set O have a cosine similarity of zero, and a small value
of the PageRank product.

• Node pairs in the positive edge set Pb have high cosine similarity and high PageRank
product values (compared to non-edges).

• Node pairs in the negative edge set N have low but mostly nonzero cosine similarity
values and high PageRank product values (compared to non-edges).

These observations are true for both the Slashdot and Epinions datasets. We conclude that
negative edges can be identified from the cosine similarity and PageRank product in the
following way:

• Negative edges connect nodes with high PageRank product values.

1The factor 3 is motivated by the fact that in the link prediction literature, the standard size of the test set
is 25% of the total set of edges.
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Table 6.1: The two signed social network datasets used in our evaluation. In both networks,
all edges are directed.

Dataset Vertices Edges (pos. + neg.)

Slashdot Zoo [Kunegis et al., 2009] 79,120 515,581 (392,326 + 123,255)
Epinions trust [Massa and Avesani, 2005] 131,828 841,372 (717,667 + 123,705)

• Negative edges connect nodes with low but nonzero cosine similarity values.

Thus, we expect a combination of a positively weighted centrality measure with a negated
neighborhood-based measure to solve our problem of predicting negative links, giving a com-
bined prediction measure that takes into account both preferential attachment and balance
theory.

6.4 Methodology

Datasets

Table 6.1 summarizes the two datasets. Both datasets are available on the Koblenz Network
Collection site http://konect.uni-koblenz.de. Both networks have both positive and neg-
ative links between users, forming a directed, asymmetric signed network. Although the func-
tionality that lies behind the link types is not fully identical between Slashdot and Epinions, it
is very similar according to our definition of positive and negative links. Based on this similar
functionality we assume similar properties of the two networks, and will use both datasets for
our experiments.

Prediction Methodology

In this section, we describe our method for testing whether the negative links of a signed social
network can be predicted from its positive links. We will review the link prediction problem
itself, give suitable link prediction functions adapted to the problem at hand, and will describe
two experiments, one for measuring the achievable predictive performance of the prediction
problem, and one for computing an upper bound on that accuracy.

As defined in the previous section, the set of edges E can be divided into the set of positive
edges P and the set of negative edges N . The problem can then be rephrased as the problem
of evaluating whether the negative links N can be predicted from the positive links P . The
general methodology we introduce for this kind of problem consists in predicting links of one
type using only links of another type in the network. This problem extends the ordinary link
prediction problem in which only a single link type is present.

The general methodology for link prediction is as follows. Given node pairs in the training
set, predict node pairs in the true test set against node pairs in the false test set. We formalize
the general prediction problem P as

P : Training Set→ True Test Set | False Test Set,
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Table 6.2: The features used for learning a link prediction function.

Feature Name Ref.

f1 = log(CN) Common neighbors Eq. (6.1)
f2 = log(P3) Paths of length three Eq. (6.2)
f3 = log(cos) Cosine similarity Eq. (6.5)
f4 = log(Jacc) Jaccard coefficient Eq. (6.3)
f5 = log(Adad) Adamic–Adar Eq. (6.4)
f6 = log(Exp) Exponential kernel Eq. (6.6)
f7 = log(Neu) Neumann kernel Eq. (6.7)
f8 = log(PA) Preferential attachment Eq. (6.8)
f9 = log(PR) PageRank product Eq. (6.9)

f10 =

{
log(PR) if cos = 0,
min(log(PR)) otherwise.

Conditional PageRank –

and search for prediction functions f that assign node pairs in the true test set higher values
than node pairs in the false test set.

The result of a prediction function will be called the prediction score. Multiple prediction
functions can then be compared to find a function that solves the prediction problem to a
satisfying accuracy with the AUC-value, which is defined as the area under the ROC-curve.
The AUC-value if ranged between 0 and 1, where 1 indicates that all node pairs in the true
test set are ranked better than any node pair in the false test set and 0 indicates the opposite
ranking. The AUC-value of a random predictor which produces a random ranking of node
pairs in the true and false test set is 0.5.

Ensemble Link Prediction Functions

As shown in Section 6.3, neither centrality-based link prediction functions such as the PageRank
product, nor neighborhood-based functions such as the cosine similarity are expected to predict
negative links from positive links well. Instead, combinations of them are needed. Therefore, we
propose a method for combining centrality-based and proximity-based link prediction functions
into an ensemble.

To combine several link prediction functions, we use logistic regression applied to the log-
arithms of individual prediction functions. Some functions such as the number of common
neighbors fCN may be zero, and thus their logarithm is not defined; in this case we use the
logarithm of the lowest possible value instead. Also, since the behavior of the PageRank prod-
uct is different when the cosine similarity is exactly zero (as illustrated in Figure 6.1), we
include as a feature the PageRank product multiplied by the indicator function of the cosine
similarity being zero. We call this feature the conditional PageRank. The main rationality for
introducing this feature is that negative edges can hardly be distinguished from non-edges and
positive edges. Since most of the non-edges have a cosine value of 0, the PageRank feature
appears to be a good characteristic to distinguish between positive and negative edges. If the
cosine does not equal zero, the cosine value itself differentiates well enough between positive
and negative links. Table 6.2 summarizes all features used in the evaluation.

We propose two ensemble link prediction functions, based on the basic link prediction
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Table 6.3: The regression link prediction functions used in our evaluation.

Regression Used features

fall f1, f2, f3, f4, f5, f6, f7, f8, f9
fPR-cos f3, f10

functions of Table 6.2. Since the basic features f1, . . . , f9 correlate among each other (for
instance, the Adamic–Adar measure and the common neighbor count have Pearson correlation
p = 99% for the Slashdot dataset), we restrict regression to the five best-performing individual
link prediction functions.

• Logistic regression based on the five logarithmic features f1, . . . , f5.

• Logistic regression based on the conditional PageRank f10 and the cosine f3 = log(cos).

The two logistic regression-based functions must be trained on the training set.

Given a set of features f1, f2, . . . , fk then the ensemble prediction function is given by

f∗ = L(b+ a1f1 + a2f2 + . . .+ akfk),

where b and ai are the parameters of the ensemble method, which are learned by logistic
regression, and L(x) = 1

(1+e−x)
is the logistic function.

Table 6.3 shows the two regression features.

The ensemble link prediction methods are only used for Experiment 1, as using them in
Experiment 2 to derive an upper bound on link prediction accuracy will skew the results.

6.5 Evaluation

In the following, we describe two experiments to measure how well the negative links can be
predicted from the positive links in a signed social network. The purpose of the first experiment
is to find good link prediction functions at that task, and to compute their accuracy. The
second experiment consists in comparing this link prediction problem to the task of predicting
negative links in networks where both positive and negative links are known. Since this task
includes more information in the training set (i.e., negative links), the achieved accuracy of
that problem is higher and gives an upper bound on the accuracy that can realistically be
attained at the problem of predicting negative links when only positive links are known.

6.5.1 Experiment 1: Latent Negative Prediction

The goal of this experiment is to measure the accuracy of link prediction functions at the task
of predicting negative links in social networks containing only positive links, and to observe
which particular functions are well suited for that task.

In our scenario, we want to predict negative links from known positive links. Since we
want to compare the scores of link predictions functions applied to node pairs connected by
a negative link with the scores of node pairs that are unconnected or connected by a positive
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Table 6.4: Learned weights of logistic regression. Weights marked as (–) denote functions that
are not used in the respective regression type.

Dataset Regression log(CN) log(P3) log(cos) log(PA) log(PR) f10

Slashdot
fall −0.5411 −0.4866 −3.9434 0.2502 0.2321 –
fPR-cos – – −6.113 – – 0.2386

Epinions
fall −0.8587 −0.3827 −5.0360 −0.0105 0.8498 –
fPR-cos – – −1.5103 – – 0.5111

link, we split the set of positive edges P randomly into two sets Pa and Pb. We use the sizes
|Pa| = 3|Pb|, corresponding to a training set containing 75% of all edges.

The training set is thus Pa and the true test set is N . The false test set can be chosen in
three different ways to emphasize different features of the tested link prediction functions:

• (Pb) Other known positive links in the false test set force a good distinction capability
between negative and positive links.

• (O) Only including non-edges in the false test set will emphasize the ability of a link
prediction function to distinguish negative edges from non-edges.

• (Pb∪O) Using both positive and non-edges in the false test set evaluates a link prediction
function at the task of distinguishing negative edges from both positive edges and non-
edges.

The three cases result in the following link prediction problems:

Pa → N | Pb (6.10)

Pa → N | O (6.11)

Pa → N | PbO (6.12)

Although it may seem sufficient to use the third, combined false test set, our experiments will
show that the relative accuracy of individual link prediction functions at the three problems
may be radically different, and thus it is a requirement that a good link prediction method
performs well at all three problems.

Results The AUC-values for all link prediction functions for all three link prediction problems
are shown in Figure 6.2. The corresponding ROC curves for the link problem using Pb ∪O as
the false test set are shown in Figure 6.3. The weights learned for logistic regression are given
in Table 6.4.

Observations A first observation from Figure 6.2 is that the easiest prediction problem is to
predict negative links against non-links from positive links (Pa → N | O) which reaches AUC-
values as big as 0.93. Individual link prediction functions f1 to f9 perform well (AUC > 0.5)
at the problem Pa → N | O, while their inverses (AUC < 0.5) perform well at the task
Pa → N | Pb. Thus, none of these functions taken by itself is suited to solving our problem.

115



6 Latent Negative Links in Social Networks

all PR−cos CN P3 Jacc Adad cos Exp Neu PA PR
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ar
ea

un
de

rt
he

cu
rv

e
(A

U
C

)

(a) Slashdot

all PR−cos P2 P3 Jacc Adad cos Exp Neu PA PR
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ar
ea

un
de

rt
he

cu
rv

e
(A

U
C

)

(b) Epinions

Pa →Nb | Pb O
Pa N | O
Pa N | Pb

→

→

Figure 6.2: The AUC-value of the link prediction functions at the three link prediction prob-
lems of Experiment 1. The two leftmost functions are ensemble functions; the other
functions are the basic link prediction functions. A suitable link prediction function
at the task of predicting negative links must have an AUC-value larger than 0.5
for all three link prediction problem.

Instead, ensemble methods must be used. Our tests show that the only set of functions that
perform well (AUC > 0.5) when combined include the conditional PageRank f10, i.e., regression
type fPR-cos. Note that the regression weights in Table 6.4 cannot be interpreted individually.
The regression weights learned for fPR-cos for both datasets have the same signed and relative
weights, and suggest the prediction function

f = α

({
log(PR) if cos = 0,
min(log(PR)) otherwise.

)
− β log(cos),

in which the weights α, β > 0 must be determined experimentally. Figure 6.3 also shows that
this method (fPR-cos) also has the steepest ROC curve at the point (0, 0), implying that this
method is best at predicting the top-k unknown negative links for small k. This property is
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Figure 6.3: The ROC curves of all link prediction functions at the link prediction problem
Pa → N | PbO for both datasets. Well performing methods in this experiment
have a ROC curve that is higher on the plot than other curves. A high steepness of
the curve at the point (0, 0) indicates a high precision for the top-k items, implying
a good performance at recommendation tasks.

important for the application of recommender systems, in which only the top-k results are
used and the rest ignored.

6.5.2 Experiment 2: Upper Bound

To assess whether the accuracy of link prediction achieved in Experiment 1 can be considered
accurate enough to recommend against the introduction of explicit negative links in online
social networks, we compare the results with the results of the related link prediction problem
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in which negative links are known. This related link prediction function gives an upper bound
for the accuracy attainable using the previous methods, and the difference in accuracy between
both problems will thus characterize the added value that the negative link feature brings to
a social networking platform.

We will assume that a part of the negative links in the social network are already known, and
include them in the training set. We thus compare the two following link prediction problems:

Pa → Nb | PbO (6.13)

Pa, Na → Nb | PbO (6.14)

The set of negative edges N is thus split into the two sets N = Na ∪ Nb. The split of N is
made in the same proportion as the split of P , i.e., |Na| = 3|Nb|, which means that 75% of all
negative links are used for the training set.

The first link prediction problem is the same as link prediction problem (6.10) in Experi-
ment 1 up to the necessary replacement of N by Nb; the second one includes additional negative
edges Na in the training set. Note that any link prediction function that has a high accuracy in
the first problem can be transformed into an accurate link prediction function for the second
problem by simply ignoring the negative edges. Thus, the accuracy of link prediction functions
at the second problem are upper bounds for the accuracy of link prediction functions at the
first problem. The tightness of this bound can then be interpreted in terms of the added value
of the negative edges. If the difference is high, negative edges contain information that is not
recoverable using only the positive edges, and a negative link feature will increase the accuracy
of news stream filters and recommender systems based on the social network. If the difference
is small, negative links do not give such an added value.

For the second problem, the link prediction methods must be modified to work on signed
edges. We follow the methods described in [Kunegis et al., 2009], which define the degree d(i)
as not depending on edge signs, and essentially replace the number of common neighbors

|{k | i ∼ k ∧ k ∼ j}|

with the difference of positive and negative paths∑
i∼k,k∼j

w(i, k)w(k, j),

which reduces to the number of common neighbors in the unsigned case.

Results In this experiment, the performance of algorithms at the problem PaNa → Nb | PbO
serves as an upper bound for the performance of methods at the problem Pa → Nb | PbO.
Thus, the results of this experiment can be used to assess how much information is lost when
negative links are not recorded in a social network. The results of the experiment for both
datasets are shown in Figure 6.4.

The experimental results show that the best method when negative links are known per-
forms by about 0.05 AUC points better than the best method when no negative links are
known. Thus, allowing negative links in an online social network does have an added value
for the network, although that added value is small, because the difference in AUC-values
from one link prediction function to the next are larger than the observed difference of 0.05,
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Figure 6.4: Comparison of the accuracy of link prediction with and without Na in the training
set. The bars show the AUC-values of the link prediction problem in which no
negative edges are known. The thick black lines represent the AUC-values at the
task in which some negative links are known. For the neighborhood-based predic-
tion functions, the plot shows the AUC-values of the inverted prediction functions,
since these then have AUC-values of over 0.5.

suggesting that specific functions adapted to any dataset may be able to close that gap.

6.6 Conclusion

In this chapter, we have introduced the new problem of prediction latent negative links. We
have defined the prediction set up to evaluate the predictive performance of several proposed
measures for the latent negative prediction task. The experimental results derived in the two
experiments show that the problem of predicting negative links in a social network, using
only positive links is a variant of the link prediction problem that can only be solved by
combining both centrality-based and neighborhood-based functions, using positive weights
for centrality-based functions and negative weights for neighborhood-based functions. This
result is congruent with the intuition that the existence of an edge (regardless of its sign)
correlates positively with centrality-based functions, showing that models such as preferential
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attachment, which predict a higher probability of edge attachment for nodes with high degree
centrality, is valid independently of edge sign in networks where negative links are allowed. On
the other hand, signed networks follow balance theory in that triangles in them tend to have
an even number of negative edges, explaining why the neighborhood-based methods correlate
negatively with the presence of negative edges.

We have shown that in the online social networks Slashdot and Epinions, the foe and
distrust feature is used by users in a way that can be predicted to high accuracy from the
friend and trust links. Thus, with regards maximizing the utility of news stream filtering
and social recommendation, the negative link features of these two sites are redundant to a
large extent. However, it does not follow that these features are useless. Quite the contrary is
true; the foe feature of Slashdot is used as a personal organization tool (remembering who is
considered a troll), or simply to let another user know one’s disapproval of them. In Epinions,
the distrust feature is likewise central to the Epinions’s Web of Trust.

As a solution to the generic learning problem of predicting one link type from another
one, we showed that the usual link prediction methodology can be applied, but only with the
caveat that individual link prediction function may have inverted performance, e.g., the cosine
similarity measure in the example of disapproval links.

Finally, as an application of our methods to online social networks that do not allow foe or
distrust links, we propose that a link prediction function learned using regression with Slashdot
and Epinions data may be applied. The only way however to ascertain the accuracy of these
predictions is to perform the evaluation described in this work, which by nature of the problem
is only possible when negative edges are known. Proxies for negative edges could be found in
some platforms. For instance in Facebook, one can choose to not list the news of a friend in
one’s own news stream or one can deny a friend request.

The work in this chapter was published in one paper:

• Jérôme Kunegis, Julia Preusse, and Felix Schwagereit. What is the added value of neg-
ative links in online social networks? In Proc. Int. World Wide Web Conf, 2013.
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7 Conclusions and Further Directions

7.1 Conclusions

In this thesis, we have demonstrated approaches how structural changes, such as the addition
and removal of links, and the prediction of states, such as the presence of latent negative links,
can be predicted only from the network structure.

In the first part of the thesis, we have investigated the relationship between link and unlink
prediction. Sociological studies suggest that the corresponding problems of link and unlink
prediction are highly related – many factors that are correlated positively with the formation
of new ties were stated to correlate negatively with the dissolution of a tie. We evaluated
the relatedness of the two prediction problems with two transformations from link to unlink
prediction. These transformations indicated that indeed some link prediction characteristics
are also suitable for unlink prediction. The two general prediction problems are however not the
same; in particular the unlink prediction has proven to be much harder than link prediction.
Since link and unlink prediction are not congruent, we have further analyzed their interplay.
We have proposed a unified view that does not consider the performance of a characteristic at
only one of the two prediction problems and instead considers the joint performance. This led
us to define and evaluate the four states of growth, decay, stability and instability for several
big Wikipedia datasets which are prominent representatives of knowledge networks. We have
evaluated several characteristics and have demonstrated that structural characteristics for each
category can be found. The contributions of this part are as follows.

• We have demonstrated that unlink prediction is more than a simple transformation of
the link prediction problem.

• We have shown that link changes can be categorized into the four states of growth, decay,
stability and instability.

• We found important indicators for the removal of a link in knowledge networks to be a
small embedding of the relationship between two knowledge items and a low degree of
both linked knowledge items.

In the second part, we utilized the temporal evolution of knowledge networks where time-
stamps of each addition and removal event are known and proposed four temporal models
that exploit the temporal information.We have evaluated the four models on the tasks of link
and unlink prediction for several big Wikipedia knowledge networks and demonstrated that
the link and unlink prediction problem greatly benefit from the incorporation of temporal
information. Despite our observations that temporal information improves the predictability
of unlinks, its prediction accuracy is still much smaller than for link prediction. In an upper
bound experiment where we use exact link measures as opposed to link measures estimated
from the temporal evolution, we demonstrated that it is in theory possible to predict addition
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and removal events with very high accuracy using only the structure of the network. The
contributions of this part are as follows.

• We have defined and evaluated four temporal models for a general dataset consisting of
links, unlinks and timestamps for all link events at the task of link and unlink prediction.

• We have demonstrated that the exploitation of temporal information improves the pre-
diction of links and unlinks.

• We performed an upper bound experiment to demonstrate that unlinks could be pre-
dicted with AUC-values up to 0.9.

In the third part, we have defined nine effect categories which describe reasons for the
formation of new relationships and their dissolution in directed social networks where latent
or explicit groups are given. We defined measures of each effect category and evaluated their
individual and joint predictive ability for the task of link and unlink prediction. We evaluated
our approach on a Twitter dataset of German politicians. Our results suggest that measures
based on information about past links are extremely valuable for predicting the dissolution of
social ties, while for the prediction of the formation of social ties measures based on the link
network are sufficient. The contributions of this part are as follows.

• We have defined and evaluated a general framework that describes sociological effects
for the formation and dissolution of ties in directed social networks where latent or
explicit user groups are given. Our proposed framework exploits the group association
information of users.

• We have demonstrated that information on past network connections boost the perfor-
mance of link and in particular unlink prediction.

In the last part, we have investigated the new problem of how to predict latent negative links
in a social network. These links are in contrast to positive links such as trust or friendship and
are useful to hide content of distrusted users. Many online platforms prohibit the user to label
relationships as negative; users can only be added as friends or followers. Although it is not
possible in these platforms to explicitly label other users as foes or distrusted, users implicitly
have negative relationships or opinions about other users. We have evaluated several measures
on networks where positive and negative relationships were labeled. The contributions of this
part are as follows.

• We have defined a new prediction problem: the prediction of latent negative links.

• We have proposed and evaluated structural characteristics for the latent negative pre-
diction problem.

• We have demonstrated that the added value of the negative link feature in social network
is rather small for the latent negative prediction problem. Hence, latent negative links
can be successfully predicted from only positive links.

The structural consideration of the prediction problem has several advantages. Since the models
that we presented in this thesis rely on the structure of a network and are thus in principle
domain-independent, they can be applied to all networks. In particular, they can be combined
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with domain-specific algorithms that make use of the content or the context information in a
network. The structural viewpoint also allows us to compare the mechanisms of linking and
unlinking across different networks and even network types. Even if we have shown that the
structure of a network on its own may not be enough to solve the unlink prediction problem
with a high accuracy, we were still able to beat state-of the art methods for unlink prediction.

Limitations For the analysis of which links are formed, removed or latent negative, the goal
is to reveal the structural network characteristics that best describe the three types of links.
Since we use actual data of link additions and removals, or friends and foes, these actions or
relationship labels are greatly influenced by the respective platform policies in particular the
recommendation system of the platform. We may not observe with whom users truly choose to
connect or disconnect. Instead, we may observe which users or actions, that the recommender
system has proposed, were chosen by a user. For instance, a user may only choose new followers
that appear as recommendations in the interface of Twitter. Hence, the characteristics that we
found to be indicative for the three link prediction problems could be the result of the technical
system of the platform and not the user’s natural behavior. To measure both effects, one would
have to know what the technical system looks like, i.e. how Twitter’s follower recommender
works. Unfortunately, this information is not available for most platforms.

Furthermore, for most prediction tasks, one assumes that the interface or the platform
policies don’t change throughout the observation period. However, a site may employ a new
recommender that changes the link addition behavior of its users, or it may introduce a new
site element that changes the user’s behavior. In general, research in link prediction disregards
this technical changes and treats all user actions the same.

7.2 Future Directions

Some potential future research directions arise from the work done in this thesis.

False Test Set for Link Prediction To test the links that actually appear against the links
that don’t appear in a network, the false test set for the link prediction task is commonly chosen
to contain random non-appearing links. In other words, the link prediction problem tries to
distinguish between actually connected node pairs and random non-connected node pairs.
Explaining why someone living in a village in Germany is not friend with a random person
living in a town in Australia can easily be structurally distinguished from two people that are
actually friends. As it turned out in our analyses, this choice greatly influences the precision
of link prediction methods. Even very basic features perform surprisingly well, because their
values in the true and false test set differ greatly. Thus, we ask a more practically appealing
question: How can links that appear in a network be distinguished from links that could
appear? This raises the question of defining when links could appear, which is in general tough
to answer. In a given application however, links from the false test set might be naturally
given. For instance in Facebook, new friends are suggested to users who mostly only add some
of them; the other user were proposed but not chosen to befriend with. Thus, these kind of
links could form a practically more appealing false test set.

This exact issue also gives the impression that unlink prediction is fundamentally more
difficult than link prediction. When the false test set for link prediction is adjusted, we expect
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the link prediction precision to drop significantly and to be more similar to the precision of
unlink prediction methods.

Link Replacements In particular for Wikipedia, we have observed that sometimes a link (i, j)
is removed and at the exact same time a link (i, k) is added. This gives the impression that the
link (i, j) was replaced by the link (i, k). So far, we have considered the removal and addition
processes separately, but we believe that concurrent link additions and removals, namely the
replacements of links, is a new and interesting prediction problem. Replacements of relation-
ships also appear in the context of job networks, where employees replace their employers by a
new one, i.e., they quit their current job to start somewhere new. The replacement effect may
also be observed in partnership or friendship networks, where the current romantic partner is
directly replaced by a new one or the best friend is exchanged.

Short versus Long-term Link Removals In our studies we targeted the prediction of any
unlink occurring in the network. If timestamps for all events, in particular removal events,
are given in the dataset, one may ask whether structural indicators of short-term unlinks are
different from indicators of long-term unlinks. Take for instance the social network Twitter.
If a user unfollows a user within a minute after friending him, we can consider the previously
established link as spurious. That is, maybe the user has just followed the wrong person or
after the tweets of the followed person appeared in the tweet stream, he directly decided to
unfollow this person because the posts are inappropriate or too many. Contrarily, if a user
follows another user for a few years and then decides to unfollow this account, the reasons
from the short-term unlinking should not apply. Therefore, we believe that predicting short-
term and long-term links are related to very different aspects and it should thus be worthwhile
to analyze them separately.

Structure versus Actions versus Content in Social Networks The scope of this thesis was
to find structural predictors of link states and link state changes that use only the explicit
structure of relationships in a network. In social networks, users cannot only establish social
relationships such as friendship with other users, they can also interact with other users that
are not among their friends, e.g., if two users reply to the same forum post. Further, a social
network also contains the content of user posts or the content that is exchanged between
users. We believe that the influence of these three feature categories – structure, interaction
and content – may be very different for the evolution of relationships in a network. Whereas
some platforms such as Twitter could be thought of as content-driven, the formation and
dissolution of relationships in other platforms such as Facebook could be more driven by user
interactions and the network structure. Whereas, measures for all three categories have been
used individually or jointly in some works, e.g. [Aiello et al., 2012, Wagner et al., 2012, Raeder
et al., 2011], a comparison between the influence of the three feature categories has, to the best
of our knowledge, not been performed, yet. Juxtaposing the importance of the three factors
across different platforms helps to understand the different motivations that users have for
creating and removing links in different platforms.
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WS 2012/13 Übung zu Grundlagen der Datenbanken Universität
Koblenz-Landau
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• Julia Preusse, Jérôme Kunegis, Matthias Thimm, and Sergej Sizov. DecLiNe - Models
for Decay of Links in Networks. ArXiv e-prints, 2012.
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A Adjacency matrix
N Network
V node set
i, j, k, l vertices
E edge set
(i, j) directed link
{i, j} undirected link
i ∼ j the nodes i and j are adjacent
N(i) neighborhood of a node
w(i, j) edge weight of (i, j)
d(i) node degree
din(i) in-degree of a node
dout(i) out-degree of a node
CN(i, j) number of common neighbors between i and j
P3(i, j) number of paths of length three between i and j
Jacc(i, j) Jaccard coefficient
Adad(i, j) Adamic-Adar measure
cos(i, j) Cosine similarity
AUC-value Prediction measure; area under the ROC curve
Training set The set of node pairs that prediction measures are computed on
True test set The set of node pairs that should be predicted with a high score
False test set The set of node pairs that should not be predicted with a high score
Test set All node pairs in true or false test set
Source set The set of node pairs used to compute measures for parameter training
Target set Set of target values to which the parameters are trained
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