
Fachbereich 4: Informatik

Rendering view dependent reflections using the
graphics card

Bachelorarbeit
zur Erlangung des Grades eines Bachelor of Science (B.Sc.)

im Studiengang Computervisualistik

vorgelegt von

Guido Schmidt
guidoschmidt@uni-koblenz.de

Erstgutachter: Prof. Dr.-Ing. Stefan Müller
(Institut für Computervisualistik, AG Computergraphik)

Zweitgutachter: MSc. Gerrit Lochmann

Koblenz, im April 2013

mailto:guidoschmidt@uni-koblenz.de

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

A

Zusammenfassung

Die Entwicklung der echtzeitfähigen Computergrafik ermöglicht mittlerweile immer realistischere Bil-
der und die Hardware kann dafür optimal ausgenutzt werden. Dadurch immer glaubwürdigere Lichtver-
hältnisse simuliert werden können. Eine große Anzahl von Algorithmen, effizient implementiert auf der
Grafikkarte (GPU, auch Grafikprozessor), sind fähig komplexe Lichtsituationen zu simulieren. Effekte
wie Schatten, Lichtbrechung und Lichtreflexion können mittlerweile glaubwürdig erzeugt werden. Be-
sonders durch Reflexionen wird der Realismus der Darstellung erhöht, da sie glänzende Materialien, wie
z.B. gebürstete Metalle, nasse Oberflächen, insbesondere Pfützen oder polierte Böden, natürlich erschei-
nen lassen. Dabei geben sie einen Eindruck der Materialeigenschaften, wie Rauheit oder Reflexionsgrad.
Außerdem können Reflexionen vom Blickpunkt abhängen: Eine verregnete Straße zum Beispiel würde
Licht, abhängig von der Entfernung des Betrachters reflektieren und verwaschene Lichtreflexe erzeugen.
Je weiter der Betrachter von der Lichtquelle entfernt ist, desto gestreckter erscheinen diese.
Ziel dieser Bachelorarbeit ist, eine Übersicht über existierende Render-Techniken für Reflexionen zu ge-
ben, um den aktuellen Stand der Technik abzubilden. Reflexion entsteht durch den Einfall von Licht auf
Oberflächen, die dieses in eine andere Richtung zurückwerfen. Um dieses Phänomen zu verstehen, wird
eine Auffassung von Licht benötigt. Kapitel 2.1 beschreibt daher ein physikalisches Modell von Licht,
gefolgt von Kapitel 2.2, das anhand von Beispielen ästhetisch wirkender Reflexionseffekte aus der realen
Welt und denMedien die Motivation dieser Arbeit darlegt. In Kapitel 3 soll die generelle Vorgehensweise
beim Rendern von Reflexionen deutlich gemacht werden. Danach wird in Kapitel 4 eine grobe Übersicht
über existierende Ansätze gegeben. In Abschnitt 5 werden dann drei wesentliche Algorithmen vorge-
stellt, die zur Zeit oft in Spiel- und Grafikengines verwendet werden: Screen Space Reflections (SSR),
Parallax-corrected cube mapping (PCCM) und Billboard Reflections (BBR). Diese drei Ansätze wurden
zusammen in einem Framework implementiert. Dieses wird in Kapitel 5 vorgestellt und erklärt, gefolgt
von detaillierten Beschreibungen der drei Techniken. Nachdem ihre Funktionsweise erklärt wurde, wer-
den die Ansätze analysiert und auf ihre visuelle Qualität sowie ihre Echtzeitfähigkeit getestet.
Abschließend werden die einzelnen Verfahren miteinander verglichen, um ihre Vor- und Nachteile zu un-
tersuchen. Außerdem werden die gewonnenen Erfahrungen beschrieben und Verbesserungsansätze vor-
geschlagen. Danach wird ein kurzer Ausblick zur voraussichtlichen Entwicklung von Render-Techniken
spekularer Effekte gegeben.

Abstract

Real-time graphics applications are tending to get more realistic and approximate real world illumination
gets more reasonable due to improvement of graphics hardware. Using a wide variation of algorithms
and ideas, graphics processing units (GPU) can simulate complex lighting situations rendering computer
generated imagery with complicated effects such as shadows, refraction and reflection of light. Particu-
larly, reflections are an improvement of realism, because they make shiny materials, e.g. brushed metals,
wet surfaces like puddles or polished floors, appear more realistic and reveal information of their prop-
erties such as roughness and reflectance. Moreover, reflections can get more complex depending on the
view: a wet surface like a street during rain for example will reflect lights depending on the distance of
the viewer, resulting in more streaky reflection, which will look more stretched, if the viewer is located
farther away from the light source.
This bachelor thesis aims to give an overview of the state-of-the-art in terms of rendering reflections. Un-
derstanding light is a basic need to understand reflections and therefore a physical model of light and its
reflection will be covered in section 2, followed by the motivational section 2.2, that will give visual ap-
pealing examples for reflections from the real world and the media. Coming to rendering techniques: At
first, the main principle will be explained in section 3 followed by a short general view of a wide variety of
approaches that try to generate correct reflections in section 4. This thesis describes the implementation
of three major algorithms, that produce plausible local reflections. Therefore, the developed framework
is described in section 5, then three major algorithms are covered, which are common methods in most
current game and graphics engines: Screen space reflections (SSR), parallax-corrected cube mapping
(PCCM) and billboard reflections (BBR). After describing their functional principle, they are analysed
of their visual quality and the possibility of their real-time applicability. Finally they are compared to
investigate the advantages and disadvantages over each other.
In conclusion, the gained experiences are described by summarizing advantages and disadvantages of
each technique and giving suggestions for improvements. A short perspective will be given, trying to
create a view of upcoming real-time rendering techniques for the creation of reflections as specular ef-
fects.

Contents

1 Introduction 1

2 Real World Reflections 2
2.1 Physical background of reflections . 2
2.2 Characteristics of reflections . 4

3 Rendering Reflections 11

4 Approaches 12
4.1 Geometry transformation . 12
4.2 Image based approaches . 12
4.3 Ray tracing geometry . 14
4.4 Ray tracing sampled geometry . 15
4.5 Hybrid techniques . 16

5 Implementation 18
5.1 Framework . 18
5.2 Parallax-corrected cube mapping . 24

5.2.1 Algorithm . 24
5.2.2 Results . 26

5.3 Billboard reflections . 28
5.3.1 Algorithm . 28
5.3.2 Results . 34

5.4 Screen space reflections . 36
5.4.1 Algorithm . 36
5.4.2 Results . 45

6 Conclusion 49

List of Figures 50

Listings 52

List of Algorithms 53

References 54

I

1 Introduction

Often computer graphics aim to generate realistic looking images with complex lighting, including shad-
ows and specular effects, modelled on the behaviour of light from the physical world. An important
aspect to reach that goal is the reflection of light, whereby the surface properties of an object's material
may change this behaviour. The real world has a wide range of materials, such as water, metals or glass,
that reflect light differently, resulting in various visual effects. However, the possibilities of the classical
rasterization pipeline supplied by the Open Graphics Library (OpenGL) was limited for a long time and
therefore rendering specular effects was a difficult purpose. Accurate reflections have been reserved for
ray tracing only, an image-synthesis approach, not able to run at real-time frame rates. This changed,
when a more adjustable pipeline, providing programmable shader units, was introduced with version 2.0
of OpenGL. It now reached version 4.3, whereby new features were integrated with every version. Since
then, the hardware, not only graphics hardware, but also the CPU, evolved dramatically and still is. These
two factors allowed real-time ray tracing approaches on the GPU as well as on the CPU on the one hand
and more complex techniques to enrich the rasterization pipeline on the other hand. Thus, many ideas
and techniques for rendering reflections arose over the years. Some only use the classical rasterization
pipeline, some utilize ray tracing approaches, implemented on the graphics hardware. Hybrid techniques
try to gain the best of both worlds, whereby a lot of advanced ideas and approaches were developed over
the last few years, providing better results for real-time reflections. This thesis aims to give an overview
of existing render techniques, that make use of the programmable graphics hardware and will describe
three common algorithms, often used in graphics applications lately, in detail. For testing and compar-
ison of the chosen techniques, a framework and its implementation, using the current OpenGL API, is
described.

1

2 Real World Reflections

To first understand reflections and how they occur, understanding light, how it behaves and how it hits a
surface, getting absorbed or reflected, is of primary importance. Therefore, section 2.1 introduces a short
model for better understanding light followed by a motivational section featuring appealing examples of
reflection effects.

2.1 Physical background of reflections

Without light, you could not see anything in real world and therefore light is the most essential part to
understand reflections. By using the term reflection, usually reflection of light is meant, as there are other
kinds of reflections, e.g. of acoustic waves or other physical radiations. Light is an electromagnetic ra-
diation, called visible light at a range of ~380 nm to ~740 nm. To get a better understanding of light, the
model of photons is commonly used: The amount of light can be seen as a large collection of photons,
whereby every photon is a small quantum of light with a position and a direction, a speed (the speed of
light, only depending on the medium, it goes trough) and obviously a wavelength, as it has to be in the
above-mentioned spectrum. A photon also has an amount of energy q, which can be summed up to the
total amount of energyQ of a collection of photons, called spectral energy, depending on the wavelength
λ. Q has to be seen as a density function, that gives the energy-density at a given interval of wavelengths
(For more detailed information, see [SAG+05]) and can be expressed with:

Q =
∆q

∆λ
(1)

Because the power of a light source may change over time and thus the amount of photons would change
over time, the energy is measured during a time-interval∆t.

Q =
∆q

∆λ∆t
(2)

In terms of reflections, another interesting question is, howmuch light hits a certain area on a surface. This
question is answered by the quantity of irradiance. Looking at a single point in the world is not possible,
because mathematically this would be an infinitesimal small area and no photon would hit it. We rather
have to look at an area on a surface, to find out how much light arrives there. To reveal information about
the amount, a surface receives, a finite area∆A is used to measure the incoming light. So the amount of
energy per unit area gets:

Q =
∆q

∆λ∆t∆A
(3)

Although irradiance gives information about the amount of light, that reaches a surface, it doesn't pro-
vide information about the direction, the light comes from. To get the additional information about the
direction, one has to use the quantity of radiance. We can think of a light measuring device, that has a
conical formed filter applied, that lets only photons pass, that come from a certain direction. Thereby the
consequential amount of energy is also dependent on the incoming angle∆σ:

Q =
∆q

∆λ∆t∆A∆σ
(4)

Usually Radiance is the amount, computed in graphics applications. To characterize howmaterials reflect
light, usually the term bidirectional reflectance distribution function (BRDF) is used. The BRDF is a
function that describes how light is reflected by a certain material and is often approximated by analytical
functions. Common BRDF models are for example the Lambert material, that models a perfect diffuse
surface, or the Phong material, creating small highlights like they occur on plastic materials.

2

light source

perfect reflection imperfect ‘glossy’ reflection

lighght t sourcecece light sourcelighght t sourururcecece

Figure. 1: Left: perfect reflection on a complete flat surface, right: imperfect reflection caused by the natural roughness of the surface material

A perfect specular reflection (mirror reflection) would result from a 100 percent even and reflective
material, where light would be reflected without a loss of energy, equal for every wavelength, respectively
every color. But in the real world, a certain amount of energy gets lost, if light hits a surface and gets
reflected. This energy-amount changes at different wavelengths, e.g. a piece of gold reflects yellow more
than blue and so the visual appearance is affected to look more orange-yellowish. Real surfaces are not
completely even. They always have a certain roughness and thereby do not reflect the light perfectly, but
rather scatter the reflected light in different directions as shown in figure 1. Such imperfect reflections
are often called glossy. Depending on the kind of surface, glossy reflections look blurred or stretched,
whereby the effects are distinguished as isotropic or anisotropic reflection. To get a basic understanding
of what isotropic and anisotropic mean, take a look at their definitions:

isotropic:
adjective, Of equal physical properties along all axes. 1

anisotropic:
adjective, Of unequal physical properties along different axes. 2

In terms of reflections, isotropic would look stretched equally in every direction, so the reflected image
would look more blurred and anisotropic reflections would look more stretched in only one certain di-
rection, as compared in figure 2. This effect is caused by tiny random bumps in the material surface.
This bumps may be possibly so small, that they can not be recognized with the human eye, but the effect
affecting the reflected image caused by them will be. Brushed metals are an excellent example for mate-
rials with noticeable bumps, like the brushed metal pipe in figure 3 on the left. Summarized, the look of
reflections highly depends on the surface material they occur on.

1dictionary.reference.com/browse/isotropic, [accessed 18/03/2013]
2dictionary.reference.com/browse/anisotropic, [accessed 18/03/2013]
3www.neilblevins.com/cg_education/aniso_ref/aniso_ref.htm, [accessed 03/04/2013]

3

dictionary.reference.com/browse/isotropic
dictionary.reference.com/browse/anisotropic
www.neilblevins.com/cg_education/aniso_ref/aniso_ref.htm

Figure. 2: Blurred reflection in Unreal Engine 3 tech demo Samaritan, top: different amounts of anisotropic blurred reflection in y-direction,
bottom: different amounts of isotropic blurred reflection (images: [MD11])

Figure. 3: Left: close-up of brushed metal pipe railing, middle: anisotropic reflection on a fridge door, right: anisotropic reflection of traffic
cones caused by multiple puddles on the street, (images: 3)

2.2 Characteristics of reflections

The look of reflections depends on a variety of properties. After section 2.1 described a physical model
of light and how it reflects from surfaces, this section will give a visual appeal of characteristic looks of
reflections from the real world, art and media.

The most noticeable effect should be visible in rainy nights, when light and shiny object are reflected
in wet pavements and streets. The missing daylight is the reason, that reflections at night are more rec-
ognizable as at daytime. Puddles on the surface of the urban environment reflect street lanterns, traffic
lights, luminous advertising and other city lights and thus creating a colored, high contrast look (see fig-
ures 4 and 5), that gives them and interesting appeal for the human eye. Even on daylight, puddles reflect
their surrounding environment, often less noticeable as in night times (see figure 6), because the scattered
sunlight, which lights the scene through the clouds, reduces the contrast of the reflections compared with
the rest of the world.
4seblagarde.wordpress.com/ 0 / / 0/observe-rainy-world/

4

seblagarde.wordpress.com/2012/12/10/observe-rainy-world/

Figure. 4: High contrast reflections on wet pavement at night (images: 4)

Figure. 5: Wet street materials reflecting city lights at night (images: 5)

5

Figure. 6: Street reflections at daylight (images: 6)

In general, water or thin puddles always cause nice looking reflections. The surf on a beach for example
moistens the first few meters of the shore, generating a thin layer of water on it, which reflects the objects
around it nearly mirror-like (see figure 7, left side). Leftovers from the last rain showers on a sunny day
will create similar effects on the pavement (see figure 7, right side). More deeper water will reflect even
more mirror-like, depending on the light and weather situation: everyone has seen one of the impressing
pictures of big city's bays or rivers, reflecting the city-lights in long streaky, blurred reflections (see figure
8, right).
5left: www.flickr.com/photos/ @N0 / , [accessed 25/03/213],
top right: .bp.blogspot.com/-HD- wy PSvM/TaXIdMGCStI/AAAAAAAADpc/snOnrO LTE/s 00/city .jpg, [accessed 25/03/2013],
bottom right: vitofun.net/the-fourth-estate/solitude/ 0 0 , [accessed 25/03/2013]

6top right and top left: seblagarde.wordpress.com/ 0 / / 0/observe-rainy-world/, [accessed 25/03/2013],
bottom: Nate Bolt, www.flickr.com/photos/boltron/ 0 /, [accessed 25/03/2013]

7seblagarde.wordpress.com/ 0 / / 0/observe-rainy-world/, [accessed 25/03/2013]

6

www.flickr.com/photos/26226522@N08/3517936516
2.bp.blogspot.com/-HD-9wy1PSvM/TaXIdMGCStI/AAAAAAAADpc/snOnrO21LTE/s1600/city2.jpg
vitofun.net/the-fourth-estate/solitude/8010894
seblagarde.wordpress.com/2012/12/10/observe-rainy-world/
www.flickr.com/photos/boltron/4181707479/
seblagarde.wordpress.com/2012/12/10/observe-rainy-world/

Figure. 7: Left: Reflection of a young woman in the thin water layer on the shore, right: puddle in an urban environment (left image: 7)

Figure. 8: Left: Reflections on a channel in Venice, right: Stockholm's bay reflects the city's lights at sunset (images: 8)

But not only wet surfaces cause reflections, there are many more materials, that reflect the light and give
beautiful reflection images. Besides the discussed watery surfaces like lakes, the sea, puddles etc., metals
can appear very glossy: e.g. brushed metals or car paint (see figure 9, left). Sometimes even floors reflect
the world, especially when they are polished, as it is often in museums, hotels or public buildings (see
figure 9, right).

Figure. 9: Left: A Maybach parked in New York city reflects the environment, right: Polished floor at the Photo Festival in Seoul (2011),
The Detour of the Real, Seoul Art Museum (images: 9)

8left: upload.wikimedia.org/wikipedia/commons/a/a0/Venice_-_Water_Reflections.jpg, [accessed 25/03/2013],
right: interfacelift.com/wallpaper/D cd /0 _stockholm_ 0x 00.jpg, [accessed 25/03/2013]

7

upload.wikimedia.org/wikipedia/commons/a/a0/Venice_-_Water_Reflections.jpg
interfacelift.com/wallpaper/D47cd523/02683_stockholm_1920x1200.jpg

Regarding big cities, modern architecture tends to use more reflective materials, such as glass and metals,
that create a high reflective modern city-environment as seen e.g. in figure 10.

Figure. 10: Left: Cloud Gate by artist Anish Kapoor on the AT&T Plaza in Chicago, right: Mirrored windows of a building reflects a set of
modern skyscrapers (images: 10)

Reflections also seem to fascinate artists around the globe for a very long time. Impressionistic artists
like Claude Monet or Vincent van Gogh used the image of reflecting surfaces in their paintings (see fig-
ure 11). Photographers took and take pictures, showing interesting subjects twice because of a reflected
image somewhere. Or they even take the reflection-surface as their second lens and show the world from
the view of a reflection as in the London in puddles series by Gavin Hammond (see figure 12, right).
Even in modern art, reflection can create beautiful experiences, speaking of such as of Taro Shinoda's
Lunar Reflections or of samples from the work of visual artist Rafaël Rozendaal (see figure 13). Last
but not least, computer- and console-games are geared toward more realistic looking graphics, including
real-time reflections, as for example seen in Crysis 2 (see figure 14).

Figure. 11: Left: Vincent Van Gogh - Starry Night Over The Rhone (1888), right: Claude Monet - Argenteuil. Yachts (1875) (images: 11)

9left: upload.wikimedia.org/wikipedia/commons/f/f /Maybach_car_in_New-York_city.JPG, [accessed 26/03/2013],
right: Thomas Wrede, thomas-wrede.de/images/ .jpg

10left: www.atlasls.com/images/atlas-chicago.jpg, [accessed 24/03/2013],
right: paulapuffer.net/wp-content/uploads/ 0 / 0/October- -0 0 .jpg

11left: upload.wikimedia.org/wikipedia/commons/ / /Starry_Night_Over_the_Rhone.jpg, [accessed 26/03/2013],
right: allart.biz/photos/view/Oscar_Claude_Monet.html, [accessed 22/03/2013]

8

upload.wikimedia.org/wikipedia/commons/f/f1/Maybach_car_in_New-York_city.JPG
thomas-wrede.de/images/455.jpg
www.atlasls.com/images/atlas-chicago.jpg
paulapuffer.net/wp-content/uploads/2012/10/October-1-0706.jpg
upload.wikimedia.org/wikipedia/commons/9/94/Starry_Night_Over_the_Rhone.jpg
allart.biz/photos/view/Oscar_Claude_Monet.html

Figure. 12: Left: Behind the Gare Saint-Lazare (1932) by photographer Henri Cartier Bresson, right: London in puddles (2012) by photogra-
pher Gavin Hammond, (images: 12)

Figure. 13: Left: Lunar Reflections (2010) by conceptual artist Taro Shinoda, right: Sample from exhibition Everything Dies (2012) by visual
artist Rafaël Rozendaal, (images: 13)

All in all, there are many reasons to bother about reflections in real-time graphics. The variety of reflect-
ing materials from water, metals and glass to polished surfaces, like floors or tables gives a big range
of different effects, that may be ambitious to achieve in a virtual environment. Since computer graphics
tend to get more realistic, reflections are a big gain in realism.

12left: afterimagegallery.com/bressonbehind.htm, [accessed 26/03/2013],
right: gavinhammond.tumblr.com, [accessed 25/03/2013]

13left: aesthetic.gregcookland.com/ 0 0_0 _ _archive.html, [accessed 26/03/2013],
right: kunstverein-arnsberg.de/rafael-rozendaal- , [accessed 26/03/2013]

15www.heise.de/newsticker/meldung/GDC-Unreal-Engine- -zeigt-filmreife-Render-Szenen-in-Echtzeit- 0 .html, [accessed
30/03/2013]

9

afterimagegallery.com/bressonbehind.htm
gavinhammond.tumblr.com
aesthetic.gregcookland.com/2010_01_24_archive.html
kunstverein-arnsberg.de/rafael-rozendaal-2
www.heise.de/newsticker/meldung/GDC-Unreal-Engine-4-zeigt-filmreife-Render-Szenen-in-Echtzeit-1832905.html

Figure. 14: Crysis 2 was one of the first computer-games, that implemented real-time local reflections (image: 14)

Figure. 15: Lately released tech demo Infiltrator showing Unreal Engine 4's qualities, including real-time reflections (image: 15)

10

3 Rendering Reflections

Before going into any details, this section will give a general idea of the concept for rendering reflec-
tions. The following image illustrates the idea, which will describe the general approach for most render
techniques, that generate reflections.

light source

view point

reflection
point

reflected
pointnormal

reflected
vector

view
vector

Figure. 16: Basic idea of tracing the view ray to find the reflected point

Thinking about the physical world, rendering reflections can be seen as the collection of light paths from
a light source, that are reflected from a surface more than once and end up in the eye of the viewer, as
described in 2.
From a more mathematical view, we can describe the process as looking along the view vector

−→
V to first

find the reflection point as it is done in [SKUP+09] or [MT97]. Reflected at normal
−→
N , the view vector

results in the reflected ray
−→
R , which is followed to find the reflected point, where the radiance, received

from the light source, is reflected back at the reflection point towards the view position, respectively the
camera (see figure 16). This process can be thought of tracing a ray from the reflection point, which
will be the ray origin O, in direction

−→
D to get the illuminated color at the intersection of the ray and the

reflected point. Expressed in a parametric equation, this results in:

−→
R (t) = O + t×

−→
D (5)

The equation defines the reflected ray
−→
R (t), with O as the origin of the ray and

−→
D as the direction of

the ray, in which it is reflected. By changing parameter t, every point along this reflected ray can be
evaluated. The above shown image would result in an ideal specular reflection (or mirror reflection).

11

4 Approaches

Before describing the implemented approaches, this section will give a brief overview of the state-of-
the-art techniques for rendering reflections. The most established methods will be shortly explained,
since all three implementations, described in section 5, are based on older ideas or common methods
for reflection-generation in computer graphics today. To better separate all the different approaches for
rendering reflections, [SKUP+09] classifies algorithms in four major categories, based on their main
ideas:

1. Geometry transformation
The scene geometry is transformed into the corresponding mirrored vertices, that are seen in the
reflector.

2. Image based approaches
A part of the scene is represented using images. The reflected ray is then used to sample these
images and get the reflected color, e.g. the classical environment mapping method is image based.

3. Ray tracing geometry
The scene is ray traced directly. Traditional world space raytracing algorithms can be adapted.

4. Ray tracing sampled geometry
The geometry of the scene is sampled and stored in textures, which are used to compute the inter-
section with the ray.

4.1 Geometry transformation

One of the first ideas to generate local reflections was to mirror the scene geometry at the reflector and
render it again using the stencil buffer to mask out hidden objects. This is trivial and works well for
planar reflections, but becomes a more complex problem, when using non-planar reflectors. There are
techniques to create reflections on curved objects using geometry transformation, e.g. the technique
described in [OR98]. Using geometry transformation is an old approach, therefore not often used anymore
and can be seen as outdated.

Figure. 17: Left: simple planar reflection achieved by mirroring the object geometry at the reflective plane (left). The stencil buffer is used
to mask hidden parts, that are not part of the reflection (right). (left images: 16) right: Interactive reflections on curved objects
with geometry transformation technique described by [OR98]

16ofps.oreilly.com/static/titles/ 0 0 /figs/incoming/WithWithoutStencil.png, [accessed 05/04/2013]

12

ofps.oreilly.com/static/titles/9780596804824/figs/incoming/WithWithoutStencil.png

4.2 Image based approaches

The most common image based technique is environment mapping, as presented by [BN76]. It is one
of the first approximation techniques for specular effects. As shown in figure 18, environment mapping
needs a reference point to generate a set of textures, as image based approximation of the surrounding
geometry. The reflected ray is then used to sample this precomputed map. Often, cube maps are used for
environment mapping, meaning that the second step is done using a camera with an aspect ratio of 1.0
and a field of view of 90 degrees to generate six textures, each for every spatial direction, that are texture
mapped on the faces of a cube. But there are also environment mapping approaches, that use sphere maps
or two hemisphere maps.

environment

reference point

90°

Camera

1.) 2.) 3.)

Figure. 18: Environment mapping steps:
1.) Find the center of the object (reference point)
2.) Render an image for every spatial direction
3.) Sample the generated images using the reflected view vector

Figure. 19: Environment mapping example:
1.) Cube map generation in Autodesk Maya, using one camera for each spatial direction (+x, -x, +y, -y, +z, -z),
2.) Rendered cube map, the texture is passed to the shader using a samplerCube uniform,
3.) Final rendering using standard environment mapping

Environmentmapping has amajor problem: The technique assumes, that the reflected points are infinitely
far away and thus cannot present correct parallax when the viewer moves around the object or the object
itself moves. Although environment mapping generates plausible reflection effects, because of that prob-
lem, the reflecting objects often seem not to be properly fitted into the surrounding scene. Generating new
environment maps, if the object moves, the second problem can be easily solved and therefore motion
parallax can be provided with additional computation effort and time. Due to it's long-time application, a
wide range of extensions for environment mapping exist, that try to enhance the limitations of the original
approach. [SKUP+09] gives a great overview of improved environment mapping-based approaches. A
common extension of simple environment mapping is prefiltering to achieve glossy reflections. A given
reflection model or a BRDF is used to filter the generated environment map, resulting in plausible glossy

13

reflections when sampling them, but still having the problem of parallax errors. AMD released an easy
to use cube mapping tool 1718, that can be used for the prefiltering.

Figure. 20: Left: AMD CubeMapGen generates prefiltered environment maps, right: Reflections achievedwith prefiltered environment maps,
right images: [KVHS00]

4.3 Ray tracing geometry

Ray tracing is another classical image synthesis approach. In contrast to the rasterization approach, ray
tracing traditionally sends rays per pixel to find an intersection with the world and return the lighted in-
tersected color at the hit point. The approach was not able to generate real-time graphics for a long time,
but with increased hardware-performance and research effort, ray tracing algorithms get more and more
appliable to real-time.

Algorithm 1: Most plain ray tracing algorithm
input : Screen with amount of pixels (width · height), Surface normals N for each object
output: color C

1 foreach pixel do
2 compute viewing ray

−→
V ;

3 P = nearest hit point of intersecting V with the world;
4 C = lighting(P,L,N);
5 return C;
6 end

Traditional ray tracing is implemented on a CPU, suffering from a lack of performance in general. But
due to improved hardware, improved intersection algorithms and several acceleration data structures,
real-time ray tracing applications are now possible. As a high bandwidth data-parallel computation de-
vice, the GPU is well qualified for ray tracing, but even as GPU-ray tracing benefits fromCPU-ray tracing
research and improvements, not all techniques run equally well on both platforms, most acceleration ideas
have to be adapted to the special architecture of the GPU. The traditional rendering pipeline has to be re-
interpreted for ray tracing, adapting CPU-algorithms to the GPU's shader programs. [SKUP+09] gives
a general overview of possibilities for acceleration structures for implementing a GPU ray tracer and
alleges samples of works, that achieve real-time ray tracing by an implementation on the graphics hard-
ware. The other possibility is using an implementation, that dispenses the designated rendering pipeline
17developer.amd.com/resources/archive/archived-tools/gpu-tools-archive/cubemapgen/, [accessed 04/04/2013]
18code.google.com/p/cubemapgen/, [accessed 04/04/2013]

14

developer.amd.com/resources/archive/archived-tools/gpu-tools-archive/cubemapgen/
code.google.com/p/cubemapgen/

and it's features and gives access to the high data-parallel stream processing of the GPU, like CUDA19 or
OpenCL20 do. Lately, NVidia put a lot of effort in accelerating GPU-raytracing using CUDA by releasing
a real-time ray tracing API called OptiX 21. Real-time ray tracing still lacks of speed, changing camera
position or light conditions will force an initial tracing, resulting in a noisy result, that will increase in
image quality during a small time interval.

Figure. 21: Left: Real-time ray tracing advanced with CUDA, right: Nvidia OptiX powered GPU-ray tracing (images: 22)

4.4 Ray tracing sampled geometry

Instead of storing original vertex geometry, it can be encoded in some kind of textures. To store three
dimensional points, 3D-textures can be used, or the three dimensional information is projected into the
two dimensional plane of a texture, which is the basic idea of geometry images, described by [CHCH06].
[YWY08] also use geometry images to accelerate the ray tracing on the GPU. [PMDS06] generate im-
postors - billboard impostors and depth map impostors - from the view of the reflecting object to simplify
the ray tracing. A similar way is used in the billboard reflections technique, which will be covered in
section 5.3. Non-pinhole impostors ([PHR+09]) eliminate depth artifacts by using an occlusion cam-
era ([MPS05]) for the generation of impostors. Screen space reflections, what will be described in the
upcoming section 5.4, can also be seen as ray tracing sampled geometry, because a before generated
depth-image is sampled using ray marching.

19www.nvidia.de/cuda[accessed 04/04/2013]
20www.khronos.org/opencl/[accessed 04/04/2013]
21developer.nvidia.com/optix, [accessed 05/04/2013]
22left: cg.alexandra.dk/ 00 /0 / 0/triers-cuda-ray-tracing-tutorial/, [accessed 05/04/2013]
right: www.overclockers.com.ua/video/geforce-gtx 0/0 -big-nvidia-fermi.jpg, [accessed 05/04/2013]

23graphicsrunner.blogspot.de/ 00 /0 /reflections-with-billboard-impostors.html, [accessed 05/04/2013]

15

www.nvidia.de/cuda
www.khronos.org/opencl/
developer.nvidia.com/optix
cg.alexandra.dk/2009/08/10/triers-cuda-ray-tracing-tutorial/
www.overclockers.com.ua/video/geforce-gtx480/07-big-nvidia-fermi.jpg
graphicsrunner.blogspot.de/2008/04/reflections-with-billboard-impostors.html

Figure. 22: Top left: Environment mapping, top right: Impostors used for more accurate reflections, the sphere intersecting the floor quad
is more plausible (images 23), center: Samples from a planar pinhole camera (left) and a occlusion camera (right), the impostor
taken with the occlusion camera covers more of the object (images: [PHR+09]), bottom left: Self- and inter-object reflections
achieved by GPU ray tracer used with geometry images ([CHCH06]), bottom right: results from ray tracer of [YWY08], that
was implemented on the GPU using also geometry images

4.5 Hybrid techniques

To get the benefits of both worlds - rasterization pipeline and ray tracing - modern real-time applications
such as game engines (e.g. Unreal Engine 4orCryengine) combine both techniques. [Sha10] gives a great
overview of problems, advantages and disadvantages of this idea and reviews state-of-the-art techniques.
[CNS+11b] presents a technique called Voxel Cone Tracing that generates plausible visual results in real-
time by using a hybrid approach: Primary rays are rendered using the rasterization pipeline, secondary
rays are rendered using cone-tracing. The cone-tracing is done on the scene stored in a voxel-based octree,
implemented using 3D-textures (described in detail by [Mit12]). This approach is also implemented in
the current Unreal Engine 4 (see figure 23).

24left: thumbs.cdn-ec.viddler.com/thumbnail_ _ e b_v .jpg, [accessed 04/04/2013],
right: scmods.com/pictures/Unreal-Engine- - .jpg, [accessed 04/04/2013]

16

thumbs.cdn-ec.viddler.com/thumbnail_2_36613e5b_v2.jpg
scmods.com/pictures/Unreal-Engine-4-6.jpg

Figure. 23: Top left: Voxel cone tracing result as implemented by [CNS+11b], Top right: implementation by computer graphics group at
University of Pennsylvania ([IL12]), Bottom: Voxel cone tracing as it is implemented in the Unreal Engine 4, bottom images:
24

17

5 Implementation

5.1 Framework

For implementing the selected choice of algorithms, a framework was created, described in the follow-
ing. It is based on current OpenGL specification (version 4.0+) and OpenGL Shading Language (GLSL)
and has been written in C++. The code can be found at https://github.com/GuidoSchmidt/moge. Figure 24
shows a compact overview of the implemented classes and relationships between them in a simplified
UML class diagram.

Figure. 24: The implemented framework modelled as UML class diagram

The base class is Renderer and runs the draw-function, supplying the rendered images to the OpenGL
context, which is created using theGLFW 25 library. GLFW is also used to load texture files. Textures are
25www.glfw.org/, [accessed 15/04/2013]

18

https://github.com/GuidoSchmidt/moge
www.glfw.org/

stored in the Targa Image Format (TGA). Besides, the image libraryDevIL26 is used to load environment
map textures. The framework loads two different kind of textures for every object: a diffuse texture with
an alpha channel and a normal map texture with a reflective map in the alpha channel.
The shader pipeline is implemented by Renderer holding instances of the ShaderProgram-class and the
FrameBufferObject-class, basically being wrappers for OpenGL-function calls. Renderer is also capable
for input-handling such as mouse and keyboard input. The Renderer-class also owns singletons of the
SceneGraph-, the SceneOrganizer- and the MaterialManager-class, whereby SceneGraph is a minimal
scene graph implementation consisting of Nodes, such as Mesh, Light, Camera and Billboard, which is
heritage of Mesh and will be described more detailed in section 5.3. SceneOrganizer is a small class to
create a proper render queue, sorted by materials. MaterialManager obtains all Materials and loads all
textures, that are loaded during the import of a scene. SceneGraph also imports scenes in the Collada
file-format 27, loading the meshes, appending them to the root-note, loading materials, redirecting texture
loadings to theMaterialManager and loading light-informations. For importing files into the system, the
Open Asset Import Library28 (Assimp) is used. Scenes have been built using blender 29, set up and ex-
ported to Collada-files using Autodesk Maya 30. For better testing and debugging, a simple Graphical
User Interface (GUI) was added, employing library AntTweakBar 31 (compare figure 25). To get consis-
tent mathematical classes, such as vectors, matrices and also functions, such as the dot-product, that agree
with the GLSL-Specification, the header-only library OpenGL Mathematics 32 (GLM) has been included
and used.
The framework is based on a deferred rendering approach, where in a first render pass important prop-
erties, such as vertex position, vertex normal, etc. are stored in textures, resulting in a set of sampler
textures, that hold the most important data, needed for other computations, e.g. lighting. This first render
pass is often called Geometry Buffer (G-Buffer). As pictured in figure 27, the G-Buffer in the implemen-
tation creates vertex positions and vertex normals in world space as in view space (or camera space),
albedo colors, which are only diffuse colors directly obtained from the textured meshes and reflectance
plus the depth, which will be needed later in the Screen Space Reflections-computation (see section 5.4).
The G-Buffer pass renders all textures into a Framebuffer Object (FBO), that stores them, so they can be
accessed later from a following render pass, e.g. the lighting pass. The framework has three major algo-
rithms implemented, that can render reflections: Parallax-corrected Cube Mapping, based on standard
environment mapping using cube maps, Billboard Reflections and Screen Space Reflections. Figure 26
shows a structural overview of all four render passes, at which point each implemented technique is per-
formed, which output textures are generated by a pass and which textures are obtained by a pre-computed
pass. All three render techniques for reflections are described in the following sections 5.2 - 5.4, each in
its own section.
The implement framework can load three different testing scenes: a small street scene with two building
facades, a car (car model by dskfnwn33) parked on the street, a cinema entrance and street lanterns. The
second one is a museum scene with a dinosaur skeleton (model by Joel Anderson 34) exhibited in the
middle, different paintings, indoor plants and some other small properties. The third is a customized
Sibernik cathedral (model from 35) with stained-glass windows and a wooden floored apsis. For pictures
of the scenes, see figure 28). The whole implementation and testing ran on notebook, equipped with a
mobile NVIDIA GeForce GT 650M graphics card, that has access to 1024MB video memory.

26openil.sourceforge.net/, [accessed 15/04/2013]
27www.khronos.org/collada/, [accessed 29/03/2013]
28assimp.sourceforge.net, [accessed 29/03/2013]
29www.blender.org/, [accessed 15/04/2013]
30www.autodesk.de/maya, [accessed 29/03/2013]
31anttweakbar.sourceforge.net/, [accessed 29/03/2013]
32glm.g-truc.net, [accessed 29/03/2013]
33www.turbosquid.com/FullPreview/Index.cfm/ID/ , [accessed 06/04/2013]
34www.creativecrash.com/maya/downloads/character-rigs/c/t-rex-skeleton-rig-from-joel-anderson-- , [accessed 06/04/2013]
35http://graphics.cs.williams.edu/data/meshes.xml, [accessed 01/04/2013]

19

openil.sourceforge.net/
www.khronos.org/collada/
assimp.sourceforge.net
www.blender.org/
www.autodesk.de/maya
anttweakbar.sourceforge.net/
glm.g-truc.net
www.turbosquid.com/FullPreview/Index.cfm/ID/411348
www.creativecrash.com/maya/downloads/character-rigs/c/t-rex-skeleton-rig-from-joel-anderson--2
http://graphics.cs.williams.edu/data/meshes.xml

Figure. 25: Implemented GUI, created with library AntTweakBar

Table 1: Overview of used test scenes and their properties, texture count excludes cube maps

Scene Number of vertices Number of edges Number of textures Billboard-count
Street 60226 160590 22 5
Museum 147725 282318 25 3
Cathedral 55020 149719 17 0

20

Pass 01

G-Buffer
vertex posi!on (world space)
vertex posi!on (view space)

albedo/diffuse color

vertex normal (world space)
vertex normal (view space)

environment mapping + reflectance

billboard reflec!on

Pass 02

Ligh ng

Pass 03

SSR

Pass 04

Composi ng

Screen
Space
Reflec ons

Billboard
Reflec ons

Parallax-
corrected
cube mapping

illumina!on

reflec!ons

FragColor

Figure. 26: Structural overview of all four render passes. Properties, written inside of the passes rectangle, describe the output data by a pass,
arrows to another pass show the input data for each pass, obtained from an earlier pass. The positions of the computation of the
reflection-techniques are illustrated on the right side.

21

Figure. 27: Images a) - c) result from the G-Buffer pass
a) left: vertex positions in world space, right: vertex normals in world space,
b) left: vertex positions in view space (camera space), right: vertex normals in view space (camera space),
c) left: unlighted albedo (diffuse) color, right: reflectance (white is high reflective, black is non-reflective),
d) Final result after lighting pass 22

Figure. 28: a) Simple test scene, b) Museum scene, c) Sibernik cathedral with custom textures

23

5.2 Parallax-corrected cube mapping

[SZ12] presents an extended cube mapping approach to get rid of the missing parallax when using cube
mapping. By blending local precomputed cube maps together and using proxy box volumes, which are
defined before rendering and are used for the intersection with the reflected ray, the view parallax gets
corrected. According to Sébastien Lagarde's post on the GPU Pro blog 36, this approach will be also
covered in the upcoming book GPU Pro 4.

Figure. 29: left: common cube mapping result. right: parallax-corrected cube mapping result,
upper image: [SZ12] , lower image: 37

5.2.1 Algorithm

Using Parallax-corrected cube mapping (PCCM), a scene with an existing cube map is needed, if it isn't
generated while the rendering process. To perform the correction, the algorithm needs an approximation
of the local scene, surrounding the local cube map, meaning that the proxy geometry has to positioned and
aligned when setting up the scene. The easiest example for a proxy geometry would be an axis aligned
bounding box (AABB) of the scene, but also more complex proxy geometries are imaginable. In the
described implementation, a cube is used as an AABB, placed and scaled in Maya (see figure 30, right).
The three dimensional position of the reference point, from where the local cube map was generated, is
also needed. The idea behind the parallax-correction is shown in figure 31 and described in algorithm 2.

Algorithm 2: Pseudo code for parallax-corrected cube mapping
input : Vertex position P in world space,

Reflected ray R,
cube map position CM.Position,
axis aligned bounding box AABB

output: Reflected color RC

1 PlaneIntersectionMax = Intersect R with plane;
2 PlaneIntersectionMin = Intersect R with plane;
3 FurthestP laneIntersection = max(PlaneIntersectionMin, P laneIntersectionMax);
4 Distance = GetClosestDistance(FurthestP laneIntersection);
5 Intersection = P + Distance * R;
6 CorrectedReflectedRay = Intersection - CM.Position;
7 RC = CM.texture(CorrectedReflectedRay);
8 return RC;

36http://gpupro.blogspot.de/
37http://seblagarde.files.wordpress.com/ 0 /0 /parallax_corrected_cubemap-gameconnection 0 .pdf
38http://seblagarde.files.wordpress.com/ 0 /0 /parallax_corrected_cubemap-gameconnection 0 .pdf

24

http://gpupro.blogspot.de/
http://seblagarde.files.wordpress.com/2012/08/parallax_corrected_cubemap-gameconnection2012.pdf
http://seblagarde.files.wordpress.com/2012/08/parallax_corrected_cubemap-gameconnection2012.pdf

Figure. 30: AABB positioning in Maya, the red ball is the reference point from where the cube map was generated

Figure. 31: Parallax-correction:
−→

V is the view vector,
−→

N is the vertex normal,
−→

R is the reflection vector,
−→

R′ is the corrected reflection vector,
P is the intersection point with the proxy geometry (image: 38)

25

The implementation can be done in the G-Buffer pass, since there is no precomputed data needed. The
cube map is generated in Maya and passed as a uniform parameter to the fragment shader. The complete
parallax-correction function ParallaxCorrecteCubeMapping(in vec3 wsPosition, in vec3 wsReflection-
Vector) can be found in listings 1 on page 26. As input parameters the function takes the vertex position
and the computed reflection vector, both in world space. First, the intersection with the proxy geometry
is computed for the maximum and the minimum of the AABB. Afterwards, the plane, which is furthest
away has to be found by using GLSL's maximum-function on both plane intersections. To use the re-
flected ray for sampling the cube map, the distance to that plane has to be found. This is done by finding
the shortest distance of every component of the furthest plane, as done in line 11. In line 13 of listings 1,
the corrected intersection point is computed based on the parametric ray equation from equation 5. Then
the reflected ray can be corrected and the used to sample the cube map, as done in line 20.

Listing 1: Shader code for Parallax-corrected cube mapping

1 // Parallax corrected cube mapping
2 vec ParallaxCorrecteCubeMapping in vec wsPosition, in vec wsReflectionVector
3 {
4 // Intersect with first AABB plane
5 vec firstPlaneIntersection = AABB.max - wsPosition / wsReflectionVector;
6 // Intersect with second AABB plane
7 vec secondPlaneIntersection = AABB.min - wsPosition / wsReflectionVector;
8
9 // Intersect with second AABB plane
10 vec furthesPlane = max firstPlaneIntersection, secondPlaneIntersection ;
11 float distance = min min furthesPlane.x, furthesPlane.y , furthesPlane.z ;
12
13 vec wsIntersection = wsPosition + distance * wsReflectionVector;
14
15 // Calculate parallax-corrected reflection vector
16 // wsCubeMapPosition is the position from where the cube map was generated reference point
17 vec wsParallaxCorrectedReflectionVector = wsIntersection - wsCubeMapPosition;
18
19 // Sample cube map texture with parallax-corrected vector
20 vec reflectedColor = CubeMapping wsParallaxCorrectedReflectionVector ;
21
22 return reflectedColor;
23 }

5.2.2 Results

PCCM provides a good possibility for enhancing the common environment mapping technique. It suits
best for narrow rooms, such as corridors, halls or alleys (see figure 32. As the classical environment map-
ping technique, PCCM can not provide good results for object inside of the scene, if they do not get their
own local environment map. For example the pillars in the cathedral scene are not reflected correctly, as
illustrated by figure 33, because a simple AABB proxy geometry doesn't model their position correctly.
More complex proxies would be needed, complicating the intersection with the reflected ray.
Real-time applicability of PCCM is given by default, because the overhead for PPCM is not excessively
more than for standard environment techniques. Only correcting the reflected ray by intersecting it with
the proxy geometry does not affect the performance in an overstated way, as long as the original environ-
ment mapping techniques does provide real-time framerates. The PCCM, that was implemented in the
above described framework runs at average rates of roughly 60 fps at a resolution of 1600 to 900 pixels.

26

Figure. 32: Results for PCCM tested with the street scene, left: PCCM without normal mapping: inner-scene objects, such as the car, do not
have reflections, right: close-up with normal mapping

Figure. 33: Results for PCCM tested with the cathedral scene, left: due to the simplicity of an AABB proxy geometry, the pillars and the walls
behind them are not reflected correctly, right: close-up of the clerestory and the rosette window: small parallax errors occur, due
to the proxy being modelled at the width of the center nave)

27

5.3 Billboard reflections

Billboard reflections implement the idea of using textured impostor quads for objects, therefore called
image based reflections in epicgames's Unreal Engine 39), which will simplify the computation of their
reflections. The reflected ray can easily be intersected with the given quad and common algorithms from
ray tracing can be adapted for that purpose. They best suit for high contrast reflections, that fit simple
light emitting objects like neon signs in an urban environment, as they were mostly used in Unreal Engine
3 tech demo Samaritan (see figure 34).

Figure. 34: Billboard reflections in Unreal Engine 3 tech demo Samaritan (images: 40)

5.3.1 Algorithm

First, artists define simple planes, consisting of four vertices, that are arbitrary moved, rotated or scaled in
world space. The plane is textured with an RGBA-image, meaning it can have an alpha map for blending
out pixels. The scene is set up usingAutodesk Maya and billboardmeshes are tagged with the name-prefix
'Billboard', to identify them in the import-process, where Billboard-objects are created and appended to
the scenegraph.

Figure. 35: a) Billboard placement in Maya, b) RGB-texture of the billboard, c) Alpha map of the billboard

Reflections are calculated by intersecting the reflected ray with the billboard mesh in the shader program
of the G-Buffer. Model-matrices and textures of all billboards in the scene are passed as uniform arrays
to the shader. The basic functionality of the billboard reflection algorithm works as follows:
39http://udn.epicgames.com/Three/ImageBasedReflections.html
40http://udn.epicgames.com/Three/ImageBasedReflections.html

28

http://udn.epicgames.com/Three/ImageBasedReflections.html
http://udn.epicgames.com/Three/ImageBasedReflections.html

Figure. 36: Setup of billboard quads for the street scene in Maya

Algorithm 3: Pseudo code for the billboard reflections algorithm
input : standardTriangle,

billboard = (billboard.texture, billboard.modelMatrix),
reflected ray R

output: Reflected color RC

1 foreach billboard do
2 foreach vertex of standardTriangle do
3 Multiply vertex with billboard.modelMatrix;
4 end
5 uv = Intersect R with standardTriangle;
6 RC = billboard.texture(uv);
7 return RC;
8 end

To find the intersection of the reflected ray and the billboard, the shader program uses a standard triangle,
that lies in the xz-axis, with vertices (see figure 37):

V0 = (0.5, 0.0, 0.5), V1 = (−0.5, 0.0,−0.5), V2 = (−0.5, 0.0, 0.5)

Calculating the point where the ray hits the billboard, the ray-triangle intersection algorithm from [MT97]
is used. The intersection of the reflected ray and the quad can be seen as the following equation:

−→
R (t) = T (u, v) (6)

−→
R (t) = O + t ·

−→
D (7)

T (u, v) = (1− u− v) · V0 + u · V1 + v · V2 (8)

Where
−→
R (t) is the parametric ray equation from section 3 and T (u, v) defines the barycentric coordinates

on the billboard: whereby (u, v) must fulfill the the following conditions:

u ≥ 0, v ≥ 0 (9)

29

x

z
V
0

V
1

V
2

V
3

0,5

0,5

Figure. 37: Standard billboard triangle used to calculate the intersection between reflected ray and billboard in the shader program

(u, v) can directly used for texture mapping the billboard. Barycentric coordinates on a triangle would
require (u, v) to fulfill the additional condition u + v ≤ 1, but as the billboards are simple quads, the
conditions from (9) are sufficient.
Insertion of equations 7 and 8 into equation 6 results in:

O + t ·
−→
D = (1− u− v) · V0 + u · V1 + v · V2 (10)

Now rearranging the terms gives:

O − V0 = −t ·D + u · (V1 − V0) + v · (V2 − V0) (11)

⇔
(

−D, V1 − V0, V2 − V0

)

t

u

v

 = O − V0 (12)

To get parameters (u, v, t), the linear system of this equation has to be solved. The geometric idea behind
that approach is to translate the triangle to the origin, transforming it to a unified triangle, lying in the
xz-axis and translating the ray, so that it is aligned along the y-axis (see figure 38).

x

y

V
0

V
1

V
2

z

O

x

y

(0, 0, 0)

V
1
- V

0

z

 O - V
0

V
2
- V

0

Translation

- V
0

x, u

y

1

z, v

1

Matrix-
Multiplication

M
-1

 M [O - V
0
]

-1

Figure. 38: Geometric idea of the ray-triangle intersection algorithm,M =
(

−D, V1 − V0, V2 − V0

)

is the matrix from equation 12

30

As [MT97], Cramer's rule is used to obtain the solution to equation 12, ending up with:

t

u

v

 =
1

| −D, E0, E1 |

|T, E0, E1|
| −D, T, E1|
| −D, E0, T |

 (13)

Whereby E0 = V1 − V0 is the edge between V0 and V1 and E1 = V2 − V0 is the edge between V0 and
V2. Using formula |

(

A,B,C
)

= −(A × C) • B = −(C × B) • A| (× is the cross product, • is the
dot product) we can substitute into P = D × E2 and Q = T × E1 to get the final equation

t

u

v

 =
1

P • E1

Q • E2

P • T
Q •D

 (14)

Thereby factors P , Q and T can be reused in the implementation.

The implemented shader code is directly adapted from the mathematical approach as shown in listing
2. The main function is BillboardReflections(in vec3 wsPosition, in vec3 wsReflectVec) (see listings 2,
page32), which takes the ray's origin and destination as parameters and returns the reflected color. For
the intersection of every billboard inside of this function, function IntersectTriangle(in vec3 rayOrigin,
in vec3 rayDirect, in vec3 vert0, in vec3 vert1, in vec3 vert2) (see listings 3, page 32) is called. The
intersection-function also takes the ray - origin and destination - as the first two parameters, followed by
the three vertices, that define the billboard. The vertices refer to the standard triangle, known from 37
and are hard coded into theBillboardReflections()-function (listings 2, line 11-14). They are transformed
with the model matrix for each billboard. IntersectTriangle() first creates two edges of the associated
triangle. In line 21, P is calculated and in the following lines 25 and 26 used to create the determinant and
its inverse. By calculating T andQ, finally the uv-coordinates (u, v) and the distance t can be calculated
and returned as the function's result. After obtaining the coordinates, they are checked to be inside of
texture space and the alpha test is passed. The reflected billboard-color is then returned.

31

Listing 2: Shader code for billboard reflections

1 // Billboard reflections
2 vec BillboardReflections in vec wsPosition, in vec wsReflectVec
3 {
4 // Reflected color, that will be returned
5 vec reflectedColor = vec 0.0 ;
6
7 // For every Billboard in the scene
8 // billboardCount is passed as uniform parameter
9 for int i = 0; i < billboardCount; i++
10 {
11 // Initial billboard triangle is sufficient
12 vec vert0 = vec 0. , 0.0, 0. ;
13 vec vert = vec -0. , 0.0, -0. ;
14 vec vert = vec -0. , 0.0, 0. ;
15
16 // Build reflected ray
17 // ray origin is the current vertex position in world space
18 // ray direction is the at the normal reflected view vector
19 vec rayOrigin = wsPosition;
20 vec rayDirect = wsReflectVec;
21
22 // Transform billboard to world space
23 // Each vertex of the initial billboard is transformed into the object space
24 // of the current billboard
25 vert0 = Impostor[i].ModelMatrix * vec vert0, .0 .xyz;
26 vert = Impostor[i].ModelMatrix * vec vert , .0 .xyz;
27 vert = Impostor[i].ModelMatrix * vec vert , .0 .xyz;
28
29 // Intersect the billboard and get texture coordinates
30 // u,v are the texture coordinates on the triangle / billboard
31 // t is the distance
32 vec uvt = IntersectTriangle rayOrigin, rayDirect, vert , vert0, vert ;
33
34 // Break, if the distance if lower than 0.00
35 // this would be the real billboard, not a reflected one
36 if uvt.z <= 0.00
37 break;
38
39 // Check if texture coordinates are valid between 0.0 and .0
40 // Because billboards are quads, these two conditions are sufficient
41 // Triangle intersection would have the additional condition: uvt.x + uvt.y <= .0
42 if uvt.x > 0.0 && uvt.x < .0 &&
43 uvt.y > 0.0 && uvt.y < .0
44 {
45 // Check alpha channel of billboard texture
46 float alpha = texture ImpostorTex[i], uvt.xy .a;
47 // Get texture for billboard and do alpha blending
48 reflectedColor.rgb = texture ImpostorTex[i], uvt.xy .rgb * alpha;
49 }
50 }
51
52 return reflectedColor;
53 }

Listing 3: Shader code for ray-billboard intersection

32

1 // Intersect a triangle with a given ray
2 // Used here to Intersect billboard quads
3 vec IntersectTriangle in vec rayOrigin, in vec rayDirect, in vec vert0, in vec vert , in vec ←֓

vert
4 {
5 // Parameters
6 // u, v are the barycentric coordinates
7 // t is the distance
8 float t, u, v;
9
10 // Triangle edges
11 vec edge0, edge ;
12
13 // Determinant and it's inverse
14 float det, inv_det;
15
16 // Calculate edges
17 edge0 = vert - vert0;
18 edge = vert - vert0;
19
20 // Calculate p vector P = D x E_
21 vec pvec = cross rayDirect, edge ;
22
23 // Calculate determinant
24 // and inverse of determinant
25 det = dot edge0, pvec ;
26 inv_det = .0 / det;
27
28 // Calculate t vector T = O - V_0
29 vec tvec = rayOrigin - vert0;
30 // Calculate u parameter
31 u = dot tvec, pvec * inv_det;
32
33 // Calculate q vector Q = T x E_0
34 vec qvec = cross tvec, edge0 ;
35 // Calculate v parameter
36 v = dot rayDirect, qvec * inv_det;
37
38 // Calculate distance
39 t = dot edge , qvec * inv_det;
40
41 // Return results
42 return vec u, v, t ;
43 }

33

5.3.2 Results

Figure. 39: Billboard reflections in the screet scene
Top: a) Only billboard reflections, b) billboard reflections without normal mapping, c) results with normal mapping
Bottom: Some detailed views of billboard reflections

Figure. 40: Billboard reflections in the museum scene, mark the reflection of the exit sign on the wall

Real objects, that are generally shaped like quads, for example billboard advertisement, illuminated
posters or street signs can be intuitively models with billboard quads. Their reflections have a significant
handicap: they only work for the placed quads, but for this purpose they create convincing results and
run at an excellent performance. They best suit for high contrast reflections, e.g. reflections caused by
strong lights like neon advertisements in cities at night time, as seen in section 2.2. Another major issue
of BBR is missing occlusion. When creating reflections, it is not tested, whether another object occludes
the billboard on the reflected ray. Thereby reflections occur at positions, where they are not expected
to be, as the examples in figure 41 illustrates. Evaluating the performance, the chart in figure 42 shows
the results of measuring frames per second over one minute of time for BBR. The zero values at the

34

beginning of the measurement represent the loading time of a scene. While recording, the camera was
moved through the scene constantly.

Figure. 41: Missing occlusion for the reflection on the street. The reflected ray should be blocked by the parked car.

BBR, 1600 x 900 px

Street

Museum

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

time (seconds)

fr
a

m
e

s
/s

e
c
o

n
d

Figure. 42: Comparison of the frames per second for the street and the museum scene (there are no billboards placed in the cathedral scene)

35

5.4 Screen space reflections

Before explaining Screen Space Reflections, first the terms screen space and texture space are described
in detail to understand their difference:

screen space describes the space after clipping and after the perspective projection, where the range
of the canonic volume lies in between the bounds of the interval [1.0,−1.0] in every spatial direc-
tion.

texture space describes the bounds of a texture: A two dimensional space in range from 0.0 to 1.0,
often sampled using uv-coordinates, as used for texture mapping. Depth in texture space can only
be inquired by sampling the depth buffer or a depth texture, written by a previous render pass.

Screen space approaches make use of the deferred rendering technique, doing calculations only on the
data, that was stored in textures by the G-Buffer pass. Therefore calculations are only done, where the
viewer can see something, which can save computation time, but may result in lack of visual details, es-
pecially when it comes to reflections. An overview of other screen space approaches and their advantages
and disadvantages can be found in [Wil].

5.4.1 Algorithm

Screen space reflections utilize the results of the G-Buffer to calculate the reflections. The reflection
vector is calculated in view space in the fragment shader for each pixel, using position- and normal-
information from the textures of the G-Buffer. The reflection vector is then projected into screen space
using the camera's projection matrix (the projection will be described more detailed in the following
section 5.4.1). Ray marching along the screen space reflection vector is done afterwards, sampling the
depth texture at the ray's position and comparing the sampled depth with the ray's z-value: If the ray's
depth is bigger than the sampled depth, the ray has hit something and the reflected color can be returned
at that position, sampling it from the texture, obtained from the lighting pass.

Algorithm 4: Pseudo code of the screen space reflections algorithm
input : Reflected ray R,

Depth buffer textureDepthTex (G-Buffer),
Diffuse texture DiffuseTex (lighting pass),

output: Reflected color RC

1 ssR = project R into screen space;
2 while Raymarch along ssR do
3 if ssR.z > DepthTex at position ssR.xy) then
4 RC = DiffuseTex at position ssR.xy);
5 end
6 end
7 return RC;

In OpenGL a matrix is needed to project a three dimensional point onto the near plane of the camera:
The projection matrix. In the following, the mathematics behind the projection will be covered, because
understanding the projection is an essential part for screen space algorithms. When the camera is defined,
it has a view frustum, resulting from its opening angle, its aspect ratio and the near and far plane, set
by GLM 's glm::perspective()-function. The view frustum is generated by four planes, described by six
values: near(n) and far(f), left(l) and right(r) and top(t) and bottom(b) as shown in figure 43.
Constructing this projection matrix, it can be started with the xy-coordinates of a point: With the intercept
theorem, the xy-coordinates of a point Pvs = (xvs, yvs, zvs) in view space (vs) are projected to a point

36

(0, 0, 0)

y

-z

Camera Position

-n

-f

Y

Yz

vs

Ycs

far (f)

near (n)

top (t)

bottom (b)

Camera Position
(0, 0, 0)

left (l) right (r)

Figure. 43: left: View frustum of the camera as it is used in OpenGL, right: Projection of a the y-component of a three dimensional point
onto the near plane of the camera's frustum

Pcs = (xcs, ycs, zcs) in clip space (cs) (see figure 43, right):

xcs

xvs
=
−n

zvs
⇔ xcs = −

n · xvs
zvs

(15)

ycs

yvs
=
−n

yvs
⇔ ycs = −

n · yvs
zvs

(16)

After the projection into clip space, the coordinates are still homogeneous coordinates and need to be
transformed into normalized device (ndc) coordinates. To do this, the clip coordinates are divided by their
w-component, which is set to −zvs, so the fourth row of the projection can be written as (0, 0,−1, 0):

Mprojection =

x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
0 0 −1 0

(17)

The clip coordinates now have to be normalized to suit range [−1, 1]. Using 18 and projecting xndc onto
1 and xcs onto r, the result is:

Figure. 44

xndc =
1− (−1)

r − l
· xcs + β ⇔ 1 =

2 · r

r − l
+ β ⇔ β = −

r + l

r − l
(18)

⇔ xndc =
2 · xcs
r − l

− β ⇔ xndc =
2 · xcs
r − l

−
r + l

r − l
(19)

Now the coordinate from 15 can be inserted into the equation for xndc from 20, resulting in:

⇔ xndc =

(

2·n
r−l
· xvs +

r+l
r−l
· zvs

)

−zvs
(20)

37

Whereby the numerator gives xcs. The whole calculation is done analogical to the y-coordinate by re-
placing r with t and l with b, resulting in a projection matrix, where first and second rows are:

Mprojection =

2·n
r−l

0 r+l
r−l

0

0 2·n
t−b

t+b
t−b

0

z0 z1 z2 z3
0 0 −1 0

(21)

The only missing row now is the third, defining the z-coordinate of the projected point. The problem
here is, that zvs gets projected to the near clipping plane of the camera, but for depth testing, a definite
z-value is needed. As z is independent from the x- and y-component, the w-component is used to find
the relationship between zndc and zvs:

zndc =
zcs

wcs

= −
z2 · zvs + z3 · wvs

zvs
(22)

Because wvs equals 1 in view space, it can be dropped:

zndc =
zcs

wcs

= −
z2 · zvs + z3

zvs
(23)

Mapping (zvs, zndc) to (−n, 1) and (−f, 1) defines the whole range of z-values in normalized device
coordinates.

− z2·n+z3
n

= −1

− z2·f+z3
f

= 1
(24)

Solving for z2 or z3 and inserting one into each other results in:

z2 = −
f+n
f−n

z3 = −
2·f ·n
f−n

(25)

So the final projection matrix looks like this:

Mprojection =

2·n
r−l

0 r+l
r−l

0

0 2·n
t−b

t+b
t−b

0

0 0 −f+n
f−n

−2·f ·n
f−n

0 0 −1 0

(26)

Because the view frustum is symmetrical, where |r| = |l| and |t| = |b|, the projection matrix can be
simplified with r + l = 0, t+ b = 0, r − l = 2 · r and t− b = 2 · t:

Mprojection =

n
r

0 0 0
0 n

t
0 y3

0 0 −f+n
f−n

−2·f ·n
f−n

0 0 −1 0

(27)

In case of screen space reflections, first, the reflected ray in view space (
−−→
Rvs) is calculated, then the ver-

tex position Pvs, which is actually the reflection point Pvs, is added to the ray to get the reflected point
Rvs, which can be projected using the projection matrix. Besides, the vertex position is also projected
into screen space. Thus, the screen space reflected vector

−→
Rss can be calculated using screen space ver-

tex position Pss and screen space reflected point Rss, as shown in figure 45.The so gained screen space
reflected ray can then be used for ray marching.

Another major problem is, that the z-values after the projection are not linear anymore, meaning there is
a higher precision of depth at the near plane and a lower precision at the far plane. But for comparing the

38

Projection

-f

(0, 0, 0)

y

-z

Camera Position

-n

ss

Rss

Pss

(0, 0, 0)

y

-z

Camera Position

-n

-f

vs

Pvs

Rvs

Figure. 45: Projection of the reflected ray
−→

R from view space (vs) into screen space (ss, P is the vertex position,
−→

N is the vertex normal, R
is the reflected point

39

depths of the screen space reflection vector and the values from the depth buffer texture, a linear scale
would give better results. Backward calculation of the linear depth can be used to obtain a linear depth
value. The implemented shader program uses the linear depth calculation from Geeks3D41. The formula
to obtain a linear depth again looks like the following:

zlinear =
2 · n

f + n− zndc · (f − n)
(28)

As ray marching along the screen space reflection vector
−→
Rss, the texture from the depth buffer of the

G-Buffer is sampled using the reflection vector, as it is shown in figure 46. Linearizing the depth values
using equation 28, the depth can be compared with the z-value of the reflected ray. So the diffuse color
is returned, when the z-value of the traced ray exceeds the depth value of the sampled depth texture. This
can be done for every pixel on the screen, as it is done in code listings 4. This brute-force approach scales
very badly, because bigger resolutions need more ray steps according to the increasing pixel count and
the algorithm can get slow. A better approach is to use a similar idea to binary search, as described in
code listings 5.

ss

5 x 5 pixel
depth texture
(front view)

1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0

1.0

-0.5 -0.25

-0.25

-0.25

-0.25

0.00.0

0.00.0

0.0

0.00.0 -0.5

-0.25

-0.25

0.0

1.0 .z ≥ depthTexture.z

‘side view’
visualized depth sampling

ss

ss

Figure. 46: Reflected ray
−−→

Rss is used to sample the depth texture, simplified figure

41www.geeks d.com/ 00 /geexlab-how-to-visualize-the-depth-buffer-in-glsl/, [accessed 02/04/2013]

40

www.geeks3d.com/20091216/geexlab-how-to-visualize-the-depth-buffer-in-glsl/

Listing 4: Shader code for screen space reflections

1 // Screen space reflections
2 vec ScreenSpaceReflections in vec vsPosition, in vec vsNormal, in vec vsReflectionVector
3 {
4 // Variables
5 vec reflectedColor = vec 0.0 ;
6 vec pixelsize = .0/vec Screen.Width, Screen.Height ;
7
8 // Project vertex position to screen space
9 vec csPosition = ProjectionMatrix * vec vsPosition, .0 ;
10 vec ndcsPosition = csPosition.xyz / csPosition.w;
11 vec ssPosition = 0. * ndcsPosition + 0. ;
12
13 // Project reflected vector to screen space
14 vsReflectionVector += vsPosition;
15 vec csReflectionVector = ProjectionMatrix * vec vsReflectionVector, .0 ;
16 vec ndcsReflectionVector = csReflectionVector.xyz / csReflectionVector.w;
17 vec ssReflectionVector = 0. * ndcsReflectionVector + 0. ;
18 ssReflectionVector = normalize ssReflectionVector - ssPosition ;
19
20 // Ray trace
21 // Initial step is one pixel
22 // pixelStepSize describes how much pixel at once are ray marched
23 float initalStep = min pixelsize.x, pixelsize.y ;
24 float pixelStepSize = ;
25 ssReflectionVector *= initalStep;
26
27 // Sampling positions
28 vec lastSamplePosition = ssPosition + ssReflectionVector;
29 vec currentSamplePosition = lastSamplePosition + ssReflectionVector;
30
31 int sampleCount = max int Screen.Width , int Screen.Height ;
32 int count = 0;
33
34 //*****************************
35 //*** Unoptimized ray trace ***
36 //*****************************
37 while count < sampleCount
38 {
39 // Can be used to control loops
40 //if count > 0
41 // break;
42
43 // Out of texture space --> break
44 // Because sampling from a texture, the range is from 0.0 to .0
45 if currentSamplePosition.x < 0.0 || currentSamplePosition.x > .0 ||
46 currentSamplePosition.y < 0.0 || currentSamplePosition.y > .0 ||
47 currentSamplePosition.z < 0.0 || currentSamplePosition.z > .0
48 {
49 break;
50 }
51
52 // Update ray marching variables
53 vec samplingPosition = currentSamplePosition.xy;
54 float currentDepth = linearizeDepth currentSamplePosition.z ;
55 float sampledDepth = linearizeDepth texture DepthTex, samplingPosition .z ;
56
57 // If currentDepth z-value of ray is bigger than the sampled depth from texture

41

58 // the ray hit something
59 if currentDepth > sampledDepth
60 {
61 float delta = abs currentDepth - sampledDepth ;
62 if delta <= 0.00 f
63 {
64 // Return the reflected color
65 reflectedColor = texture DiffuseTex, samplingPosition ;
66 break;
67 }
68 }
69
70 // Step ray
71 lastSamplePosition = currentSamplePosition;
72 currentSamplePosition = lastSamplePosition + ssReflectionVector;
73
74 count++;
75 }
76
77 // Fading to screen edges
78 // Because only information in screen space is present
79 // the result has some hard edges at the screen corners
80 // Visual result is improved by blending out at the screen edges
81 vec fadeToScreenEdge = vec .0 ;
82 if fadeToEdges
83 {
84 // x-direction
85 fadeToScreenEdge.x = distance lastSamplePosition.x , .0 ;
86 fadeToScreenEdge.x *= distance lastSamplePosition.x , 0.0 * .0;
87 // y-direction
88 fadeToScreenEdge.y = distance lastSamplePosition.y , .0 ;
89 fadeToScreenEdge.y *= distance lastSamplePosition.y , 0.0 * .0;
90 }
91
92 return reflectedColor * fadeToScreenEdge.x * fadeToScreenEdge.y;
93 }

Listing 5: Optimized screen space reflections ray marching

1 //***************************
2 //*** Optimized ray trace ***
3 //***************************
4 initalStep = .0/Screen.Height;
5 pixelStepSize = user_pixelStepSize;
6 ssReflectionVector *= initalStep;
7
8 lastSamplePosition = ssPosition + ssReflectionVector;
9 currentSamplePosition = lastSamplePosition + ssReflectionVector;
10
11 int sampleCount = max int Screen.Width , int Screen.Height / 0;
12 int count = 0;
13
14 //reflectedColor = texture D ReflectanceTex, vert_UV ;
15 while count < sampleCount
16 {
17 // Can be used to control loops
18 //if count > 0
19 // break;

42

20
21 // Out of texture space --> break
22 // Because sampling from a texture, the range is from 0.0 to .0
23 if currentSamplePosition.x < 0.0 || currentSamplePosition.x > .0 ||
24 currentSamplePosition.y < 0.0 || currentSamplePosition.y > .0 ||
25 currentSamplePosition.z < 0.0 || currentSamplePosition.z > .0
26 {
27 break;
28 }
29
30 vec samplingPosition = currentSamplePosition.xy;
31 float sampledDepth = linearizeDepth texture DepthTex, samplingPosition .z ;
32 float currentDepth = linearizeDepth currentSamplePosition.z ;
33
34
35 //*** Step ray ***
36 // If ray's z is bigger than sampled depth
37 // --> step backward by subtracting a tenth of the reflected vector
38 if currentDepth > sampledDepth
39 {
40 lastSamplePosition = currentSamplePosition;
41 currentSamplePosition = lastSamplePosition - ssReflectionVector/ 0.0;
42 }
43 // If ray's z is smaller than sampled depth
44 // --> step forward by adding a tenth of the reflected vector
45 else if currentDepth < sampledDepth
46 {
47 lastSamplePosition = currentSamplePosition;
48 currentSamplePosition = lastSamplePosition + ssReflectionVector * 0.0;
49 }
50
51 //*** Ray hit ***
52 float delta = abs currentDepth - sampledDepth ;
53 if delta < 0.00 f
54 {
55 // Blurring dependent on viewer's distance
56 // toggleBlur is a boolean uniform
57 if toggleBlur
58 {
59 float f = currentDepth;
60 float blurSize = * f;
61 reflectedColor = textureLod DiffuseTex, vec samplingPosition.x, samplingPosition.y , ;
62
63 int counter = 0;
64 for float i= - blurSize/ .0; i < blurSize/ .0; i+= .
65 {
66 reflectedColor += texture D DiffuseTex, vec samplingPosition.x, samplingPosition.y + .0 ←֓

* i * pixelsize.y ;
67 counter++;
68 }
69
70 reflectedColor /= counter;
71 }
72 // Nor blurring, just return color at sampled position
73 else
74 {
75 reflectedColor = texture D DiffuseTex, vec samplingPosition.x, samplingPosition.y ;
76 }

43

77 }
78
79 // Count not used here, but can be used to limit to a specific count of loops
80 count++;
81 }

44

5.4.2 Results

The SSR technique results in the visually best results of all three describes techniques, as they work di-
rectly for every reflective object in the scene, while BBR only works for the artist-defined billboards and
PCCM does not provide correct reflections for object inside of the proxy geometry. Compared with a
ray traced reference image, generated with ray tracer Mental Ray, the SSR approach yields convincing
reflections, as figure 47 shows. Comparing the reflections on rounded surfaces like the body of the car,
the SSR results can match up with the off-line ray traced image (while the Mental Ray image took about
10 minutes for rendering, the screen space technique is real-time-capable). Evaluating the pixel-per-pixel

Figure. 47: Left: off-line ray traced images generated with Mental Ray and Maya, right: Optimized SSR with normal mapping, running at
about 20fps (on a resolution of 1000 to 1000 pixels)

approach, bigger step sizes may result in ribbons and holes as shown in figure 48. Increasing the pixel-
step size results in better performances, but results in inaccuracy when searching for the hit point of the
ray with the scene's depth. One big disadvantage is, that SSR only works in screen space. Everything
which is not seen by the viewer - in other words, is not on the screen - can not be reflected due to lack
of informations at this position. To eliminate the thereby arising chamfered edges, the reflecting image
can be blended out softly at the screen borders, compared in figure 49. Because of the missing texture
data from the G-Buffer for all triangles, that face the viewer, also reflections can not be provided. To
prevent the reflections from 'holes' that appear at these positions, a combination of SSR and the before
described Parallax-corrected cube mapping could be used. If SSR lacks of texture information to create

45

Figure. 48: Comparison of the brute-force SSR approach, ray marching with different pixel-step sizes.

reflections, the traced ray could be used to intersect with the proxy geometry and sample the cube map.
This would only work for objects, that are approximated by the proxy geometry, but reflections would
be present at expected positions.

Figure. 49: Optimzed SSR, Left: SSR creates clipped edges at the screen borders (marked with red line), due to the missing information
originating from deferred shading, right: fading out at the screen borders creates a visually more appealing effect.

To evaluate real-time performance of SSR, frames per second have been measured for different resolu-
tions. The framecount per second was captured for 60 seconds, while moving through the scenes. The
per-pixel approach slows already at a screen resolution of 1024 to 768 pixels with average framerates of
7.29 to 8.02 for the three tested scenes. Because every pixel is ray marched, this approach scales very
badly, clarified by figure 52. Better results are provided by the optimized SSR algorithm, as the charts in
figure 52 illustrate. Certainly, the optimized approach even lags at a resolution of 1600 x 900 pixels and
above.

46

Figure. 50: Optimized SSR, tested with the cathedral scene, top: rendered with normal mapping, bottom: without normal mapping

Figure. 51: The amount of reflective objects in the different scenes: a) street scene, b) museum, c) cathedral. The count of reflective meshes
affects the performance directly

47

SSR (op�mized), 1280 x 720 px

Street

Museum

Cathedral

0 10 20 30 40 50 60

5

10

15

20

25

30

35

40

 me (seconds)

fr
a

m
e

s/
se

co
n

d

 me (seconds)

SSR (op�mized), 1024 x 768 px

Street

Museum

Cathedral

0

10

20

30

40

 me (seconds)

fr
a

m
e

s/
se

co
n

d

0 10 20 30 40 50 60

SSR (op�mized), 1600 x 900 px

Street

Museum

Cathedral

5

10

15

20

25

30

35

40

 me (seconds)

fr
a

m
e

s/
se

co
n

d

0 10 20 30 40 50 60

SSR (unop�mzed), 1024 x 768 px

0

5

10

15

20

25

30

35

40

fr
a

m
e

s/
se

co
n

d

0 10 20 30 40 50 60

Street

Museum

Cathedral

1.)

2.)

3.)

4.)

Figure. 52: Comparison of the unoptimized per-pixel SSR technique and the optimized one. Zero values at the beginning represent the loading
time of the scenes. Extreme maxima are due to the amount of reflecting object on the screen (see figure 51)

48

6 Conclusion

Section 2 gave a physical background of light, describing important terms, such as radiance, to get a ba-
sic understanding of how reflections emerge and what parameters affect them. Plenty of examples from
the real world and the media were given in section 2.2, showing how much reflections can visually con-
tribute to realism and visual appeal in modern computer graphics. An overview of common approaches
for rendering reflections was given, describing themost commonly used algorithms, classified in different
categories. Three specific techniques have been implemented and treated in detail: Parallax-correction
for cube maps, billboards for simplified high-contrast reflections and screen space reflections. They were
described and evaluated in detail in section 5. All three are qualified for real-time rendering and achieve
plausible visual reflections with certain drawbacks. Parallax-correction for cube maps depends on the
well-known cube mapping technique and therefore can not supply correct reflections for objects inside of
a room using only one environment map. Every object rather has to have its own local cube map and its
approximation geometry to get correct looking reflections. The used cube maps have to be rendered off-
line or at run-time. Also the cube maps have to be re-generated if an object moves or when light sources
change. However, the computation does not need much time and it is easy to implement, especially if
environment mapping was already implemented. Parallax-corrected cube maps suit best for reflections
of walls and floors in geometric rooms like corridors, halls or similar. The presented implementation
could be extended with blending of different local cube maps, like it was originally described in [SZ12].
Billboards use impostor quads, that are ray-traced to generate reflections. One major problem is, that the
reflections only work for billboards. Additional, the placement of the billboards has to be planed when
setting up the scene. Another major problem is, that naturally, the billboard reflections lack of occlusion
through other scene objects. The implementation of billboard reflections is easy and does not need to
much computation time. They suit best to simulate high-contrast light reflections, as they occur in city
environments at night, e.g. from neon advertisings and traffic lights. To improve the presented imple-
mentation, alpha blending could be done in a single pass to get real alpha blending, at the moment the
alpha channel is just clipped at a certain value. Another big improvement that could be concerned with is
the missing occlusion through other scene objects. Additionally, the billboard impostor quads could be
rendered with a glow effect to give a better visual plausibility, that they are light sources. The distance
dependence could also be improved by blurring the billboard textures depending on the viewer's distance
to them.
Screen space reflections work only in screen space and therefore have cropped borders at the screen
edges, due to missing information from the G-Buffer textures, that indeed can be blended in to get a bet-
ter looking result. Therefore they afford plausible looking reflections for the whole scene and are capable
for real-time renderings to a certain resolution of the screen. One major problem is the single layer depth
map used for the intersection calculation of the reflected ray, that generate artifacts when the ray exits
an object and there would be a second or third or even more intersections. To handle this problem, a
depth-peeling approach could be used to generate a multi-layered depth map, that could be used for in-
tersecting with the reflected ray. Also the intersection calculation could be optimized by trying different
intersection-finding approaches and examining and comparing them to each other. Additionally, view
dependency could be improved by blurring the sampled diffuse texture, coming from the lighting pass,
dependent on the viewers distance.
All in all, this thesis gave an overview of state-of-the-art techniques for rendering reflections and de-
scribes three up to date approaches, that were examined of their visual qualities, their performance and
their application in real-time rendering.

As a prospect to future real-time computer graphics, on one hand more and more ray tracing approaches
will be adopted on the GPU, improving the real-time capabilities of the algorithms by better hardware
and on the other hand by finding new approaches . In the near future more mixing of ray tracing and
the common rasterization pipeline, like the discusses algorithms up to more complex techniques, like the
shortly described voxel-cone-tracing, will be implemented until ray tracing generates decent framerates.

49

List of Figures

1 Perfect and imperfect reflection . 3
2 Isotropic and anisotropic reflections in Unreal Engine 3 4
3 Anisotropic reflections . 4
4 Urban reflections at night A . 5
5 Urban reflections at night B . 5
6 Urban reflections at daylight . 6
7 Thin water puddles . 7
8 Reflections on water . 7
9 Reflections on architecture . 7
10 Reflections on architecture . 8
11 Reflections in art . 8
12 Reflections in photography . 9
13 Reflections in art . 9
14 Reflections in Crysis 2 . 10
15 Reflections in Unreal Engine 4 . 10
16 Basic idea of rendering reflections . 11
17 Reflections using geometry transformation . 12
18 Environment mapping steps . 13
19 Environment mapping example . 13
20 Prefiltering environment maps . 14
21 GPU ray tracing using CUDA . 15
22 GPU ray tracing sampled geometry . 16
23 Voxel cone tracing . 17
24 UML class diagram . 18
25 GUI . 20
26 Render pass overview . 21
27 G-Buffer . 22
28 Different test scenes . 23
29 Comparison of cube mapping and PCCM . 24
30 AABB in Maya . 25
31 Parallax-corrected cube mapping . 25
32 PCCM results (street scene) . 27
33 PCCM results (cathedral) . 27
34 BBR example (Unreal Engine 3) . 28
35 Billboard placement in Maya . 28
36 Billboard placement in a scene . 29
37 Standard triangle for billboard-intersection . 30
38 Ray-triangle transformation . 30
39 BBR results (street scene) . 34
40 BBR results (museum scene) . 34
41 BBR results (missing occlusion) . 35
42 BBR framerate comparison . 35
43 View frustum . 37
44 Clip space to normalized device coordinates . 37
45 Projection of the reflected ray . 39
46 Sampling depth texture . 40
47 Comparison of SSR to off-line ray traced image . 45
48 SSR comparison of different pixel step sizes . 46
49 SSR results (fade-out at screen borders) . 46
50 SSR results (cathedral) . 47

50

51 Reflectivity of different scenes . 47
52 Framerate comparison of optimized and per-pixel SSR 48

51

Listings

1 Shader code for Parallax-corrected cube mapping . 26
2 Shader code for billboard reflections . 32
3 Shader code for ray-billboard intersection . 32
4 Shader code for screen space reflections . 41
5 Optimized screen space reflections ray marching . 42

52

List of Algorithms

1 Basic ray tracing algorithm . 14
2 Pseudo code for parallax-corrected cube mapping . 24
3 Billboard reflections algorithm . 29
4 Pseudo code of the screen space reflections algorithm 36

53

References

[Ahn11] Song Ho Ahn. OpenGL Tutorials. http://www.songho.ca/opengl/index.html, [accessed
02/04/2013], 2005 - 2011.

[Ble09] Neil Blevins. Anisotropic Reflections. http://www.neilblevins.com/cg_education/aniso_ref/
aniso_ref.htm, 2009.

[BN76] James F. Blinn and Martin E. Newell. Texture and Reflection in Computer Generated Im-
ages. Commun. ACM, 19(10):542--547, October 1976.

[CHCH06] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU ray tracing of
dynamicmeshes using geometry images. InProceedings of Graphics Interface 2006, GI '06,
pages 203--209, Toronto, Ont., Canada, Canada, 2006. Canadian Information Processing
Society.

[CNS+11a] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Interac-
tive indirect illumination using voxel cone tracing: A preview. Poster ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D). Best poster award., feb 2011.

[CNS+11b] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Interac-
tive Indirect Illumination Using Voxel Cone Tracing: An Insight. Siggraph 2011 Talk, aug
2011.

[Hen09] Justin Hensley. Shiny, Blurry Things. developer.amd.com/wordpress/media/ 0 / 0/

0 -hensley-BPS.pdf, [accessed 03/04/2013], 2009.

[IL12] Nop Jiarathanakul Ian Lilley, Sean Lilley. Real-Time Voxel Cone-Tracing.
cis -fall- 0 .github.com/lectures/ -0 -GigaVoxels-And-Sparse-Textures.pdf, [ac-
cessed 04/04/2013], 2012.

[KVHS00] Jan Kautz, Pere-Pau Vázquez, Wolfgang Heidrich, and Hans-Peter Seidel. A Unified Ap-
proach to Prefiltered Environment Maps. http://dl.acm.org/citation.cfm?id= . ,
[accessed 04/04/2013], 2000.

[Lag12] Sébastien Lagarde. Water Drop 1 – Observe Rainy World. http://seblagarde.wordpress.

com/ 0 / / 0/observe-rainy-world/, 2012. [Online, accessed 19/03/2013].

[Lil12] Ian Lilley. Real-Time Screen-Space Reflections in OpenGL. http://de.scribd.com/doc/

0 /Paper-IanLilley, 2012.

[MD11] Martin Mittring and Bryan Dudash. The Technology Behind the DirectX 11 Unreal En-
gine "Samaritan" Demo. http://udn.epicgames.com/Three/rsrc/Three/DirectX Rendering/

MartinM_GDC _DX _presentation.pdf, 2011. [Online, accessed 17-March-2013].

[Mit12] Martin Mittring. The Technology Behind the “Unreal Engine 4 Elemental Demo”.
www.unrealengine.com/files/misc/The_Technology_Behind_the_Elemental_Demo_ x _ .pdf,
[accessed 04/04/2013], 2012.

[MPS05] Chunhui Mei, Voicu Popescu, and Elisha Sacks. The Occlusion Camera. Computer Graph-
ics Forum, 24:335--342, 2005.

[MT97] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. J.
Graph. Tools, 2(1):21--28, October 1997.

[NK11] Tiago Sousa Nickolay Kasyan, Nicolas Schulz. Secrets of CryENGINE 3 Graphics Tech-
nology. In ACM SIGGRAPH 2011 Courses, SIGGRAPH 2011, 2011.

54

http://www.songho.ca/opengl/index.html
http://www.neilblevins.com/cg_education/aniso_ref/aniso_ref.htm
http://www.neilblevins.com/cg_education/aniso_ref/aniso_ref.htm
developer.amd.com/wordpress/media/2012/10/09-hensley-BPS.pdf
developer.amd.com/wordpress/media/2012/10/09-hensley-BPS.pdf
cis565-fall-2012.github.com/lectures/11-01-GigaVoxels-And-Sparse-Textures.pdf
http://dl.acm.org/citation.cfm?id=647652.732274
http://seblagarde.wordpress.com/2012/12/10/observe-rainy-world/
http://seblagarde.wordpress.com/2012/12/10/observe-rainy-world/
http://de.scribd.com/doc/91201173/Paper-IanLilley
http://de.scribd.com/doc/91201173/Paper-IanLilley
http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/MartinM_GDC11_DX11_presentation.pdf
http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/MartinM_GDC11_DX11_presentation.pdf
www.unrealengine.com/files/misc/The_Technology_Behind_the_Elemental_Demo_16x9_(2).pdf

[OR98] Eyal Ofek and Ari Rappoport. Interactive reflections on curved objects. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH
'98, pages 333--342, New York, NY, USA, 1998. ACM.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on pro-
grammable graphics hardware. In Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH '02, pages 703--712, New York,
NY, USA, 2002. ACM.

[PHR+09] Voicu Popescu, Kyle Hayward, Paul Rosen, Chris Wyman, Voicu Popescu, Kyle Hayward,
Paul Rosen, and ChrisWyman. Non-pinhole impostors. http://www.cs.purdue.edu/research/
technical_reports/ 00 /TR% 00 -00 .pdf, 2009. [accessed 01/03/2013].

[PMDS06] Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks. Reflected-Scene Impos-
tors for Realistic Reflections at Interactive Rates. Comput. Graph. Forum, 25(3):313--322,
2006.

[Ral07] Kristóf Ralovich. Implementing and Analyzing A GPU Ray Tracer. http://www.cescg.org/
CESCG- 00 /papers/TUBudapest-Ralovich-Kristof.pdf, [accessed 04/04/2013], 2007.

[SAG+05] Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen Marschner, Erik Reinhard,
Kelvin Sung, William Thompson, and PeterWillemsen. Fundamentals of Computer Graph-
ics, Second Ed. A. K. Peters, Ltd., Natick, MA, USA, 2005.

[Sha10] Christopher Shane. Integration of Ray-Tracing Methods into the Rasterisation Pro-
cess. www.scss.tcd.ie/postgraduate/msciet/current/Dissertations/0 0/Christopher.pdf,
[accessed 04/04/2013], 2010.

[SKALP05] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, and Mátyás Premecz. Approxi-
mate Ray-Tracing on theGPUwithDistance Impostors. Comput. Graph. Forum, 24(3):695-
-704, 2005.

[SKUP+09] László Szirmay-Kalos, TamásUmenhoffer, Gustavo Patow, László Szécsi, andMateu Sbert.
Specular Effects on the GPU: State of the Art. Computer Graphics Forum, 28(6):1586--
1617, 2009.

[SZ12] Lagarde Sébastien and Antoine Zanuttini. Local image-based lighting with parallax-
corrected cubemaps. In ACM SIGGRAPH 2012 Talks, SIGGRAPH '12, pages 36:1--36:1,
New York, NY, USA, 2012. ACM.

[Tat06] Natalya Tatarchuk. Artist-directable real-time rain rendering in city environments. In ACM
SIGGRAPH 2006 Courses, SIGGRAPH '06, pages 23--64, New York, NY, USA, 2006.
ACM.

[Wil] WilliamDiSanto. Advanced ComputerGraphics CS 563: Screen Space GI Techniques:
Real-Time. http://web.cs.wpi.edu/~emmanuel/courses/cs /S /slides/cs _Will_DiSanto_

ssdo_wk _p .pdf, [accessed 01/04/2013].

[YWY08] Xuan Yu, Rui Wang, and Jingyi Yu. Interactive Glossy Reflections using GPU-based Ray
Tracing with Adaptive LOD. Comput. Graph. Forum, 27(7):1987--1996, 2008.

55

http://www.cs.purdue.edu/research/technical_reports/2009/TR%2009-006.pdf
http://www.cs.purdue.edu/research/technical_reports/2009/TR%2009-006.pdf
http://www.cescg.org/CESCG-2007/papers/TUBudapest-Ralovich-Kristof.pdf
http://www.cescg.org/CESCG-2007/papers/TUBudapest-Ralovich-Kristof.pdf
www.scss.tcd.ie/postgraduate/msciet/current/Dissertations/0910/Christopher.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs563/S12/slides/cs563_Will_DiSanto_ssdo_wk6_p1.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs563/S12/slides/cs563_Will_DiSanto_ssdo_wk6_p1.pdf

	Introduction
	Real World Reflections
	Physical background of reflections
	Characteristics of reflections

	Rendering Reflections
	Approaches
	Geometry transformation
	Image based approaches
	Ray tracing geometry
	Ray tracing sampled geometry
	Hybrid techniques

	Implementation
	Framework
	Parallax-corrected cube mapping
	Algorithm
	Results

	Billboard reflections
	Algorithm
	Results

	Screen space reflections
	Algorithm
	Results

	Conclusion
	List of Figures
	Listings
	List of Algorithms
	References

