
Fachbereich 4: Informatik

Dependencies between Haskell
code fragments

Masterarbeit
zur Erlangung des Grades eines Master of Science

vorgelegt von

Philipp Schuster

Erstgutachter: Prof. Dr. R. Lämmel
Institut für Softwaretechnik

Zweitgutachter: M. Sc. M. Leinberger
Institut für Web Science und Technologien

Koblenz, im Januar 2015

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich ein-
verstanden.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich
zu.

� �

. .
(Ort, Datum) (Unterschrift)

Abstract
Code package managers like Cabal track dependencies between packages.

But packages rarely use the functionality that their dependencies provide. This

leads to unnecessary compilation of unused parts and to speculative conflicts be-

tween package versions where there are not conflicts. In two case studies we

show how relevant these two problems are. We then describe how we could

avoid them by tracking dependencies not between packages but between indi-

vidual code fragments.

Zusammenfassung
Paketmanager für Quellcode wie zum Beispiel Cabal verwalten unter an-

derem die Abhängigkeiten zwischen Paketen. Softwareprojekte nutzen jedoch

selten sämtliche Funktionalität, die ihre Abhängigkeiten bereitstellen. Das führt

zur unnötigen Kompilation unbenutzer Code-Fragmente und zu vermeintlichen

Versionskonflikten, wo gar keine Konflikte sind. In zwei Fallstudien zeigen wir

wie relevant diese zwei Probleme sind. Danach beschreiben wir wie wir sie ver-

meiden können, indem wir Abhängigkeiten nicht zwischen ganzen Paketen, son-

dern zwischen einzelnen Code-Fragmenten feststellen.

Contents

1 Introduction 1

2 Related work 3
2.1 Code package managers . 3

2.2 Empirical software engineering . 4

2.3 Change impact analysis . 4

2.4 Haskell, Hackage, Cabal . 4

3 A model of Haskell packaging 6
3.1 An example dependency situation 6

3.2 Modules, packages, dependencies 9

3.3 The Package Versioning Policy . 11

3.4 Dependency resolution . 12

3.5 The data model . 13

3.6 Installation of unused declarations 16

3.7 Updates not affecting packages . 19

4 A case study on Hackage 25
4.1 Methodology . 25

4.2 Installation of unused declarations 28

4.3 Updates not affecting packages . 29

4.4 Threats to validity . 31

5 Towards fragment-based code management 34
5.1 A small example program . 36

5.2 Extracting slices from modules . 37

5.3 Compiling slices . 39

i

5.4 Future work . 41

6 Conclusion 42

ii

List of Figures

3.1 Package application-0.1.0 . 7

3.2 Package favorites-0.1.0 . 7

3.3 Package favorites-0.1.1 . 8

3.4 Package favorites-0.2.0 . 9

3.5 Data model for Haskell packaging. 14

3.6 Relations for example packages. 15

3.7 Relations for an example declaration. 16

3.8 Package some-printer-0.1.0 . 17

3.9 Package many-things-0.1.0 . 17

3.10 Definition of installed and actually used declarations. 18

3.11 Example for actually used declarations. 19

3.12 Package color-output-0.1.0 . 20

3.13 Definition of an update affecting a package. 21

3.14 Definition of an update scenario. 23

3.15 Example relations for an update affecting a package. 24

4.1 Overview of the fact extraction and measurement process. 26

4.2 Numbers of entities in our database 28

4.3 Installed declarations versus actually used declarations. 29

4.4 Contained, installed, and actually used declarations. 30

4.5 Classification and count of update scenarios. 31

5.1 Architecture of fragment-based code management. 35

5.2 Example application. 36

5.3 Example invocation of fragnix tool. 37

5.4 Data flow diagram for fragnix tool. 37

5.5 Example slice. 38

iii

5.6 Example compilation units. 40

iv

Chapter 1

Introduction

Software development very often relies on the use of software libraries. Software

libraries provide reusable functionality. Software maintainers bundle and dis-

tribute their libraries as packages. Every package corresponds to a version of the

library. Libraries themselves very often reuse functionality from other libraries.

These other libraries are their dependencies. During compilation all dependen-

cies of a package have to be present. Package maintainers therefore explicitly

state in every package its dependencies on other packages.

Packages very often only use parts of all the functionality another package

provides. Specifying dependencies on entire packages instead of exactly on the

used parts has at least two drawbacks that we explore in this thesis. First, in-

stallation of packages takes unnecessarily long because unused code has to be

compiled all the same. Second, changes that are strictly in the unused parts of a

package still lead to version conflicts.

If we knew exactly which parts of a package another package uses we could

solve both problems: We could compile only those parts of a package that a pack-

age actually uses and we could find out if updating a package really affects an-

other package. As far as we know nobody has examined if this is worthwhile and

what implications this has on how distribution of code works.

Our research questions therefore are:

• How many code fragments do packages actually use?

• Can we automatically detect if an update affects a package?

• How could code distribution in units of code fragments work?

1

In this thesis we focus on Haskell and the related code distribution infrastruc-

ture. Other package-based code distribution infrastructures in principle suffer

from the same problems. See section 2.1 for a comparison.

More concretely this thesis makes the following contributions:

• A formal model of Haskell code and packaging.

• An infrastructure to extract facts from existing Haskell packages according

to that model.

• A case study finding how many declarations Haskell packages actually use.

• A case study finding unnecessarily prohibited update scenarios in a set of

Haskell packages.

• A prototype implementation of a tool that compiles only those declarations

a Haskell program actually uses.

The code for the tool that extracts the facts [1] and a script that glues every-

thing together [2] as well as the code that imports the data into the database [3]

and one that runs the queries [4] can be found online. Ongoing development of

our tool that compiles only those declarations a Haskell program actually uses is

under [5].

The rest of this thesis is organized as follows: We classify and review related

work in chapter 2. We motivate and define key terms in chapter 3. We describe

the methodology, implementation and results of the two case studies in chapter

4. We show the tool that avoids compilation of unused declarations in chapter 5.

Finally we summarize and discuss our main contributions and results again, but

this time from a more internal standpoint in chapter 6.

2

Chapter 2

Related work

We conduct empirical research on a Haskell package repository that includes

change impact analysis. We review relevant work others have done in these areas

and describe how it differs from our work.

2.1 Code package managers

This thesis is in the general context of code package managers and repositories.

We focus on the package infrastructure for Haskell where cabal-install is the pack-

age manager and Hackage is the Package repository. Examples of very similar

infrastructures include but are not limited to: CPAN, Pip/PyPi, Cargo, Npm,

OPAM, maven, Clojar and Composer. Most of them encourage a versioning pol-

icy like the Package Versioning Policy called Semantic Versioning [6]. Some of

them allow a single package to use multiple different versions of another pack-

age at the same time. All of them do dependency resolution and have to deal

with version conflicts. In [ACTZ12] the authors propose to reuse a common de-

pendency resolution implementation. Package conflicts during upgrades are the

subject of [ADC11] where the authors predict upgrade failures in package man-

agement, but on the coarser package level and not code-based like we do. An

analysis of the different sources of package conflicts is in [ASDC+12].

3

2.2 Empirical software engineering

In our case studies we mine software repositories which is a method from empir-

ical software engineering. See [KCM07] for a survey. An infrastructure for min-

ing open source software repositories is presented in [BOL14]. While in our case

study we mine Hackage for fine-grained changes and dependencies, [RDV13]

presents a dataset with roughly the same information except for Java packages in

the Maven software repository. Another example of mining the Maven repository

is [MKL+14] where the authors run a tool that statically analysis Java bytecode

for bugs on packages. In [MDBZ09] the authors mine software repositories to

find the popularity of a version of a library to guide developer choice. Others

have mined Hackage before, for example [BJL13], but with the different goal of

surveying the use of generic programming techniques.

2.3 Change impact analysis

We do change impact analysis by software slicing. See [LSLZ13] or [Tip94] for

surveys. Another example of fine grained impact analysis which includes min-

ing of an evolving software repository is reported in [CC06]. In [Boh02] the au-

thor extends change impact analysis to third-party dependencies, but not exactly

packages from a code package manager like we do. An example where software

changes are propagated to exactly those affected components is [Raj00]. The au-

thors predict the impact of change requests in [CC05], but in contrast to us not

based on code but based upon the request itself. In [KM07] static program slic-

ing and change prediction based on version history are combined. There are also

examples of slicing Haskell programs [RB06] but with the different goal of find-

ing coherent units of code and of slicing Erlang programs to find fine-grained

dependency graphs [MT11].

2.4 Haskell, Hackage, Cabal

Other orthogonal approaches to the solution of dependency problems with Haskell

packages are [KDPJM14], the recent [7] project, bumper [8] and similar tools as

well as Cabal features like sandboxes [9], private dependencies and the ability to

4

have multiple package instances installed at the same time[10]. A meta-model in

UML for Haskell is given in [Szl11]. Inspiration for the Package Versioning Pol-

icy is from [11]. A tool to compare the public API of different versions of Haskell

packages is hackage-diff [12]. SourceGraph is a tool that can build and visualize

among other things a call graph for a given Haskell package. The non-scientific

community already proposes but does not implement the idea of tracking more

fine-grained dependencies in [13] and the automatic detection of compatible up-

dates in a very similar way to ours in [14].

5

Chapter 3

A model of Haskell packaging

A Haskell program is a set of modules [15]. Not all the modules have to be writ-

ten by the same developer. Very often developers reuse sets of modules written

by other developers. The purpose of the code package manager Cabal and the

central package repository Hackage is to make distribution of reusable sets of

Haskell modules easier. They distribute and manage Haskell modules in units

of packages. We motivate and define two fundamental problems with package-

based code distribution.

3.1 An example dependency situation

Consider the two packages in figures 3.2 and 3.1. Package application-0.1.0

is an executable that prints two strings to the console. The first string represents

a color and the second one represents a number. Package favorites-0.1.0

contains declarations for the two strings to print. Ignoring all the details, the

important point here is that we have two packages and one uses the functionality

the other one provides.

For the sake of example the implementation for color in figure 3.2 does

an unnecessary string concatenation. The package author improves the imple-

mentation of color and releases favorites-0.1.1 shown in figure 3.3. It

is safe and beneficial to replace every use of the declaration for color from

favorites-0.1.0 with the declaration from favorites-0.1.1 because the

latter exhibits the same behavior but might be more efficient. In cases like this the

6

-- application.cabal
name: application
version: 0.1.0

executable application
main-is: Main.hs
build-depends: base >=4.7.0.0 && <4.8,

favorites >=0.1.0 && <0.2

-- Main.hs
module Main where

import Favorites (color,number)

main :: IO ()
main = do

putStrLn color
putStrLn number

Figure 3.1: Package application-0.1.0

-- favorites.cabal
name: favorites
version: 0.1.0

library
exposed-modules: Favorites
build-depends: base >=4.7.0.0 && <4.8

-- Favorites.hs
module Favorites where

color :: String
color = "light" ++ "blue"

number :: String
number = "four"

Figure 3.2: Package favorites-0.1.0

7

-- favorites.cabal
name: favorites
version: 0.1.1

library
exposed-modules: Favorites
build-depends: base >=4.7.0.0 && <4.8

-- Favorites.hs
module Favorites where

color :: String
color = "lightblue"

number :: String
number = "four"

Figure 3.3: Package favorites-0.1.1

replacement should happen automatically, so that users benefit from the advan-

tages of the new implementation without effort.

Now the author decides to further improve the favorites library. In pack-

age favorites-0.1.1 she changes number to have type Integer instead of

String. She then releases the new version as favorites-0.2.0. But most

code that uses the declaration for number from either favorites-0.1.0 or

favorites-0.1.1 can not use the declaration from favorites-0.2.0. In

most cases this would result in a type error at compile time. This time no auto-

matic replacement should happen. Instead developers have to decide on a case

to case basis if they use the new package, because very often they would have to

adjust their code to work with the new version of the library.

This concludes the example of the life cycle of a Haskell package. We observe

that there are two kinds of updates: compatible and breaking. Package users

want to benefit from compatible updates while they do not want their code to

break because of a breaking update. The Haskell packaging infrastructure makes

this possible.

8

-- favorites.cabal
name: favorites
version: 0.2.0

library
exposed-modules: Favorites
build-depends: base >=4.7.0.0 && <4.8

-- Favorites.hs
module Favorites where

color :: String
color = "lightblue"

number :: Integer
number = 4

Figure 3.4: Package favorites-0.2.0

3.2 Modules, packages, dependencies

Every Haskell package comes with a Cabal [16] file ending in .cabal. It contains

information about the package such as its name and its version number. In the

example we have four packages. The one in figure 3.1 has name application

and version number 0.1.0. The three in figures 3.2, 3.3 and 3.4 all have name

favorites. Their version numbers are 0.1.0, 0.1.1 and 0.2.0 respectively.

Package application-0.1.0 is a package with a section that describes an

executable called application. It depends on two other packages base and

favorites. Every executable Haskell program has to have a module called

Main. In this case it is in file Main.hs. Package favorites-0.1.0 in figure

3.2 is a package with a section that describes a library. The library exposes a mod-

ule Favorites. It depends on the base package. If a library exposes a module

there has to be a corresponding Haskell source file in a location determined by

convention. In this case the Favorites module is in file Favorites.hs also

shown in figure 3.2.

A Haskell module consists roughly of a name, a list of imports and a list of

declarations. Every declaration defines a (possibly empty) list of symbols. It also

9

mentions symbols bound by other declarations. The mentioned symbols can be

bound in the same module or imported from other modules as controlled by the

list of imports. In other literature [15, 17] what we call a symbol is called an entity.

The file Main.hs shown in figure 3.1 is a Haskell module. The first line spec-

ifies the module’s name to be Main. It imports symbols color and number from

module Favorites. It also contains two declarations. The first one is a type

signature. It does not bind any symbols but mentions the symbols main and

IO. Every Haskell module implicitly imports many commonly used symbols,

among them the IO symbol. The second declaration binds the main symbol. Fur-

thermore this declaration mentions the implicitly imported putStrLn symbol.

It also mentions the symbols color and name. The module explicitly imports

those two symbols from module Favorites.

The Favorites module in file Favorites.hs is shown in figure 3.2. It does

not contain any imports but does contain four declarations. Two of them are type

signatures that all mention the implicitly imported String type. Each of them

also mentions another symbol that the other declarations in this same module

bind. Those two symbols are color and number respectively. The declaration

that binds number does not mention any symbols. The declaration that binds

color mentions the implicitly imported string concatenation operator (++).

Module Favorites in figure 3.3 is like Favorites in figure 3.2 except for

the declaration that binds color. Instead of using the string concatenation op-

erator (++) it consists of a literal of the already concatenated string. In module

Favorites in figure 3.4 the declaration that binds number as well as its sig-

nature are different. The type of number is Integer when previously it was

String. The declaration that binds number is a number literal instead of a string

literal.

All implicitly imported symbols are from module Prelude from package

base-4.7.0.0. All example packages list the base package as a dependency.

This package is usually tightly integrated into any Haskell compiler. Therefore

Haskell compilers usually come with this package already installed.

Resolution of imports and exports of Haskell modules is rather involved. For

a formalization of the Haskell module system see [DJH02]. We can uniquely iden-

tify a symbol by its name, the name of module where it is bound and the names-

pace it is in. We have to distinguish value and type namespaces because it is

possible that a type-level and a value-level symbol share exactly the same name.

10

For example it is common to bind a data type as well as a constructor with exactly

the same name in the same module.

3.3 The Package Versioning Policy

We can successfully compile package application-0.1.0 together with pack-

age favorites-0.1.1. We can not compile package application-0.1.0

together with package favorites-0.2.0. Moreover we argue that package

favorites-0.1.1 is preferable to package favorites-0.1.0. The Package

Versioning Policy (henceforth PVP) ensures that a fresh installation of package

application-0.1.0 compiles it together with package favorites-0.1.1

and not with package favorties-0.1.0 (because it is outdated) nor with pack-

age favorties-0.2.0 (because it is incompatible). The PVP suggests how de-

velopers choose version numbers of new packages and how they constrain de-

pendencies on other packages. All packages in section 3.1 follow the PVP. One

goal of the PVP is that if a package compiled at one point in time it should be

possible to compile it at any later point [11]. The other goal is to have users get

all compatible updates on every fresh installation of a package.

Cabal packages have version numbers. A version number is a list of numbers

separated by dots. The first two numbers are called the major part of the version

number, the rest is called the minor part of the version number. In the example

the major part of both version numbers is 0.1 while the minor part of both is the

single digit 0. If the version number would be 4.6.0.3 the major part would

be 4.6 and the minor part would be 0.3. The PVP says that if a library author

releases a new version and it introduces breaking changes the new version is

required to have an increased major version part as compared to the previous

version. If the new version cannot possibly break any package that depends on it

the PVP only requires an increase in the minor version part of the version number.

The version number therefore reflects backwards compatibility.

The PVP furthermore requires that package authors constrain the versions

of every dependency by a lower and an upper bound. In figure 3.1 the package

application-0.1.0 has a dependency on favorites. This dependency has a

lower bound of and including 0.1.0 and an upper bound of and excluding 0.2.

The lower bound must be accurate, which means it has to include the earliest

package that is known to work and not more. The upper bound must exclude

11

packages whose version number has a major part that is larger than the latest

version known to work.

A package does not necessarily expose exactly the symbols that are bound in

it. It can expose more symbols by reexporting and it can exposer fewer symbols

by hiding entire modules or individual symbols. The PVP is only concerned with

exposed symbols. It defines breaking changes to be:

• Removal of an exposed symbol

• Change of an exposed value symbol’s type

• Change of an exposed type symbol’s definition

• Addition of an orphan type class instance

• Removal of a type class instance

It is at the package authors discretion to decide if semantic changes are break-

ing or not. Note that while the addition of orphan instances can break code be-

cause of clashes, instance clashes are impossible for non-orphan instances. This

list does not cover all possible sources of breakage for example through name

clashes. Nevertheless it works pretty well in practice.

3.4 Dependency resolution

In the example in section 3.1 we can compile package application-0.1.0

together with either package favorites-0.1.0 or with favorites-0.1.1.

This means there are two possible installations of package application-0.1.0.

An installation for a package is a list of other packages. In Cabal an installation

has to meet two criteria: It must satisfy all dependency constraints and every

package name must be unique.

The process of finding an installation for a given package is called depen-

dency resolution. It is non-trivial [ACTZ12, TLO10], because the number of candi-

date installations quickly grows with the number of dependencies. In the Haskell

packaging infrastructure the tool cabal-install does dependency resolution. On

the one hand it is very frustrating for users if cabal-install does not find an in-

stallation. Even more so if a working installation exists but version constraints

12

prohibit it. On the other hand if we ignore version constraints it is equally frus-

trating if cabal-install tries a failing installation even though a working one exists.

In Haskell folklore the term for what we call an installation is the term pack-

age instance or just the term instance. But the term instance is easily confused

with the term type class instance. We therefore prefer the term installation.

3.5 The data model

We formalize the concepts that we motivate in the previous sections and show

how they relate. The language of choice for this formalization is Prolog because

we describe primitive entities as well as their relations. We also define new re-

lations based on the primitive ones. An entity relationship diagram of the data

model is given in figure 3.5. Boxes correspond to entities. Their basic properties

are listed in the boxes. Arrows correspond to relationships between entities.

First, we have packages. We uniquely identify packages by their name and

version number. Packages have a next version relation. If there is a package with

the same name and a higher version number the next version is the package with

the lowest version number that is still higher. We also have a relation between

packages that satisfy the dependency constraints of other packages. Finally pack-

ages can have a relation to an installation. An installation is a pair of the package

and a list of other packages.

Every package contains a set of declarations. The only property of a declara-

tion is its source code. Every declaration relates to the symbols it binds. It also

relates to the symbols it mentions. We uniquely identify symbols by their name,

the module where they are originally bound in and their namespace (to disam-

biguate constructors, types and type classes). This allows us to relate declarations

that bind a symbol with declarations that mention it. In contrast to packages and

symbols we do not uniquely identify declarations by their properties i.e. their

source code.

In figure 3.6 we show relations for the packages that we introduce in sec-

tion 3.1. There are four packages in the example in figures 3.1, 3.2, 3.3 and 3.4.

We ignore package base-4.7.0.0 for readability. A version of base comes

with every Haskell compiler and almost all Haskell packages depend on it. The

next version of package favorites-0.1.0 is package favorites-0.1.1 and

the next version of package favorites-0.1.1 is package favorites-0.2.0.

13

Package
packagename : String
versionnumber : String

Declaration
sourcecode : String

Symbol
name : String
module : String
namespace : String

satisfies_constraint

contains

next_version

binds mentions

Installationof

with

Figure 3.5: Data model for Haskell packaging.

14

package(package(’application’, ’0.1.0’)).
package(package(’favorites’, ’0.1.0’)).
package(package(’favorites’, ’0.1.1’)).
package(package(’favorites’, ’0.2.0’)).

next_version(package(’favorites’, ’0.1.0’),
package(’favorites’, ’0.1.1’)).

next_version(package(’favorites’, ’0.1.1’),
package(’favorites’, ’0.2.0’)).

satisfies_constraint(package(’application’, ’0.1.0’),
package(’favorites’, ’0.1.0’)).

satisfies_constraint(package(’application’, ’0.1.0’),
package(’favorites’, ’0.1.1’)).

installation(installation(package(’application’, ’0.1.0’),
[package(’favorites’, ’0.1.0’)])).

installation(installation(package(’application’, ’0.1.0’),
[package(’favorites’, ’0.1.1’)])).

installation(installation(package(’application’, ’0.1.0’),
[package(’favorites’, ’0.2.0’)])).

Figure 3.6: Relations for example packages.

The two packages favorites-0.1.0 and favorites-0.1.1 both satisfy the

version constraint on the favorites dependency of application-0.1.0 so

there are relations to reflect that fact. Package favorites-0.2.0 does not sat-

isfy the version constraint so there is no satisfies_constraint relation for it.

This example also lists three different installations of application-0.1.0: one

with package favorites-0.1.0, one with package favorites-0.1.1, and

one with package favorites-0.2.0.

There are many declarations in the examples in section 3.1. In figure 3.7 we

show relations for the declaration contained in package application-0.1.0

that binds the main symbol. It mentions three symbols: puStrLn originally

bound in module System.IO as well as color and number originally bound

in module Favorites. Note that while the symbol putStrLn is imported from

Prelude it is originally bound in System.IO. Module Prelude reexports it.

This is exactly the kind of data that we need for the case studies in chapter 4.

15

contains(package(’application’,’0.1.0’), D).

sourcecode(D, ’main = do
putStrLn color
putStrLn number’).

binds(D,symbol(’main’, ’Main’, ’value’)).
mentions(D,symbol(’putStrLn’, ’System.IO’, ’value’)).
mentions(D,symbol(’color’, ’Favorites’, ’value’)).
mentions(D,symbol(’number’, ’Favorites’, ’value’)).

Figure 3.7: Relations for an example declaration.

3.6 Installation of unused declarations

Packages rarely use all declarations their dependencies contain. The example

package some-printer-0.1.0 in figure 3.8 contains a section for an executable

that simply prints a string. Package many-things-0.1.0 in figure 3.9 con-

tains among others a declaration for this string. The main declaration in package

some-printer-0.1.0 uses the declaration for thing1 contained in package

many-things-0.1.0. We can relate the two declarations by use because the

former mentions the symbol thing1 that the latter binds.

If we want to compile some-printer-0.1.0 we have to compile its depen-

dencies first. In other words, we have to find and compile an installation for

some-printer-0.1.0. In this example the installation is obvious: we compile

package some-printer-0.1.0 together with package many-things-0.1.0.

But in this example we could compile main without compiling the declarations

for thing2 and thing3. Package some-printer-0.1.0 does not actually use

them.

In figure 3.10 we use the data model from section 3.5 to define what it means

for a declaration to either directly or transitively use another declaration. A dec-

laration directly uses another declaration if it mentions a symbol the other decla-

ration binds. It transitively uses a declaration either if it uses the other declaration

directly or if it directly uses a declaration that in turn uses the other declaration

transitively.

16

-- some-printer.cabal
name: some-printer
version: 0.1.0

executable output-app
main-is: Main.hs
build-depends: base >=4.7.0.0 && <4.8,

many-things >=0.1.0 && <0.2

-- Main.hs
module Main where

import ManyThings (thing1)

main :: IO ()
main = putStrLn thing1

Figure 3.8: Package some-printer-0.1.0

-- many-things.cabal
name: many-things
version: 0.1.0

library
exposed-modules: ManyThings
build-depends: base >=4.7.0.0 && <4.8

-- ManyThings.hs
module ManyThings where

thing1 :: String
thing1 = "thing1"

thing2 :: String
thing2 = "thing2"

thing3 :: String
thing3 = "thing3"

Figure 3.9: Package many-things-0.1.0

17

uses_directly(Using_Declaration, Used_Declaration) :-
mentions(Using_Declaration, Symbol),
binds(Used_Declaration, Symbol).

uses_transitively(Using_Declaration, Used_Declaration) :-
uses_directly(Using_Declaration, Used_Declaration).

uses_transitively(Using_Declaration, Used_Declaration) :-
uses_directly(Using_Declaration, Another_Declaration),
uses_transitively(Another_Declaration, Used_Declaration).

installs_declaration(Installed_Dependencies, Declaration) :-
member(Installed_Dependency, Installed_Dependencies),
contains(Installed_Dependency, Declaration).

actually_uses(installation(Package, Installed_Dependencies),
Used_Declaration) :-

installs_declaration(Installed_Dependencies,
Used_Declaration),

contains(Package,
Declaration),

uses_transitively(Declaration,
Used_Declaration).

Figure 3.10: Definition of installed and actually used declarations.

We also define which declarations an installation installs versus which decla-

rations a package actually uses. The installs_declaration relation relates

an installation with every declaration in one of the installed dependencies. The

actually_uses relation relates an installation of a package with the subset of

those installed declarations that at least one contained declaration transitively

uses. In both cases we do not count declarations in the package itself but only

those from other packages.

In real world packages the problem of compiling declarations that are not

actually used is even more pronounced. We provide evidence for that in section

4.2. We demonstrate a tool that avoids compilation of declarations that are not

actually used in chapter 5.

18

package(package(’some-printer’, ’0.1.0’)).
package(package(’many-things’, ’0.1.0’)).

satisfies_constraint(package(’some-printer’, ’0.1.0’),
package(’many-things’, ’0.1.0’)).

installation(
installation(package(’some-printer’, ’0.1.0’),

[package(’many-things’, ’0.1.0’)])).

actually_uses(
installation(package(’some-printer’, ’0.1.0’),

[package(’many-things’, ’0.1.0’)]),
D).

sourcecode(D,’thing1 = "thing1"’).

Figure 3.11: Example for actually used declarations.

If we set up the data for the example packages from this section as described

in section 3.5 we can deduce the relations shown in figure 3.11. The only decla-

ration that the installation of some-printer-0.1.0 actually uses is the one for

thing1. We could avoid the unnecessary compilation of the other declarations.

3.7 Updates not affecting packages

In section 3.1 we introduce among others packages aplication-0.1.0 and

favorites-0.1.1. We explain why we can not install application-0.1.0

with the newly released package favorites-0.2.0. The reason is that package

aplication-0.1.0 requires the symbol number but the update from package

favorites-0.1.1 to package favorites-0.2.0 breaks it.

In figure 3.12 we show another package color-output-0.1.0 that also

depends on favorites. Its main declaration outputs a color imported from

module Favorites. But in contrast to application-0.1.0 it does not ac-

tually use the declaration for number. Therefore we can successfully compile

color-output-0.1.0 with favorites-0.2.0. But an upper bound on the

dependency on favorites prohibits the installation just as the PVP dictates.

19

-- color-output.cabal
name: color-output
version: 0.1.0

executable color-output
main-is: Main.hs
build-depends: base >=4.7.0.0 && <4.8,

favorites >=0.1.0 && <0.2

-- Main.hs
module Main where

import Favorites (color)

main :: IO ()
main = putStrLn color

Figure 3.12: Package color-output-0.1.0

Knowing favorites-0.2.0 we can see that in this particular case the update

from package favorites-0.1.1 to package favorites-0.2.0 does not af-

fect the package color-output-0.1.0. The update for this package is unnec-

essarily prohibited.

In figure 3.13 we define, based on the model from section 3.5, when an up-

date affects a package. An update is a pair of packages that have the same name

but might have different versions. The second version does not have to be the

immediately next version of that package. An update can jump several versions.

An update affects a package if the package requires a symbol that the update

breaks. A package requires a symbol if it contains any declaration that mentions

the symbol. An update breaks a symbol either if it removes it or if it alters it.

An update removes a symbol if the first package provides it, but the second does

not. A package provides a symbol if it contains any declaration that binds it. An

update alters a symbol if there is a declaration in the first package that binds the

symbol and there is a declaration in the second package that binds the symbol but

the two declarations are different. Two declarations are different if their source

code is different.

20

affects(Update, Package) :-
requires(Package, Symbol),
breaks(Update, Symbol).

requires(Package, Symbol) :-
binds(Package, Declaration),
mentions(Declaration, Symbol).

breaks(Update, Symbol) :-
removes(Update, Symbol).

breaks(Update, Symbol) :-
alters(Update, Symbol).

removes(update(Package1, Package2), Symbol) :-
provides(Package1, Symbol),
not(provides(Package2, Symbol)).

provides(Package, Symbol) :-
contains(Package, Declaration),
binds(Declaration, Symbol).

alters(update(Package1, Package2), Symbol) :-
contains(Package1, Declaration1),
contains(Package2, Declaration2),
binds(Declaration1, Symbol),
binds(Declaration2, Symbol),
different(Declaration1, Declaration2).

different(Declaration1, Declaration2) :-
sourcecode(Declaration1, SourceCode1),
sourcecode(Declaration2, SourceCode2),
not(SourceCode1 = SourceCode2).

Figure 3.13: Definition of an update affecting a package.

21

Two declarations being different could be defined in at least two other ways.

We could define difference based on the type signature or we could define differ-

ence based on all transitively used declarations. In section 4.4 we discuss why we

do not do this.

We conservatively assume that every change of the source code of a declara-

tion is breaking. There is no general way to decide if a code change is breaking or

not. We can imagine approximating the decision with tests, but this is not part of

this thesis.

We call an update together with a using package an update scenario. In our

case study we generate all update scenarios from our data and check if the up-

date affects the using package. We only look at update scenarios where the first

package in the update satisfies the version constraint of the using package. We

assume that this means that the using package works with the first package in the

update. Figure 3.14 makes the definition of update scenario more precise.

There are two interesting properties an update scenario may have. First, if

not only the first but also the second package in the update satisfies the version

constraint of the using package we say that the update scenario is allowed, if it

does not we say that the update scenario is prohibited. Second, we say that an

update scenario is major if the update involves a change in the major version. It

is minor otherwise.

In the example in this section the update scenario is an update from package

favorites-0.1.1 to favorites-0.2.0 for package color-output-0.1.0.

It is prohibited because the version number of favorites-0.2.0 does not sat-

isfy the version constraint in package color-output-0.1.0 on dependency

favorites of >=0.1.0 && <0.2. It is major because the version numbers of

favorites-0.1.1 and favorites-0.2.0 differ in the major part.

In figure 3.15 we list a few examples for the relations defined in this sec-

tion. According to our definition the update from package favorites-0.1.1

to package favorites-0.2.0 does not affect package color-output-0.1.0.

But the update from package favorites-0.1.0 to package favorites-0.1.1

does. In the first case the update alters color while in the second case the up-

date alters number. The package color-output-0.1.0 requires only color,

it does not require number, so only the first update affects it. We as develop-

ers know that it affects the package in a beneficial way and therefore should be

22

update_scenario(
update(Used_Package1, Used_Package2),
Using_Package) :-

update(update(Used_Package1, Used_Package2)),
satisfies_constraint(Using_Package, Used_Package1).

update(update(Package1, Package2)) :-
next_version(Package1, Package2).

update(update(Package1, Package2)) :-
next_version(Package1, PackageInBetween),
update(update(PackageInBetween, Package2)).

Figure 3.14: Definition of an update scenario.

allowed. It it not our concern to define or decide what beneficial means in this

case.

In section 4.3 we find real world update scenarios that are prohibited but

where the update does not affect the package. In chapter 5 we propose a code

management architecture that sidesteps the problem.

23

not(affects(update(package(’favorites’,’0.1.1’),
package(’favorites’,’0.2.0’)),

package(’color-output’,’0.1.0’))).
affects(update(package(’favorites’,’0.1.0’),

package(’favorites’,’0.1.1’)),
package(’color-output’,’0.1.0’)).

alters(update(package(’favorites’,’0.1.0’),
package(’favorites’,’0.1.1’)),

symbol(’color’,’Favorites’,’value’)).
alters(update(package(’favorites’,’0.1.1’),

package(’favorites’,’0.2.0’)),
symbol(’number’,’Favorites’,’value’)).

requires(package(’color-output’,’0.1.0’),
symbol(’color’,’Favorites’,’value’)).

not(requires(package(’color-output’,’0.1.0’),
symbol(’number’,’Favorites’,’value’))).

Figure 3.15: Example relations for an update affecting a package.

24

Chapter 4

A case study on Hackage

We want to know if and to what extent the problems described in sections 3.6 and

3.7 exist in real world Haskell code. To this end we do a corpus based empirical

analysis. We fill a database with the facts introduced in section 3.5. We extract

those facts from a selection of packages from Hackage. Hackage is a large Haskell

package repository. We translate the definitions from sections 3.6 and 3.7 into

queries against that database and interpret the results.

4.1 Methodology

A diagrammatic overview over our methodology is given in figure 4.1.

At the time of writing there are 49989 packages on Hackage. For reasons of

scalability we are not able to analyze all of them and have to pick a sample as

our corpus. We start by picking 10 packages at random. We then keep adding all

versions of all dependencies of all these packages until convergence. The number

of packages chosen this way is given in figure 4.2 together with other numbers.

We want to maximize the number of update scenarios that we can generate from

our dataset. We therefore make our package selection so that there are many

versions of the same package and many dependencies between packages.

We extract and store meta-data about each selected package: Its name, its ver-

sion, which packages satisfy its dependency constraints and its immediate next

version if it has one. This is the first part of the data we describe in 3.5. To get

the other part we install all selected packages with cabal-install. But instead of

running an ordinary Haskell compiler we instruct cabal-install to run our custom

25

Hackage

Selected packages

Declaration
Source code
Genre
Declared symbols
Referenced symbols

Annotated syntax tree

Download

Process module files

Extract declarations

Database
Packages
Declarations
Symbols

Insert

Package
Name
Version number
Dependencies

Insert
Parse Cabal file

Numbers of
Packages
Update scenarios
Prohibited scenarios
...

Measure

Figure 4.1: Overview of the fact extraction and measurement process.

26

tool on the module files in that package. The tool saves two files per module into

a folder named after the package: A list of all declarations in that module and

a list of all symbols the module exports. The lists of declarations is the data we

need and the exported symbols are for name resolution in packages that depend

on this one. Additionally, the case study in section 4.2 needs a list of installations.

For each selected package we take the installation cabal-install chooses.

We do not start every run of cabal-install from a clean state but keep installed

packages between runs to save run time. cabal-install sometimes does not want

to reinstall a package because it is already present. We explicitly force those re-

installs because we sometimes need two instances of the same package differing

only in their concrete dependencies.

We process each module file in the following way. We explicitly set includes

and defines for the C preprocessor that many module files need. The includes

and defines are usually implicitly set by GHC [18], the most widespread Haskell

compiler. We parse the module file with the parser from haskell-src-exts

[19]. Most module files contain annotations that they use language extesions.

Some files use language extensions but do not explicitly say so, so we parse with

those language extensions globally enabled. We then do name resolution with

haskell-names [20] to annotate every symbol occurrence in the parsed abstract

syntax tree with the origin of that symbol. We store a list of declarations. For each

declaration we store its source code, the symbols it mentions and the symbols it

binds. The source code of a declarations is a pretty printing of the abstract syntax

tree of it. We use haskell-src-exts for pretty printing. Each symbol has a

name, an original module and a tag identifying what the symbol refers to: for

example value, type, class and so on. Strictly speaking this is more informa-

tion than we need to disambiguate constructors and types, but haskell-names

already provides exactly this information.

We insert the package meta-data and declarations that we extract from each

package into a neo4j graph database [21]. Packages, declarations and symbols

correspond to nodes. Packages have the properties of a package name and a

version number. Declarations have their source code as their single property.

Symbols have a name, an origin module and their name space as properties. Re-

lationships are contains, binds and mentions and installed_with. For

every declaration in a package there is a declaration node and a contains rela-

tionship from the package node to the declaration node. Every declaration node

27

Packages 728
Declarations 129093
Symbols 17291

Figure 4.2: Numbers of entities in our database

also has relationships binds and mentions to the corresponding symbol nodes.

Additionally every package has an installed_with relationship to each pack-

age it was installed with. It is important that the package nodes are unique per

package name and version number. It is also important that symbol nodes are

unique per their name, origin module and name space so that we can establish

connections between bound and mentioned symbols.

We store these facts in a database. Our measurements are queries against this

database. We implement the queries in Java using the neo4j API. The facts and

the queries are translations from those in sections 3.5, 3.6 and 3.7. Table 4.2 has a

summary of the numbers of different nodes and relationships in our database at

the time of writing.

4.2 Installation of unused declarations

In section 3.6 we motivate how an installation of a package may compile unneces-

sarily many declarations. We now look at the installations of the packages in our

database and compare how many declarations the installation contains versus

how many declarations the package actually uses. We translate the definitions of

installs_declaration and actually_uses from section 3.6 to queries on

our database.

We have 728 packages in our database. We look at one installation for each

package. In figure 4.3 every dot corresponds to an installation for a package. On

the horizontal axis we have the number of installed declarations while on the

vertical axis we have the number of actually used declarations. It is consistently

much lower.

In figure 4.4 we contrast the numbers of contained, installed and actually used

declarations for a few chosen example packages. We see that the number of com-

piled declarations is significantly higher than the number of actually used ones.

28

Figure 4.3: Installed declarations versus actually used declarations.

We conclude that installation of a package where we compile only the relevant

declarations is much faster. But see section 4.4 for the caveats.

4.3 Updates not affecting packages

In section 3.7 we motivate and define update scenarios and when an update does

not affect a package. In this case study we go through all update scenarios that we

can generate on our database and classify them according to if the update affects

the package or if it doesn’t. We do this separately for update scenarios that are

minor or major and for update scenarios that are prohibited or allowed.

The numbers of update scenarios grouped by properties are given in figure

4.5. We generate a total of 74,606 update scenarios. Of these 41,258 are minor.

If packages follow the PVP minor update scenarios should never be prohibited.

Indeed, we do not have any prohibited minor update scenarios in our database.

We divide the other 33,348 major update scenarios into 29,407 allowed ones

and 3,941 prohibited ones. In 14,403 of the allowed scenarios the update affects

the package and in the other 15,004 update scenarios it does not. In 1,896 of the

29

Package Contained Installed Actually used
BiobaseDotP-0.1.0.0 15 433 27
bytestring-0.10.0.1 1369 41 1
ListLike-3.1.7 83 1600 87
ListLike-4.0.1 111 2768 244
statistics-0.10.5.2 599 173 38
parallel-1.1.0.1 125 1807 30
parallel-3.2.0.3 183 1641 7
aeson-0.3.0.0 194 3052 108
aeson-0.3.2.7 210 2967 124
binary-0.7.2.0 313 1807 101
utf8-string-0.3.7 208 0 0
utf8-string-0.3.8 208 1444 24
cereal-0.4.0.0 357 1807 128
parsec-3.1.5 332 2666 8
http-types-0.8.4 314 1193 6
hostname-1.0 4 0 0
network-2.3.1.0 602 2500 20
network-2.4.1.2 655 2500 20
network-2.5.0.0 657 2500 20
xml-1.3.9 286 0 0
zlib-0.4.0.4 145 0 0

Figure 4.4: Contained, installed, and actually used declarations.

30

Update scenarios 74,606
Minor 41,258

Allowed 41,258
Affected 14,403
Unaffected 15,004

Prohibited 0
Major 33,348

Allowed 29,407
Affected 14,403
Unaffected 15,004

Prohibited 3,941
Affected 1,896
Unaffected 2,045

Figure 4.5: Classification and count of update scenarios.

prohibited update scenarios the update affects the package and in 2,045 it does

not.

We expected the number of update scenarios where the update does not affect

the package to be much higher. It is roughly half the total number of update sce-

narios. This seems to be regardless of whether the update scenario is prohibited

or allowed.

4.4 Threats to validity

The results of both case studies might be invalid for a number of reasons.

Some of the packages we initially select do not end up in our database. Either

the solver built into cabal-install fails to find an install plan or our tool is unable

to process a module because the package is only tested with GHC and makes im-

plicit assumptions about preprocessor flags, language extensions or builtin mod-

ules. This causes preprocessing, parsing or name resolution to fail or be incom-

plete. If any of these fails we reject the entire package.

We were not able to validate the results. To validate the results from section

4.2 we would have to try and install each package together with pseudo-packages

where we remove all unused declarations. To validate the results from section 4.3

we would have to try and install each package with the updated dependency.

Both prove difficult because of the number of dependencies in each installation

31

and the time they take to install, especially in the view of a clean state needed for

each test install. We could go even further than testing if a package builds and

run associated tests if there are any. But this clearly is future work.

There is always the possibility of an implementation error. We can not run

the queries as described in chapter 3 directly but have to implement them in Java

against the neo4j API. As this is error prone it is possible that we have not done

this correctly.

Moreover the conclusions we draw may be false because of the following.

The selected packages might not be representative of Haskell packages. One

reason could be that we only consider the library sections of packages and ignore

executables. It is entirely possible that executables exhibit drastically different

usage patterns of other packages. For example it might be that developers of

library packages avoid too many dependencies.

On the one hand we assume that every code change is a breaking one, which

is overly conservative. Instead of comparing the source code we might instead

compare the type signatures of those declarations that have one. This would also

not be fully satisfactory because type signatures being textually different does not

imply that the types are different. Moreover a type could be more general and still

compatible.

On the other hand we are overly liberal, because we do not compare declara-

tions based on their transitive closure of other used declarations. A declaration

can experience a breaking change because one of the declarations it uses experi-

enced a breaking change, even if the source for the declaration stays the same. It is

difficult to trace transitive uses if the declaration uses a declaration from another

package because until dependency resolution fixes an installation it is unclear

what the other package is.

The use of type class methods creates implicit dependencies on type class

instances. It is only clear after instance resolution or in some cases even at runtime

what the actually used instances are. This is out of scope of this thesis. We could

conservatively assume that the use of a method means use of all instances for the

methods class. This is left to future work.

Different installations of the same package might differ. Some packages have

flags controlling different features of packages. The code in a package can differ

depending on the package versions that dependency resolution picks. Haskell

packages also come in different variants for different platforms. If we took into ac-

32

count all these different package installations we would have an increased num-

ber of almost identical packages. We disregard that fact and consider only one

installation per package.

33

Chapter 5

Towards fragment-based code
management

In code package managers a package is the unit of distribution. This means that

developers download, compile and update whole packages. In chapter 3 we mo-

tivate problems that package-based code management has. In chapter 4 we ana-

lyze real world packages to find out how relevant these problems are.

In this chapter we propose an alternative to package-based code distribution

that avoids the compilation of unused code fragments. The key design decision

is to track dependencies between the smallest fragments of code possible. In this

way it is possible to compile only necessary fragments. It should also be possible

to statically and trivially know which fragments an update affects.

We want to distribute individual code fragments, but a code fragment alone

is useless. We need all other code fragments it transitively uses as well. The used

code fragments are its dependencies. We call a code fragment together with all

code fragments it transitively uses a slice. Our use of the term slice is related to

but not the same as the usual meaning from software slicing. The main difference

is that usually slicing is done on the expression level, while we do it for larger

code fragments.

Code slices are available in a repository. Developers use them in their code.

They have to download and compile only those slices that they actually use. Fig-

ure 5.1 gives an overview over the proposed architecture. In its current form, our

architecture does not support many common use cases that code package man-

agers do support. Our long term goal is to create a fragment-based code manager.

34

RepositoryDeveloper

Slices

Download

Slices

Code

Figure 5.1: Architecture of fragment-based code management.

Two things that we imagine but that are missing from this picture are envi-

ronments and updates. An environment is a set of modules that reexport sym-

bols from a set of slices. You can think of them as virtual packages that reuse a

common ground. We can imagine generating a package for a certain platform

that does not contain declarations that do not build on that platform. In our ar-

chitecture usages and therefore dependencies are fixed. This means we avoid

dependency resolution. This also means that all updates have to be explicit. We

envision an update as a set of replacements of a slice with another slice. Updates

could be more fine-grained which makes backporting more pleasant or even un-

necessary. Instead of using CPP we could model variants for different platforms

as updates.

However, we present the implementation of a tool that provides an important

part of the proposed architecture. We call the tool fragnix because it works on

code fragments and is inspired by the Nix package manager [Dol06]. Right now

our tool can take a set of modules and generate all contained slices. It can also

compile a slice that binds a main symbol to an executable. It demonstrates how

35

-- Main.hs
module Main where

import Greet (putHello)

main :: IO ()
main = putHello "Fragnix!"

-- Greet.hs
module Greet where

putHello :: String -> IO ()
putHello x = putStrLn ("Hello " ++ x)

putHi :: String -> IO ()
putHi x = putStrLn ("Hi " ++ x)

Figure 5.2: Example application.

we can avoid compiling any unused code. Section 5.4 talks about future work

and describes interesting development directions.

5.1 A small example program

We want to first extract all slices and then compile the small Haskell program

from figure 5.2. There are two modules: Main and Greet. The main func-

tion uses the putHello function from the Greet module to print the string

"Hello Fragnix!" to the console. It does not use the putHi declaration which

is also declared in module Greet.

If we invoke fragnix on the example files Main.hs and Greet.hs it produces

three slices and an executable called main. But it entirely avoids compilation of

the putHi declaration. Even if we change the putHi declaration and invoke

fragnix again no recompilation is necessary. Changes to putHi do not affect the

executable.

The output of an invocation of fragnix on the example modules is shown in

figure 5.3. To get the executable we invoke a Haskell compiler on two generated

Haskell modules that respectively contain the two relevant code fragments for

36

>fragnix Main.hs Greet.hs
[1 of 2] Compiling F3521215606480787135 [...]
[2 of 2] Compiling F922946688791680081 [...]
Linking main ...

Figure 5.3: Example invocation of fragnix tool.

Modules

Declarations

Slices

Compilation units

Executable

Figure 5.4: Data flow diagram for fragnix tool.

main and putHello. Those generated modules import exactly those symbols

necessary for compilation and not more. An overview of the data flow is in figure

5.4.

5.2 Extracting slices from modules

We extract and store slices from modules. The slices should be shared in a central

repository. For the example in figure 5.2 fragnix finds three slices: one for main,

one for putHello and one for putHi. A json serialization of the one for main

37

{
"sliceID": 922946688791680081,
"fragment": [

"main :: IO ()",
"main = putHello \"Fragnix!\""

],
"usages": [

{
"origin": {
"otherSlice": 3521215606480787135

},
"usedName": {
"valueIdentifier": "putHello"

}
},
{

"origin": {
"originalModule": "System.IO"

},
"usedName": {
"typeIdentifier": "IO"

}
}

]
}

Figure 5.5: Example slice.

is shown in figure 5.5. The important properties of a slice are the code fragment

and a list of usages.

We give a unique ID to each slice. The ID is a hash of its code fragment and

its usages. Because usages refer to other slices by their hash the hash includes

all other code fragments that the slice transitively uses. In this case the hash is

922946688791680081. The code fragment of this example slice consists of two

declarations: The type signature for main and its declaration. The slice has two

usages: it uses the value putHello from another slice that we refer to by ID and

the type IO that is builtin and comes from builtin module System.IO.

We extract all slices in a given set of modules in two steps. First, we extract

all declarations from the given modules. A declaration here consists of the same

38

information as in chapter 3: the source code, all bound symbols and all mentioned

symbols. Second, we build up a graph where the nodes are declarations and

the edges are usages. We also add pseudo usage edges from a declaration to its

type signature if it has one. This graph might have cycles. Cycles are a problem

because the hash of a slice recursively includes the hashes of other slices it uses.

We therefore eliminate all cycles by finding strongly connected components

in this graph. Every strongly connected component consist of several nodes and

therefore of several declarations. A strongly connected component uses another

strongly connected component if any of its declarations uses any of the other com-

ponents declarations. Now we create a slice from each strongly connected compo-

nent where the strongly connected component’s declarations form the slice’s code

fragment and the strongly connected component’s usage edges are the slice’s us-

ages. We compute a hash for each slice in a bottom-up manner. This gives us

slices that we serialize for further processing and possibly sharing.

5.3 Compiling slices

We compile the slice that binds the main symbol to an executable. This means

that we also have to compile all other slices that the main slice transitively uses.

We call these the relevant slices. We do not have to compile slices that are not

relevant. We forge an ordinary Haskell module from each relevant slice. We

call each such module a compilation unit. In the example there are two relevant

slices. The corresponding compilation units are shown in figure 5.6. Both hide the

implicitly imported Prelude and explicitly import only exactly those symbols

that the included code fragment mentions. We do not generate modules for slices

that are not relevant. We then invoke the Glasgow Haskell Compiler [18] on the

generated modules.

The generated module for a slice has as its name the slice’s ID prefixed with

the letter F. The prefix is necessary because numbers can not be module names in

Haskell. The generated module always uses the NoImplicitPrelude pragma

to prevent the implicit import of the Prelude module. This prevents name

clashes and serves as a check that we explicitly include all relevant usages. For

each usage in the slice the generated module has one import statement. If the us-

age refers to another slice the import statement imports from the generated mod-

ule of the other slice. If on the other hand the usage refers to a builtin symbol the

39

-- F922946688791680081.hs
{-# LANGUAGE NoImplicitPrelude #-}
module F922946688791680081 where
import F3521215606480787135 (putHello)
import System.IO (IO)

main :: IO ()
main = putHello "Fragnix!"

-- F3521215606480787135.hs
{-# LANGUAGE NoImplicitPrelude #-}
module F3521215606480787135 where
import System.IO (putStrLn)
import Prelude ((++))
import Prelude (String)
import System.IO (IO)

putHello :: String -> IO ()
putHello x = putStrLn ("Hello " ++ x)

Figure 5.6: Example compilation units.

40

import statement imports from the module that originally binds the mentioned

symbol. The actual code in the generated module is exactly the code fragment of

the slice.

We invoke GHC on the generated module that contains the fragment that

binds main. We also tell GHC to use the folder that contains the generated mod-

ules as a search directory. GHC chases module imports and finds the correspond-

ing generated module files. There are no unused imports in the generated mod-

ules. We do not compile any unused code fragments.

5.4 Future work

Our vision goes beyond the architecture that we present in this chapter. Our ul-

timate goal is to make dependencies lightweight enough that there is no second

thought in reusing other people’s code. It should also be easier to find and con-

tribute individual declarations than cloning. This means we want not only faster

installation and recompilation but also robustness against change. We want to

systematically analyze use cases for code package managers. Based on this we

want to design ways of user interaction.

Even if we do not use fragnix for code management we can use the existing

infrastructure to statically analyze Haskell code. Because we know all transitive

dependencies we can find code fragments that transitively use unsafe or depre-

cated features. We could also find real world examples of use to help learning

about a package.

Finally we are also interested in how the idea extends from Haskell to other

functional and non-functional languages.

41

Chapter 6

Conclusion

We have discussed two problems that are inherent in package-based code distri-

bution. The first problem is the unnecessary compilation of code fragments that

are not actually used. The second problem is that the Package Versioning Policy

prohibits updates that do not even affect a package. We have conducted two case

studies to evaluate the relevance of these problems.

Although our results are subject to quite a few threats to validity, we believe

that we have shown that compilation time could drastically be reduced by early

elimination of unused code fragments.

In about half of the prohibited updated scenarios the update does not af-

fect the package. This means it is probably worthwhile to do more fine-grained

dependency and update tracking and to automatically adjust the upper version

bounds of packages.

We have explored how an alternative to package-based code distribution could

look like. Instead of having packages as the unit of distribution, as well as the unit

of compilation, documentation and update, we propose a system with more flex-

ibility. The fragnix tool already delivers on the reduced compilation time, but

how code distribution and version control work under this different paradigm is

unclear. Our exploration is only at its very beginning.

42

Bibliography

[ACTZ12] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchi-

roli. Dependency solving: A separate concern in component evolu-

tion management. Journal of Systems and Software, 85(10):2228 – 2240,

2012. Automated Software Evolution.

[ADC11] P. Abate and R. Di Cosmo. Predicting upgrade failures using depen-

dency analysis. In Data Engineering Workshops (ICDEW), 2011 IEEE
27th International Conference on, pages 145–150, April 2011.

[ASDC+12] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Why

do software packages conflict? In Mining Software Repositories (MSR),
2012 9th IEEE Working Conference on, pages 141–150, June 2012.

[BJL13] Nikolaos Bezirgiannis, Johan Jeuring, and Sean Leather. Usage of

generic programming on hackage: Experience report. In Proceedings
of the 9th ACM SIGPLAN Workshop on Generic Programming, WGP ’13,

pages 47–52. ACM, 2013.

[Boh02] Shawn A. Bohner. Extending software change impact analysis into

cots components. In Proceedings of the 27th Annual NASA Goddard
Software Engineering Workshop (SEW-27’02), SEW ’02, pages 175–,

Washington, DC, USA, 2002. IEEE Computer Society.

[BOL14] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An

infrastructure for large-scale collection and analysis of open-source

code. Science of Computer Programming, 79(0):241 – 259, 2014. Exper-

imental Software and Toolkits (EST 4): A special issue of the Work-

shop on Academic Software Development Tools and Techniques

(WASDeTT-3 2010).

43

[CC05] Gerardo Canfora and Luigi Cerulo. Impact analysis by mining soft-

ware and change request repositories. In Proceedings of the 11th IEEE
International Software Metrics Symposium, METRICS ’05, pages 29–,

Washington, DC, USA, 2005. IEEE Computer Society.

[CC06] Gerardo Canfora and Luigi Cerulo. Fine grained indexing of soft-

ware repositories to support impact analysis. In Proceedings of the
2006 International Workshop on Mining Software Repositories, MSR ’06,

pages 105–111. ACM, 2006.

[DJH02] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A formal

specification of the haskell 98 module system. In Proceedings of the
2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, pages 17–28,

New York, NY, USA, 2002. ACM.

[Dol06] Eelco Dolstra. The Purely Functional Software Deployment Model. PhD

thesis, Universiteit Utrecht, January 2006.

[KCM07] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A sur-

vey and taxonomy of approaches for mining software repositories in

the context of software evolution. J. Softw. Maint. Evol., 19(2):77–131,

March 2007.

[KDPJM14] Scott Kilpatrick, Derek Dreyer, Simon Peyton Jones, and Simon Mar-

low. Backpack: Retrofitting haskell with interfaces. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, pages 19–31, New York, NY, USA, 2014.

ACM.

[KM07] Huzefa Kagdi and Jonathan I. Maletic. Combining single-version

and evolutionary dependencies for software-change prediction. In

Proceedings of the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 17–, Washington, DC, USA, 2007. IEEE

Computer Society.

[LSLZ13] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey

of code-based change impact analysis techniques. Softw. Test., Verif.
Reliab., 23(8):613–646, 2013.

44

[MDBZ09] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and

Andreas Zeller. Mining trends of library usage. In Proceedings of
the Joint International and Annual ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software Evolution (Evol) Workshops,

IWPSE-Evol ’09, pages 57–62, New York, NY, USA, 2009. ACM.

[MKL+14] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Geor-

gios Gousios, and Diomidis Spinellis. The bug catalog of the maven

ecosystem. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 372–375, New York, NY, USA,

2014. ACM.

[MT11] István Bozó Melinda Tóth. Building dependency graph for slicing

erlang programs. Periodica Polytechnica Electrical Engineering, 55(3-

4):133–138, 2011.

[Raj00] Václav Rajlich. Modeling software evolution by evolving interoper-

ation graphs. Annals of Software Engineering, 9(1-2):235–248, 2000.

[RB06] Nuno F. Rodrigues and Luís S. Barbosa. Component identification

through program slicing. Electronic Notes in Theoretical Computer Sci-
ence, 160(0):291 – 304, 2006. Proceedings of the International Work-

shop on Formal Aspects of Component Software (FACS 2005) Pro-

ceedings of the International Workshop on Formal Aspects of Com-

ponent Software (FACS 2005).

[RDV13] Steven Raemaekers, Arie van Deursen, and Joost Visser. The maven

repository dataset of metrics, changes, and dependencies. In Pro-
ceedings of the 10th Working Conference on Mining Software Repositories,

MSR ’13, pages 221–224, Piscataway, NJ, USA, 2013. IEEE Press.

[Szl11] Marcin Szlenk. Metamodel and uml profile for functional program-

ming languages. In Wojciech Zamojski, Janusz Kacprzyk, Jacek

Mazurkiewicz, Jarosław Sugier, and Tomasz Walkowiak, editors, De-
pendable Computer Systems, volume 97 of Advances in Intelligent and
Soft Computing, pages 233–242. Springer Berlin Heidelberg, 2011.

[Tip94] Frank Tip. A survey of program slicing techniques. Technical report,

Amsterdam, The Netherlands, The Netherlands, 1994.

45

[TLO10] Paulo Trezentos, Inês Lynce, and Arlindo L. Oliveira. Apt-pbo: Solv-

ing the software dependency problem using pseudo-boolean opti-

mization. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 427–436, New York,

NY, USA, 2010. ACM.

46

Technical Documentation

[1] Haskell declarations. https://github.com/phischu/

haskell-declarations. Accessed: 2015-01-22.

[2] Master thesis script. https://github.com/phischu/

master-thesis-script. Accessed: 2015-01-22.

[3] Declaration import. https://github.com/phischu/

declarationimport. Accessed: 2015-01-22.

[4] Master report. https://github.com/phischu/masterreport. Ac-

cessed: 2015-01-22.

[5] Fragnix. https://github.com/phischu/fragnix. Accessed: 2015-01-

22.

[6] Semantic versioning 2.0.0. http://semver.org/. Accessed: 2015-01-22.

[7] FP Complete. Stackage server. http://www.stackage.org/. Accessed:

2015-01-22.

[8] Silk. bumper: Automatically bump package versions, also transitively.

https://hackage.haskell.org/package/bumper. Accessed: 2015-

01-22.

[9] Developing with sandboxes. https://www.haskell.

org/cabal/users-guide/installing-packages.html#

developing-with-sandboxes. Accessed: 2015-01-22.

[10] Multi-instance packages. https://ghc.haskell.org/trac/ghc/

wiki/Commentary/Packages/MultiInstances. Accessed: 2015-01-22.

47

https://github.com/phischu/haskell-declarations
https://github.com/phischu/haskell-declarations
https://github.com/phischu/master-thesis-script
https://github.com/phischu/master-thesis-script
https://github.com/phischu/declarationimport
https://github.com/phischu/declarationimport
https://github.com/phischu/masterreport
https://github.com/phischu/fragnix
http://semver.org/
http://www.stackage.org/
https://hackage.haskell.org/package/bumper
https://www.haskell.org/cabal/users-guide/installing-packages.html#developing-with-sandboxes
https://www.haskell.org/cabal/users-guide/installing-packages.html#developing-with-sandboxes
https://www.haskell.org/cabal/users-guide/installing-packages.html#developing-with-sandboxes
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Packages/MultiInstances
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Packages/MultiInstances

[11] Eternal compatibility in theory. https://www.

haskell.org/haskellwiki/The_Monad.Reader/Issue2/

EternalCompatibilityInTheory. Accessed: 2015-01-22.

[12] Tim C. Schroeder. hackage-diff: Compare the public api of different ver-

sions of a hackage library. http://hackage.haskell.org/package/

hackage-diff. Accessed: 2015-01-22.

[13] Thomas Schilling. Specifying dependencies on haskell code.

https://www.haskell.org/pipermail/cabal-devel/2008-May/

002799.html. Accessed: 2015-01-22.

[14] Thomas Schilling. Beyond package version policies. http://nominolo.

blogspot.de/2012/08/beyond-package-version-policies.

html. Accessed: 2015-01-22.

[15] Simon Marlow. Haskell 2010 language report. https://www.haskell.

org/onlinereport/haskell2010/. Accessed: 2015-01-22.

[16] The haskell cabal: Common architecture for building applications and li-

braries. https://www.haskell.org/cabal/. Accessed: 2015-01-22.

[17] Package versioning policy. https://www.haskell.org/

haskellwiki/Package_versioning_policy. Accessed: 2015-01-

22.

[18] The glasgow haskell compiler. https://www.haskell.org/ghc/. Ac-

cessed: 2015-01-22.

[19] Niklas Broberg. haskell-src-exts: Manipulating haskell source: abstract syn-

tax, lexer, parser, and pretty-printer. https://hackage.haskell.org/

package/haskell-src-exts. Accessed: 2015-01-22.

[20] Roman Cheplyaka. haskell-names: Name resolution library for haskell.

https://hackage.haskell.org/package/haskell-names. Ac-

cessed: 2015-01-22.

[21] Inc. Neo Technology. Neo4j, the world’s leading graph database. http:

//neo4j.com/. Accessed: 2015-01-22.

48

https://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
https://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
https://www.haskell.org/haskellwiki/The_Monad.Reader/Issue2/EternalCompatibilityInTheory
http://hackage.haskell.org/package/hackage-diff
http://hackage.haskell.org/package/hackage-diff
https://www.haskell.org/pipermail/cabal-devel/2008-May/002799.html
https://www.haskell.org/pipermail/cabal-devel/2008-May/002799.html
http://nominolo.blogspot.de/2012/08/beyond-package-version-policies.html
http://nominolo.blogspot.de/2012/08/beyond-package-version-policies.html
http://nominolo.blogspot.de/2012/08/beyond-package-version-policies.html
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/cabal/
https://www.haskell.org/haskellwiki/Package_versioning_policy
https://www.haskell.org/haskellwiki/Package_versioning_policy
https://www.haskell.org/ghc/
https://hackage.haskell.org/package/haskell-src-exts
https://hackage.haskell.org/package/haskell-src-exts
https://hackage.haskell.org/package/haskell-names
http://neo4j.com/
http://neo4j.com/

	Introduction
	Related work
	Code package managers
	Empirical software engineering
	Change impact analysis
	Haskell, Hackage, Cabal

	A model of Haskell packaging
	An example dependency situation
	Modules, packages, dependencies
	The Package Versioning Policy
	Dependency resolution
	The data model
	Installation of unused declarations
	Updates not affecting packages

	A case study on Hackage
	Methodology
	Installation of unused declarations
	Updates not affecting packages
	Threats to validity

	Towards fragment-based code management
	A small example program
	Extracting slices from modules
	Compiling slices
	Future work

	Conclusion

