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Zusammenfassung

Unstrukturierte Textdokumente enhalten viele Informationen die heutzutage mit
automatisierten Methoden extrahiert werden können. In dieser Arbeit wird ein
Framework entwickelt mit dessen Hilfe ein Evaluationsschema zur Evaluation von
Textverarbeitungstools erarbeitet wird. Das Evaluationsschema basiert auf der Mod-
elabhängigen Softwarevaluation und der modelabhängige Teil basiert auf dem Verar-
beitungsprozess der von dem Conceptual Analysis Process abgeleitet ist. Der Con-
ceptual Analysis Process ist im Rahmen des GLODERS Projektes entwickelt wurden.
GLODERS ist ein EU-Projekt mit dem Fokus ein IKT Modell zu entwickeln welches
helfen soll Extortion Racket Systems besser zu verstehen. Im Rahmes des GLODERS
Projektes wurden Gerichtsdokumente eines Falles in Deutschland zu Verfügung
gestellt, die in dieser Arbeit die Datengrundlage stellen. Zum Schutz involvierter
Personen sind die Daten anonymisiert. Mit dem entwickelten Schema werden dann
sechs verschiedene Softwarelösungen im Bezug auf die automatisierte Verarbeitung
von unstrukturierten Textdokumenten evaluiert.
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Abstract

In this work a framework is developed that is used to create an evaluation scheme
for the evaluation of text processing tools. The evaluation scheme is developed us-
ing a model-dependent software evaluation approach and the focus of the model-
dependent part is the text processing process which is derived from the Conceptual
Analysis Process developed in the GLODERS project. As input data a German court
document is used containing two incidents of extortion racketeering which hap-
pened in 2011 and 2012. The evaluation of six different tools shows that one tool
offers great results for the given dataset when it is compared to manual results.
It is able to identify and visualize relations between concepts without any addi-
tional manual work. Other tools also offer good results with minor drawbacks. The
biggest drawback for some tools is the unavailability of models for the German lan-
guage. They can perform automated tasks only on English documents. Nonetheless
some tools can be enhanced by self-written code which allows users with develop-
ment experience to apply additional methods.
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1 Introduction

Extortion Racket Systems are widely spread all over the world. They vary in their
appearance and structure. The best known group performing extortion is the Mafia.
Other groups for example are motorcycle gangs like the Hells Angels or the Ban-
didos or the Japanese originating Yakuza. These groups are considered organized
crime syndicates and they are known to participate in organized crime like protec-
tion racketeering or extortion.

In Germany extortion racketeering is carried out by national and foreign groups.
Turkish (16.1%) as well as Russian and Vietnamese groups (9.7% each) play a ma-
jor role [Bundeskriminalamt, 2008, p.82-92]. In Germany the perpetrators also in-
clude motorcycle gangs. In 2003 to 2005 0.1% of all reported offences in Germany
had been classified as extortion offences. In absolute numbers the amount is close
to 6000 reported extortion offences per year with a clear up rate of around 85%
[Tangenberg, 2007]. In a study on extortion racketeering, performed in 2008 by the
Joint Research Center on Transnational Crime (University of Trento and Univer-
sity of Milano in Italy), all European countries had been analyzed. The study rates
the seriousness of extortion racketeering in Germany with medium whereas other
countries like Italy are rated with a high value. The Italian situation with reference
to extortion racketeering is one of the most complex, owing to the types of actors
involved and the relationships they create with the victims of extortive demands
[Impresa, 2007]. Organized extortion racketeering as an activity of organized crime
is mostly concentrated in some southern regions of the country. It is generally em-
ployed by mafia-type organizations in order to gain better control over the territory
at local level and infiltrate the legitimate economy. These two examples of European
countries show that extortion racketeering is a common crime. When extortions are
reported to the police the case is usually brought to court where all involved people
are questioned to determine the suspect.

The European project GLODERS aims to develop an ICT model to understand
Extortion Racket Systems. Within the scope of the GLODERS project data from court
files qualify for further research to gain information out of raw court files in order
to reveal structures automatically. In the last few years the amount of tools for text
processing increased and big machine learning suites obtained extensions for text
processing functionality. All these tools offer different amounts of text processing
methods that are required to analyze structured and unstructured data, but there is
no tool optimized to analyze data from extortion racket cases.

1.1 Aim

The aim of this work is to evaluate different text processing tools, which are previ-
ously selected, based on their ability to process extortion related data and to find
a suitable tool. Three research questions are used to find answers to subgoals to
achieve the main goal of this work.
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1. What is the structure of the text processing workflow for extortion related
data?

2. What are the evaluation criteria?

3. Which phases of the process are supported by which tool?

To answer the first question the Conceptual Analysis Process of the GLODERS project
is used. The process is derived and methods are applied which fulfill and support
the steps of the process. The second research question is based on the first one. The
evaluation criteria are developed based on a framework, literature and the process
resulting of the first research question. Afterwards six previously selected tools are
evaluated using the scheme to determine which tools support which phases of the
process and which tools are able to produce results that can be compared with re-
sults created by manual analysis.

1.2 GLODERS

The GLODERS (The Global Dynamics of Extortion Racket Systems) project is a Eu-
ropean project funded by the European Union under the 7th framework program.
The aim of the project is “to develop an ICT model for understanding Extortion
Racket Systems, an aspect of the dynamics of the global finance system”1 (Figure 1).

Figure 1: GLODERS Logo

The project started in October 2012 and is scheduled to be finished end of
September 2015 after 3 years. The project is coordinated by the University of Sur-
rey in the United Kingdom. The three other participants are the National Research
Council in Rome, the University of Palermo and the University of Koblenz-Landau
in Germany. In previous work extortion related court documents had been ana-
lyzed. Therefore a process was developed that will be the baseline of this work.
Additionally a German case was made available for the project in the end of 2013
that will serve as the data input for this work. In chapter 3.7 the case is described in
detail to give a short overview of the complexity.

1http:www.gloders.eu
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1.3 Extortion Racketeering/Protection Racketeering

Extortion racketeering and protection racketeering are criminal acts of obtaining
money by extorting businesses or single persons. Extortion and protection racke-
teering is usually performed by organized crime groups. The difference between
extortion racketeering and protection racketeering is the intention of the offender.
In extortion racketeering the offender usually extorts the victim by threaten him
with bodily harm, whereas in protection racketeering the offender offers the victim
protection if the victim pays enough money to the offender. The offenders operate
outside the area of the law. If a victim is not willing to pay, the offender may threaten
the victim on a direct way which results in extortion racketeering. Extortion Racke-
teering exists all over the world. One group that is known for performing extortion
and protection racketeering is the Mafia. Estimations show that 160 million Euro
are paid by shops and businesses in the Palermo region as protection money per
year [Pisa, 2008]. The amount paid by the shop or business depends on the kind of
goods sold. 4 out of 5 Sicilian businesses pay protection money [Moore, 2007] which
shows the huge size of protection racketeering especially in this region.

There are two different types of extortion racketeering, systemic and casual,
linked to three main variables [TRANSCRIME, 2008]:

• The organizational structure of the criminal crime group that engages in ex-
tortion racketeering

• Its strong presence at local territorial level

• The victim-offender relationship

Figure 2: Hierarchical Organization (left) and Criminal Network (right)

There are two types of organizational structure that can be distinguished (Fig-
ure 2). The first one is a hierarchical organization. It is the most common form
of organized criminal group identified in a study [TRANSCRIME, 2008]. It con-
sists of a clear hierarchy with a single leader. The allocation of tasks inside the
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organization is clear and there is usually a code of conduct, which is of course
not officially recorded. The second type is a criminal network which usually con-
sists of small numbers of individuals. Not every person inside a network is con-
nected to each other, but they can be connected with the help of another individual
[UNODC, 2008]. The territorial aspect can be differentiated between systemic extor-
tion and casual extortion. In systemic extortion the extortion phenomenon is well
rooted and well spread over a territory. Extortion is a part of criminal business and
it is performed routinely. In casual extortion on the other hand the extortion is an
episodical phenomenom and it is not spread over a territory. In this case extor-
tion is not practiced routinely. The victim offender relationship can be seperated
in three categories - parasitic, symbiotic and predatory. In a parasitic relationship
the perpetrator demands several payments over a long periodic of time, whereas in
a symbiotic relationship the victim also receives a illicit benefit. Protection racke-
teering is a symbiotic relationship where the victim retrieves protection as benefit.
The last category is the predatory relationship. In this case the extortive payment is
demanded only once.

1.4 Structure

The first chapter of this work briefly introduced the European project GLODERS,
addressing the global dynamics of extortion racket systems, and the motivation for
this work.

The second chapter contains a detailed description of the case which was made
available for the project for research including a classification of the type of extortion
previously described. The case is used as data basis for the evaluation of the text
processing tools performed in a later chapter.

The third chapter provides the theoretical background of methods and technolo-
gies used in text processing and in the process of the evaluation as well as basic
background knowledge about software evaluation.

To obtain a brief overview of the text processing tools, the fourth chapter then
briefly introduces the tools after describing their selection process. The tools evalu-
ated range from specialized text processing tools to machine learning tools with text
processing extension and from open source to commercial software.

Afterwards the framework is developed to create the evaluation scheme which
is then used for the evaluation. The Conceptual Analysis Process is derived which
than serves as the base line for one part of the evaluation scheme.

In the sixths chapter the previously selected tools are then evaluated using the
scheme. The result produced during the evaluation are then compared with the
manually retrieved results.

The last chapter will then offer a guidance for a tool selection to process extortion
related text documents and an outlook is provided containing thoughts about future
developments.
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2 The Case

In 2013 court documents to a case in Germany had been made available for the
GLODERS project to research. The case is a small case covering two incidents of
extortion racketeering involving two main suspects, two accomplices, two victims
who own a business together and seven witnesses. The documents are protocols of
testimonies and other reports covering the incidents of the case. Since the case is
small it can be easily analyzed manually which offers a good way for comparison
with results which are achieved while evaluating different text processing tools. In
this chapter the case is described to give an overview. Both incidents and the over-
all relations are described. The analysis focuses on relations between persons. To
protect any persons involved in the case all names and places are anonymized. The
type of extortion covered in this case is more a casual extortion than a systemic one.
The organizational structure identified during the research is a small criminal net-
work. Both incidents are casual extortions. They occur two times in a time frame of
a year and they are not practiced routinely. The victim-offender relationship for this
case is predatory. There is no symbiotic or parasitic relationship since the extortion
only occured twice. If the extortion would go on for a longer time frame it could be
considered as a parasitic relationship.

The first incident took place in 2011. The two main suspects (Suspect 1 and Sus-
pect 2) bodily harmed and extorted the proprietor (Victim 1) outside of the business.
The suspects threaten the victim and the incident is not reported to the police. Two
people (Witness 5 and Witness 7) witness the extortion but they do not report it to
the police at this point of time. Some days later the accomplice (Suspect 3) collects
the money of the victim (Figure 3).

Figure 3: First Extortion (2011)
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The second incident took place in 2012 and is a little bit more complex since
more people are involved. Nobody was bodily harmed, but this time the incident
was reported to the police. This time Suspect 2 tries to extort Victim 1 again. He
refers to the previous extortion and bodily harm. The affiliate of Victim 1 is on site
during the conversation. The extortion focuses the business of both. Therefore he
is referred as Victim 2. Nobody is bodily harmed but this time other people get to
know of the extortion and motivate the victims to inform the police. The second
accomplice is the mother of the second suspect who is the extorter in this case. She
tries to intimidate the wife of victim 2 (Witness 4). Multiple relatives of the victims
are involved and finally inform the police (Figure 4).

Figure 4: Second Extortion (2012)

Both incidents evolve around the main victim (Victim 1) and his small business
(Place 1) which he runs together with Victim 2. The first extortion did no take place
at the business itself. It was outside at a friends place (Place 2). The extortion and
bodily harm is witnessed by two witnesses who promise to not report the incident.
After the second extortion both witnesses describe the first incident in their testi-
mony. The second extortion is only performed by Suspect 2, who also participated
in the first incident, and this time it also involved Victim 2. The first suspect is not
involved in the second incident. More witnesses are involved in the second inci-
dent which lead to revealing both incidents to the police. The whole structure of
both incidents combined shows that both extortions differ in size and it also shows
a complex structure of relations between all involved people (Figure 5). Actions
are visualized with solid directed edges and relations are visualized with dashed
directed edges.
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Figure 5: The Case
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3 Theoretical Background

A simple sentence can have various meanings for different recipients. A human is
able to use additional knowledge to interpret the sentence. A different perspective
or background knowledge can lead to various actions since the pragmatism is based
on the sentence and the background information. "The train arrives at 4:30pm." will
inform a person that a train will be at 4:30pm at a specific location. For most peo-
ple this information is useless unless they intent to pick someone up from this train
or if they want to take the train themselves [Searle, 1969]. In this work text data is
analyzed with different text processing tools to gain information about relations be-
tween named entities mentioned in the document. The different tools are evaluated
based on a evaluation scheme that is developed with a model-dependent software
evaluation framework. Therefore this chapter will give background knowledge of
text processing, its methods and software evaluation.

3.1 Content Analysis

In social sciences, Content Analysis is the general name for the methodology and
technologies to analyze the content of messages [Holsti, 1969]. Basically any tech-
nique to make inferences by objectively and systematically identifying specified
characteristics of messages is defined as Content Analysis. Content Analysis there-
for is a research technique to make replicable and valid inferences from texts to the
context of their use [Krippendorff, 2012]. Nowadays Content Analysis is often re-
ferred as Text Processing. The task of text processing is supported by systems and
tools with either manual or automatically steps. Klaus Krippendorff invented a
framework for Content Analysis (Figure 6). The general process in content analy-
sis is to analyze data based on a specific research question. The text is analyzed to
gain answers to the research question. Therefor methods are applied to infer these
answers.

Figure 6: Krippendorff Framework
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The Krippendorff framework differentiates between two views. The first view is
the view of different people. These people may have knowledge about the informa-
tion in the text. The second view is the view of the person who conducts the content
analysis. This person has the text and wants to analyze it to gain information about
a specific research question. The content analyst wants answers for his questions
and therefore he performs the content analysis using different methods. Afterwards
the answers can be validated with the evidence of the people of the first view.

The aim of the analysis is to determine the value of one or more theoretically in-
teresting variables based on a message content [van Atteveldt, 2008]. Van Atteveldt
differentiates between two common methods to conduct Content Analysis. The first
one is Thematic Content Analysis which is a manual approach where human coders
classify documents using a pre-defined categorisation scheme. The biggest draw-
back of this method is that human coding is expensive and human coders need
to be extensively trained to achieve reliable coding [van Atteveldt, 2008]. The sec-
ond alternative is called Semantical Network Analysis or Relational Content Analysis
[Roberts, 1997]. Semantic Network Analysis first represents the content of the mes-
sages as network of objects. This network can the be queried to answer the research
question. The automated methodology to extract the information out of a text to
create a network is called Information Extraction. This work focuses on a more auto-
matic way of text processing whereby the first method of human coding is not used.
The network analysis method is used, since it allows to create a network using au-
tomatic text processing methods which then can be queried by an analyst.

3.2 Information Extraction

Information Extraction (IE) is an automatically approach used for Content Analysis.
Information Extraction describes the process of extracting information from actual
text documents by computer at high speed [Wilks, 1997]. It can be confused with
Information Retrieval (IR) which is used to select a relevant subset of documents from
a larger set. IR retrieves texts from users in response to their queries, whereas IE
processes texts into fixed format unambiguous data. IE can also exist on the same
level as an IR system being used to automatically extract data on some topic of
interest to a user from a corpus of texts and use this structured data as input to a
spreadsheet or database [Smeaton, 1997]. The distinction between IE and IR is not
totally clear everywhere and is a question of degree but usually the process starts
with IR and in is succeeded by IE.

Most of the information in documents exist only in natural language form. Infor-
mation Extraction helps to analyze the information by distilling a document into a
more structured form in which individual facts are accessible [Grisham, 1997]. Huge
documents with widely scattered information are reduced to a simple data base us-
ing different methods. The simple data base then can be used to further analysis of
the data. Machine readable dictionaries are used to enrich the document with ad-
ditional information and machine learning algorithms are used to derive structures
and then adapt them to more data. Common methods used in IE are described in
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the following section.
In 1997 when the topic of IE became of more interest it was seen as a new tech-

nology rather then a new idea since the idea of extracting information from data was
not new. In 1964 papers were published with titles like "Text searching with tem-
plates" [Wilks, 1987]. The earliest effective IE work was that of Sager [Sager, 1981]
within a medical domain, and constituting a long- running project combining sur-
face syntax analysis and the use of templates [Wilks, 1997]. Around 1995 multiple IE
projects were supported by the European Commission, covering industrial-backed
applications or research projects. AVENTINUS for example is a project to enhance
existing information systems for prevention and detection of offences by using IE
methods. The project was used to underpin European police and government law-
enforcement in the drugs field2.

3.3 Methods

Multiple methods are used in this work to extract information from unstructured
documents which in this case are the court documents of the case described in chap-
ter 2. The complexity of the methods differ and range from simple methods like
Language Identification to more complex methods like Named Entity Recognition. The
methods and their functionality are described in the following section.

3.3.1 Language Identification

Language Identification is one of the simple tasks of Information Extraction
[Grefenstette, 1995] and there are multiple approaches. One of the easiest approach
is to rely on given meta data. This approach is quite inflexible since it requires the
given language in the meta data of a document which is not always given. An
approach for web pages is to simply rely on the domain name. In this case the
assumption is made that a site on a ’.de’ domain always provides text in German.
This assumption has some flaws. For example countries with multiple languages
like Belgium or Canada have one domain and the language of the content can differ.
Nowadays most web pages offer multi language support which makes the approach
not effective. Additionally since there are domains which are not bound to a country
like ’.ag’. A more complex approach which is the most common approach for lan-
guage identification is to identify the language based on given character sequences.
Based on a dictionary containing common short words or common sequences the
language of the document can be identified based on calculated probabilities from
any large text [Grefenstette, 1997]. Common short words appearing in German texts
are articles like ’der’, ’die’ or ’das’. English documents usually contain a huge amount
of ’the’. Every language has different common words that can be used to identify a
language. Multiple common short words are used to identify a language to enhance
the quality of identification. The advantage of this approach is that is does not rely
on any given meta data or additional information.

2http://cordis.europa.eu/project/rcn/34067_en.html
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3.3.2 Tokenization

A tokenizer segments an input stream of data into an ordered sequence of to-
kens. Each token corresponds to an inflected word, a number, a punctuation mark,
or other kind of unit to be passed on to subsequent natural language processing
[Grefenstette, 1997]. The process of tokenization is language dependent and re-
quires a model build for the specific language. In some languages a sequence of
words needs to be considered as single token for further linguistic treatment. In
English combined words are usually separated. ’Criminal Network’ for example is
a sequence of two words that have to be seen as a single token. Another exam-
ple for language specific cases is the use of separators inside words. In French
the separator splits a word into two tokens whether in English it usually combines
a sequence of words belonging together. ’l’amour’ can be considered as two sin-
gle tokens whereas ’won’t’ should be considered as a single token. Depending on
the algorithm used for tokenization punctuations are not included in the resulting
list of tokens. For the algorithms it is important to identify sentence boundaries
[Grefenstette and Tapanainen, 1994] since parser tools work on entire sentences. Be-
sides the tokenization into word algorithms exist to tokenize an input stream into
sentences, linguistic sentences or to tokenize it based on given regular expressions.

3.3.3 Stemming

Stemming is a method which is used to reduce words to their stem. A stem of a word
is a form to which affixes can be attached [Sampson and Postal, 2005]. The words
’consistency’ and ’consistent’ both have the same stem which is ’consist’. A stem is the
part of a word that is common to all its inflected variants [Kroeger, 2005]. Stemming
can be important since it helps to identify important words inside a document which
appear in different versions. Nonetheless there is also a theory that shows that the
quality can be reduced by stemming since words might be reduced to a wrong stem
which can result in wrong classifications.

Algorithms used to reduce words to their stems are called Stemming Algo-
rithms or stemmers. The first stemmer was developed in 1968 by Julie Beth Lovins
[Lovins, 1968] and had huge impact on following stemming algorithms. Stemming
is language dependent since every language appends different affixes to the stem.
The first stemmers developed were always build for English words. In 1979 Martin
Porter developed a stemming algorithm nowadays known as the Porter Stemmer3.
The stemmer was released in 1980 and is still used in many applications. The stem-
mer was released as an official free software which allowed different implementa-
tions for multiple development languages. The Snowball Stemmer4 is the stemmer
which is suggested by Martin Porter since it derived from the Porter Stemmer and
has a higher efficiency. The Snowball Stemmer is available for different languages

3http://tartarus.org/ martin/PorterStemmer/
4http://snowball.tartarus.org/algorithms/english/stemmer.html
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including German5, Italian and French. The algorithm used for different languages
is similar but some rules are different. The algorithm for the German language for
example includes more vowels and also special characters like ’ö’ or ’Ä’. For mul-
tilangual documents multilangual stemmers can be used. They use morphological
rules to find the best fit.

3.3.4 POS Tagging

Every word inside a sentence has a specific role and sentences usually follow lan-
guage specific rules defining the syntax. A method used to identify the role of a
word inside a sentence is called Part-Of-Speech tagging. Each word gets a part-of-
speech symbol assigned using a model which is developed for the language. Syn-
tax in languages differ which requires language dependent models trained for the
specified syntax to enhance the sensitivity of the model. The tags assigned by the
tagger depend on the model and the tagset which is used. For German tagging the
Stutgart-Tübingen-Tagset (STTS)6 is used. English documents can be tagged using the
PennTreebank tagset7 developed by the University of Pennsylvania and French docu-
ments can be tagged using the French PennTreebank tagset which is derived from the
PennTreebank tagset and provided by the National Center for Scientific Research of
France.

A word can have different meanings depending on the context and the part in-
side the sentence. The word ’watches’ can be a noun or it can be a verb. The part-of-
speech has to be determined by taking the rest of the sentence into account. In some
languages nouns can be identified quite easily since they are mostly preceded by an
article [Grefenstette, 1997].

A common method is to create a manually tagged corpus which then can be
used to calculate probabilities about the frequency with which tag sequences are
found [DeRose, 1988]. To store the probabilities for a word enough text needs to be
tagged [Briscoe et al., 1994] to allow the creation of a Hidden Markov Model using the
statistical information to disambiguate the parts-of-speech by calculating the most
probable part through all the possible tags [Charniak, 1993]. Other alternative tech-
niques are to train a tagger over untagged text so that the entropy of tag transitions
is minimized [Cutting et al., 1992] or to use a manually tagged corpus to to generate
correction rules [Brill, 1992] or to create a set of rules describing which transitions
are impossible [Voutilainen et al., 1992]. The common tagger build into the text pro-
cessing tools which are evaluated in this work use models build with the Hidden
Markov Model on text corpora for specific languages.

5http://snowball.tartarus.org/algorithms/german/stemmer.html
6http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/stts-table.html
7http://www.cis.upenn.edu/ treebank/
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3.3.5 Named Entity Recognition

Named entities can be identified with Part-of-Speech tagging. Names appear fre-
quently in many types of texts, and identifying and classifying them simplifies fur-
ther processing. Names are important as argument values for many extraction tasks
[Grisham, 1997]. Named Entity Recognition is a method that uses a combination of
regular expressions stated in terms of parts-of-speech syntactic feautures and or-
thographic features like capitalization to further identify the type of named entity
which can we ’Person’, ’Location’ or other custom types. Named Entity Recognition
is language dependent and requires a model trained for a specific language to guar-
antee a high accuracy. In the beginning the highest performance was reached using
hand coded patterns but the performance of systems which learn from annotated
corpora has been improved since then and was a few percent below that of hand
coded system in 1997 [Bikel et al., 1997]. OpenNLP for example provides an model
built for English documents using an annotated corpora. Models for different lan-
guages are available and trained using annotated corpora for the specific language.
In the early days simple method were used to identify names of persons or com-
panies. A company name could be identified by thy type of the company which
is usually attached to the name like ’Ltd.’ or ’GmbH’. Names were identified by
preceeding titles, common first names or middle initials. Often a single person is
referred to in different ways in a single document. Modern Named Entity Recognition
is able to identify aliases and match them to the corresponding person with high
accuracy.

3.3.6 Co-Occurrence

Words inside a document often relate to other words in a document. Co-occurence
describes a relation between two words. The level of co-occurrence can be ad-
justed to find more specific relations inside a document. The most general approach
is co-occurrence in a document where words are assumed to be topically related
[Momtazi et al., 2010]. The distance inside a document is irrelevant as is their order
of appearance. Document co-occurrence has been succesfully used in many NLP ap-
plications such as automatic thesaurus generation [Manning et al., 2008]. The most
common approach which is also used by tools in this evaluation is co-occurrence in
a sentence. It assumes that a word w is related to a word w’ inside the same sentence.
An even narrower approach is the co-occurrence in a window of text. It only consid-
ers terms in a window surrounding a word. Relations are based on their proximity
in text [Krukow, 2013]. Usually a window of fixed size is moved along the text. The
size of the window is a flexible parameter and can be changed. Previous research
suggests different parameters. Seven is suggested by Diesner [Diesner, 2012] and
five by Church and Hanks [Church and Hanks, 1990]. The last and most specific co-
occurrence is the co-occurrence in a syntactic relationship. It is based on the sentence
co-occurrence with the additional requirement that both words need to be related
syntactic. For example objects related to a the same topic.
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3.3.7 Pattern Matching

Matching and searching elementary discrete structures arose in Computer Science
and their relevance was expected to grow even further due to the increasing amount
of digital available information [Apostolico and Galil, 1997]. Pattern Matching de-
scribes the process of checking a sequence of tokens to find a pattern which is de-
fined in before. A pattern is usually defined using a regular expression. Pattern
matching only returns string that match exactly the regular expression. Named En-
tity Recognition uses pattern matching to classify a named entity to a more detailed
type. Pattern matching can be combined with Named Entity Recognition and Co-
Occurrence to identify relations between two named entities and to define the type
of their relation.

Suspect1[NE(PERSON)] extorts[VAFIN] Victim1[NE(PERSON)]

In specific the verb between two named entities can be used to describe the rela-
tion. In the example the two named entities are related by the verb between them.
The words are tagged using the STTS tagset. A regular expression used to identify
words like this require the Part-of-Speech tagging and Named Entity Recognition in
previous steps. Regular expressions are complex and have to be defined manually.
The rules have to be tagset dependent since different tagsets use different tags for
same words. The German STTS tagset for example defines twelve different tags for
verbs. The tags depend on the type and the time. It differentiates between different
forms of a verb. The imperative for example (VVIMP) has a own tag since it has
strong influence on the meaning of a sentence.

3.4 CRISP-DM

The CRoss Industry Standard Process for Data Mining (CRISP-DM) reference model
was conceived in late 1996 [Chapman et al., 2000]. It was developed to provide a
standard process model for data mining independent of a specific industry, tool or
application. In 1997 the inventors formed a consortium and obtained funding from
the European Commission. The CRISP-DM 1.0 version was presented in 2000 and
in 2008 the construction of version 2.0 started [Marbán et al., 2009].

A life cycle of a typical data mining project consists of six phases which are the
six phases which are part of the CRISP-DM reference model. Each phase interacts
with another phase and can be bidirectional (Figure 7). The six phases of the process
are Business Understanding, Data Understanding, Data Preparation, Modeling, Evalua-
tion and Deployment.
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Figure 7: CRISP-DM Reference Model according to [Chapman et al., 2000] by Ken-
neth Jensen

The first phase is Business Understanding. It focuses on understanding the project
objectives and requirements from a business perspective. This knowledge then can
be used to identify the data mining problem and to develop a plan to achieve the
objectives.

After the objectives are clear and the data mining problem is developed it is
important to understand the data. Different data requires different methods to re-
trieve good results. Understanding the data can lead to changes of the data mining
problem wherefore a bidirectional connection exists between the first two phases.

Missing values or outliers can lead to bad and flawed models. Therefore it is
important to prepare the data and create a final dataset. In this phase missing values
can be replaced using different methods and outliers can be normalized. The initial
data can be reduced by attribute selection or the data can be cleaned using various
other methods. Methods in this phase can be performed multiple times and are not
bound to a specific order. Required methods depend on the data and the desired
output.

When the final dataset is created it can be used as input for a various range of
modeling techniques. The type of model applied can have impact on the structure
of the dataset which then requires to run the data preparation phase once more.
Different models can be used for the same problem.

After a model is built which is assumed to have a high quality based on the
previous phases it is common to evaluate the result before the model is used in a
productive environment. If the model fulfills the defined business objectives it can
be deployed in the next phase. If this is not the case the process has to start over and
the objectives have to be refined or the data has to be prepared different to fulfill all
defined goals.
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After validating a high quality model it can be deployed. The last phase of the
process is used to deploy the model in a live environment or just to create a report
based on the generated knowledge. In some cases it can be the creation of a whole
automated data mining process for a organization.

In this work the model is used to underpin the selection of the criteria for the
evaluation scheme. Especially the first phases are important and used to verify
the importance of the Data Preparation phase. The CRISP-DM reference model also
shows that the process is not necessarily linear.

3.5 Social Network Analysis

In Social Network Analysis relations between individual actors are analyzed using
network theory. The origins of an approach to social structure explicitly using ideas
of a social network are difficult to discern. In the 1930s the network thinking emerged
as a distinct approach to social structure [Scott, 2011]. A social network is an ex-
plicit representation of the relationship between individual and groups in a com-
munity [Finin et al., 2005]. Relations in a network can be labeled with information
about the strength of a relation between two actors but network analysts are also
strongly interested in combining concepts and methods of social networks and se-
mantic web to retrieve information about the communicative content exchanged
by the related actors [Mika, 2007]. Semantic webs are used to represent semantic
relations between concepts. Such vision of a Semantic Social Network depends on
the availability of automated tools to extract and formalize information from un-
structured documents [Cucchiarelli et al., 2012]. The human interaction would be
restricted to post-editing. Over the past generations the public and academic inter-
est in social networks grew rapidly [Knoke and Yang, 2008].

Graph theory originated in the mathematical investigations undertaken by Eu-
ler and provides a method for studying networks of all kinds [Scott, 2011]. The two
main elements required for a network are nodes and edges between the nodes. In a
social network nodes represent actors who may be individual natural persons or col-
lectives such as informal groups and formal organizations [Knoke and Yang, 2008].
The edges represent a connection between a pair of nodes. They can also represent
the flow of influence or resources in a social network and they can be assigned a
value to represent the strength of their relation [Scott, 2011]. A node can have multi-
ple relations to different nodes. In special cases the relations can be directed in which
case the graph also can be displayed as matrices. Distances between nodes can be
visualized using a dendrogram. In traditional social network analysis relationships
are modeled as a function of quantifiable social interactions [Wasserman, 1994]. The
desired network analysis for this work is a systematic network analysis based on
indicators.
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3.6 Software Evaluation

Evaluating software is a common process to identify a software suitable for a spe-
cific need or to guarantee a high quality software by evaluating the software during
the development to find quality issues. In this case it can be compared to quality as-
surance or software assessment. In this work the software evaluation is performed
from a user perspective to evaluate suitable tools for a specific need. The process
of software evaluation is not standardized and can be performed in different ways.
Evaluation schemes help to evaluate a software based on given criteria. Nonethe-
less software evaluation is a tricky balance between hard objectivity and the very
subjective individual user experience. The user experience is usually a very subjec-
tive part since it strongly depends on the background knowledge of the user who is
evaluating the software.

The Software Sustainable Institute (SSI)8 has two guidelines for the evaluation
process. Following these guidelines leads to a objective evaluation since the cri-
teria are split into multiple sub criteria that can be evaluated using given values.
Nonetheless the evaluation always stays subjective unless it can be completely eval-
uated using measurable values. It is common to use methods like the delphi meth-
ods to remove the subjectivity of an evaluation by combining multiple results of
different expert evaluators. The two guidelines provided by the SSI are:

• Criteria based Software Evaluation and

• Tutorial based Software Evaluation

The criteria based evaluation uses a given scheme that can be applied for general
software and the tutorial based evaluation focuses on the evaluation of a developers
perspective. In this work the guideline for the criteria based evaluation is derived to
create an evaluation scheme specified for text processing tools. The specific evalua-
tion framework that is used in this work is the Model-Dependent Software Evaluation
which is described in the next section in more detail.

3.7 Model-Dependent Software Evaluation

Model-dependent software evaluation is an approach introduced by Ebert and
Dumslaff in 1993. It can be described as a software evaluation with the focus on
specific aspects of the software which is evaluated. The base line for the model-
dependent software evaluation is a model of the reality wherefore the software will
be used [Winter et al., 1993]. Usually a modern software offers a lot of functionality
which is not necessarily used by every user since software is not always developed
for a specific task. The model-dependent software evaluation approach requires a
model of a specific process to develop the criteria for the evaluation. Additionally
some model-independent criteria known from the casual software evaluation are

8http//www.software.ac.uk
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used. These criteria and framework conditions are not model-dependent. For ex-
ample criteria like the user interface, the supported platforms or the available doc-
umentation are not model-dependent.
The first step of the model-dependent software evaluation is the creation of the
model. The model is developed by people with knowledge of the desired process
and with the help of literature. The model is a representation of the process and
is divided into the single important parts that will retrieve the focus during the
evaluation. The model serves as base line for the development of the criteria for
the model-dependent evaluation, which can be divided into qualitative and quan-
titative criteria. The criteria for the model-independent software evaluation parts
are taken from literature since they are parts of a casual software evaluation. The
model-independent part additionally includes framework conditions like the sup-
ported operating systems.
A software offers a specific performance spectrum, a user interface and framework
conditions that have to be evaluated based on the criteria developed out of the
model and the literature. Each part of the software is evaluated based on the cri-
teria which is based on the model (Figure 8). This results in a software evaluation
with the focus on a specific process.

Figure 8: Process Model for Software Evaluation according to Ebert and Dumslaff
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4 Text Processing Tools

The available amount of tools that can be used to analyze big data is huge. They
range from specialized tools for specific areas to general tools with a huge amount
of methods for different tasks. In this work a selection of this tools are evaluated
to gain information of the suitability for extortion related data. In this section the
selection process is described followed by a brief introduction to the selected tools.

4.1 Selection Process

For the evaluation six tools are selected that offer text processing methods. The
selection of the tools is based on different factors.The first factor is the degree of
specialization. This factor is the most important since it likely has the biggest im-
pact on the results of the process. This is based on the fact that a tool which is
specialized on text processing offers more in depth methods, whereas a general tool
might offer more options for a common data analysis but less in depth methods. An-
other factor in the selection process is the availability and the licensing of the tools
summarized as accessibility. Most tools are open source and free available, whereas
some are commercial tools with special licensing for research purposes. The open
source tool usually offer a huge amount of methods and can be extended by adding
own snippets developed in a common programming language. To guarantee a good
overview for each combination a tool is selected and evaluated (Table 1).

General Specialized

WEKA AutoMap
Open Source RapidMiner GATE Developer

Knime

RapidMiner
Commercial IBM SPSS Modeler AutoMap

Table 1: Tool Selection Criteria

4.2 The Tools

The six tools selected for further analysis are WEKA, RapidMiner, Knime, IBM
SPSS Modeler, AutoMap and GATE Developer. WEKA is a strong open source
data mining tool developed by the University of Waikato in New Zealand (Table
2). Since WEKA is open source, it offers a lot of methods and functions to analyze
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big amounts of data and it can be extended by writing classifiers in Java. Rapid-
Miner and Knime are both open source data mining tools which offer text min-
ing/processing extensions (Table 2 & 3). Both tools can be extended by self written
nodes in Java. RapidMiner is available in different licensing options. For the anal-
ysis the free starter version is used since it offers the required functionality. The
other options are only required for bigger data analysis and interoperability with
other analysis tools. WEKA, RapidMiner and Knime are three tools that represent
the General Open Source category. IBM SPSS Modeler is the only fully commercial
tool selected since IBM offers licenses for educational purposes (Table 3). It is a big
tool for data mining and offers many nodes for different data mining tasks. The text
analysis extension allows the IBM SPSS Modeler to perform text processing meth-
ods.
The two tools that are specialized on natural language processing are AutoMap and
GATE Developer (Table 4). AutoMap is a tool developed by the Carnegie Mellon
University that can be used to reveal structure of social and organizational systems
from texts. It works together with ORA, which is also developed by the Carnegie
Mellon University, to visualize the structure. AutoMap can be freely used for re-
search purposes and a commercial licensing of the software is possible. The last tool
is GATE Developer, an open source tool specialized on the analysis of the human
language.

WEKA RapidMiner
Publisher University of Waikato RapidMiner GmbH
Country New Zealand Germany
Model Open Source Open Source & Commercial

Specialization General General
Version 3.6.11 6

Table 2: Selected Tools Overview

KNIME IBM SPSS Modeler
Publisher KNIME.com AG IBM
Country Switzerland USA
Model Open Source Commercial

Specialization General General
Version 2.10 16

Table 3: Selected Tools Overview 2 (continued)
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AutoMap GATE Developer
Publisher Carnegie Mellon University University of Sheffield
Country USA United Kingdom
Model Open Source & Commercial Open Source

Specialization Specialized Specialized
Version 3.0.10.36 8

Table 4: Selected Tools Overview 3 (continued)
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5 Analysis

The model-dependent software evaluation approach depicted in 3.7 is divided into
two parts. The first one is a general part and the second one is the specific part that
is dependent on a model. In this case the model is the text processing process of
court documents into a visualization of the structure of the persons involved in the
case. In this chapter a framework for the evaluation scheme is developed and the
process used for the model-dependent part is described in detail and the origin of
this process is outlined.

5.1 The Evaluation Scheme Framework

The evaluation scheme is developed and described in the next chapter. For the
development of the evaluation scheme a framework is used based on the Model-
Dependent Software Evaluation framework introduced in chapter 3.7. The framework
defines how the criteria of the evaluation scheme are selected. (Figure 9).

Figure 9: Evaluation Scheme Framework

The evaluation scheme is divided into a model-independent and a model-dependent
part. The model-independent criteria are derived from the Criteria-Based Evaluation
guideline of the Software Sustainability Institute9. The model-dependent criteria are
based on a specific model. The model is the text processing process which is derived
from the Conceptual Analysis Process developed in Deliverable 2.110 of the GLODERS
project and the CRISP-DM reference model introduced in chapter 3.4 and described
in chapter 5.2. The evaluation scheme criteria are defined and described in the next
chapter.

9http://software.ac.uk/
10http://www.gloders.eu/images/Deliverables/GLODERS_D2-1.pdf
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5.2 The Process

To get a useful visual representation out of text files, theses text files have to be
processed. The aim is to generate a visualization of the social structure. Previous
work done inside the GLODERS project introduced the Conceptual Analysis Process
[GLODERS, 2013]. The Conceptual Analysis Process aims at extracting concepts and
their relations from text. The Process is based on manual and automatic steps which
are not strictly linear. The focus of this work is to perform quantitative analysis on
unstructured text data. Therefore the Conceptual Analysis Process serves as baseline
for the process developed in this work. The process introduced in Deliverable 2.1
of the GLODERS project consists of four main phases. Concept Ontology Develop-
ment, Concept Identification, Relationship Identification and Concept Network Analysis.
The results of each phase are used to improve the methods to achieve better results
in a second run. The targeted process should be able to run nearly completely auto-
matic. Therefore the process will contain the main phases defined in the GLODERS
project with an additional data preparation phase in the beginning to prepare the
input data. The CRISP-DM reference model defines a data mining process and the
phases of the reference model explained in chapter 3.4 are used to verify the pro-
cess derived from the Conceptual Analysis Process of the GLODERS project. The pro-
cess developed is divided into four sub processes (Figure 10). Each subprocess has
multiple methods that are used to transform the data and prepare it for the next
subprocess. The methods inside the subprocesses can and in some cases have to
be combined to achieve a result that can be used in the next subprocess. The first
step is the Data Preparation, where the input data is transformed and prepared for
further processing. The second step is the Concept Identification, where the concepts
are defined and analyzed. In this step the data is enriched with information that is
required to identify named entities. The third step is the Relationship Identification.
In this step the relationships between the identified concepts are evaluated. The last
step is the Concept Network Identification where the relationships discovered in the
previous steps are visualized and modified.

Figure 10: The Analysis Process

The process derived from the Conceptual Analysis Process replaces the Concept
Ontology Development phase with the Data Preparation phase since the aim is to an-
alyze the data automatically without any manual work. It is the most important of
the four subprocesses. It can’t be carried out blindly [Pyle, 1999, p. 87] since all the
following steps build on the outcome of the preparation steps. The data preparation
phase offers the most methods of all phases of the process. All methods inside this
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phase can be combined to create the best outcome that can be used in the following
phase of the process. The three other phases of the process have less methods which
are more specified then the general preparation methods of the first phase (Figure
11).

Figure 11: Subprocesses of the Analysis Process

5.2.1 Data Preparation

The most time consuming phase is the first phase of the process. In this phase mul-
tiple methods are used to remove unnecessary parts of the text and to enrich the
text with additional information that helps in the following phase to retrieve better
results.

The court documents which serve as input data for this evaluation are scanned
copies in the .pdf-format. Before any tool is able to process these documents they
need to be transformed into text files. This is done using an open source Optical
Character Recognition (OCR) tool. Afterwards some additional manual preprocessing
might be required to enhance the quality of the text files. The amount of manual
preprocessing always depends on the quality of the raw input data. This part is not
evaluated and not part of the process itself.

Since the input data for this work is unstructured text data from court documents
some important data preparation methods are required and mandatory. Methods
that are used in the first phase are Input Format, Language Identification, Error Clean-
ing, Anonymization, Tokenization Stop Word Filter, and Stemming.
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Input Format

After using optical character recognition the unstructured text data is available as
flat file. Different tools support different data format as input. Most tools accept flat
files, but some tools require files to be in a specified structure. The first step of the
data preparation phase is to transform the data into the required input format. This
step has to be performed manually if the tool does not support unstructured text
files.

Language Identification

The case used in this evaluation is completely in German, whereby there is no direct
need for this phase since the result is already known. Nonetheless it is required
for texts where the language of the input data differs since some text processing
methods require language specific models.

Error Cleaning

Error Cleaning is required in this process to enhance the quality of the desired out-
put. Therefore it is important that the data which is used in the process is known.
Errors can be results of the optical character recognition transformation. The errors
can be handled by given dictionaries or by creating dictionaries manually for recog-
nized errors in previous analysis phases. Typos of names can result in two different
concepts discovered in the concept identification phase even if it should be a single
concept. When errors like this are discovered when the result is reviewed the dic-
tionary for error cleaning can be updated and the result of the next iteration of the
process will enhance the quality of the result.

Anonymization

Court documents and other documents that are used to identify relationships be-
tween concepts usually contain names of persons, locations and organizations which
are the desired result of the analysis. If the results are just used for internal research
anonymization is not necessary. If the data, results, or just part of the results should
be published in any kind of way the names of persons, locations or organization
might give insights on the input case for persons who are not allowed to get these
information. In this evaluation the input data are court documents containing real
names of persons and locations that need to be anonymized. In the case description
in chapter 2 the names already have been anonymized. The same dictionary can be
used for anonymization to ensure that the manual analysis delivers similar results
to the results of the different tools.
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Tokenization

Unstructured data can be regarded as one single variable or token. Tokenization
helps to split the data into smaller parts which increases the speed of the analy-
sis. Tokenization usually varies between splits into paragraphs, sentences or single
words. Paragraphs can be detected by line breaks whereas sentences can simply be
detected by punctuation.

Stop Word Filter

A sentence usually consists of multiple single words combined containing a spe-
cific message. Some words can be stripped from the sentence to reduce the amount
of words without changing the meaning. Stop Word Filter are used to strip these
words from the text to enhance the quality and to optimize the data for the concept
identification and relationship identification phase. Tools might have language spe-
cific filter lists whereas other tools might not have filter lists at all. Dictinaries can
be created to write these lists manually.

Stemming

Words exist in many variations and usually have similar meanings. Every word
consist of a root from which these variants derived. Stemming is used to reduce
these variations to the root. This method helps to optimize concepts since possible
duplicates are prevented. Stemming is language dependent and requires specific
models for each language to deliver good results.

5.2.2 Concept Identification

The second phase of the process is applied right after the data is preprocessed.
The purpose of this phase is to identify the concepts laying behind the collection
of strings in the raw data. These concepts are required for the third phase where the
relationships between concepts are analyzed. In the Concept Identification phase
there are multiple methods and approaches that can be used and combined. The
approaches differ in the amount of the required manual work. The methods are lan-
guage dependent since they require models trained on each language. Methods for
in this phase are Part-Of-Speech Tagging and Named Entity Recognition. Additionally
Dictionaries and Taxonomies can be used to enhance the concept identification.

Part-Of-Speech Tagging

The first method used in the Concept Identification phase is Part-Of-Speech tagging. It
is used to detect named entities in the data which are the desired concepts. Part-Of-
Speech tagging also tags each single token based on a specific tagset. These tagsets
differ for different languages. The most common tagsets are the Stuttgart-Tübingen
Tagset (STTS) for the German language and the PENN Treebank Tagset for English
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texts. The Part-Of-Speech tags can also be used in relationship identification phase
to help name a relationship. A verb for example can define the relationship between
two concepts.

Named Entity Recognition

The most common natural language processing method to identify a concept
is the Named Entity Recognition (NER). It is a specialized form of Part-Of-
Speech tagging since it focuses only on named entities. A named entity is
a phrase that contains the name of a person, an organization or a location
[Tjong Kim Sang and De Meulder, 2003]. Named entities are already identified by
the Part-Of-Speech tagging, but the NER is more specific about the exact role in the
sentence. Part-Of-Speech tagging defines a named entity as NE whereas Named-
Entity-Recognition specifies them as Person, Location, Organization, Money, Date
or Time.

[Suspect A (PER)] threatens [Victim A (PER)] at [Place A (LOC)]

In this example Named-Entity Recognition identified three named entities. Two
persons and a location. Combined with previous data preparation methods a good
starting point for a relationship identification is given by Named Entity Recognition.

Dictionaries

The most simple method for Concept Identification are dictionaries. A dictionary
contains the information that is used to identify a concept in the input data. There-
fore the person who creates the dictionary needs to have background knowledge of
the input data. Dictionaries require a lot of manual work and the size of a dictionary
depends on the size of the input data. In many cases it is easier to use automatic
methods like the Named Entity Recognition first to check how good the automatic
methods perform without adding additional manual work. Missing entities can be
then added with the help of dictionaries. The output data of the first phase can also
be reviewed to generate a dictionary. A list of all discovered named entities during
the Part-Of-Speech tagging can be used to create the dictionary without additional
background knowledge of the input data.

Taxonomies

Similar to dictionaries taxonomies can be helpful to clearly identify concepts. By us-
ing taxonomies the amount of duplicate concepts can be reduced. A common way is
to use predefined taxonomy dictionaries or to manually create dictionaries contain-
ing taxonomies. For the manual creation the user requires background knowledge
of the input data. Like previous methods the quality can be enhanced by updating
the taxonomy dictionaries after duplicates have been recognized in previous runs.
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When the taxonomy dictionaries are updated the relationship identification phase
should deliver better results.

5.2.3 Relationship Identification

After concepts are identified in the data the identification of relationships between
concepts are the aim of this phase. Two different methods are used to identify these
relations. The first method is Co-Occurrence which is a automatic method. The sec-
ond method is Pattern Matching which is a more manual approach.

Co-Occurrence

Co-Occurrence uses the assumption that a relationship exists between concepts if
they occur inside a predefined range. If previous identified concepts occur inside a
given range they are taken as relationship.

[Suspect A (PER)] threatens [Victim A (PER)]

In this example a relationship between Suspect A and Victim A would be iden-
tified. Co-Occurrence is not defining the type of the relationship.

Pattern Matching

Pattern Matching identifies relationship based on predefined rules. These rules are
usually regular expressions and they have to be defined. A concept which is fol-
lowed by a verb which is then again followed by a second concept would be an
example for a rule. The verb in this case defines the relationship. Available rulesets
can be used or they can be created manually. Part-Of-Speech tagging is required be-
fore this method to make the rules work. These rules also depend on the language of
the input data since the syntax of a sentence can be different in different languages.
Rules can be defined in different ways and using Part-Of-Speech tags is just one.

5.2.4 Concept Network Analysis

The last phase of the process is the phase where the identified relations are visual-
ized. In this phase there are two methods that are used to fulfill this requirements.
Additionally there is one important additional criteria which covers the possibility
of data exportation. This step might be important if a tool is not supporting visu-
alization itself. Visualization and Social Network Analysis are the methods that are
reviewed for the tool itself.

Visualization

The first step of the Concept Network Analysis phase is to visualize the results of
previews phases in any kind of way. The most simple way is a list of identified re-
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lations. Better results are graphical outputs. A cluster map or a network connecting
concepts are other more complex variants. The availability of visualization methods
may vary between the tools.

Social Network Analysis

Social Network Analysis is the best result for a visualization of the identified rela-
tions. In this case it is important that the results can be viewed and if it is possible
to manually edit them. Manually work on the networks can be performed by users
knowing the case to remove invalid relationships. The best case of the whole process
is a network graph which contains all important relations that had been detected by
the manual analysis.

Export for Visualization

Tools that are not able to visualize the results of the Relationship Identification phase
might be able to export the results to visualize them with a different software. Some
tools might offer integrated interoperability with specialized tools for displaying
relations whereas other tools might be able to export the data in a format that can
be used with these tools as well.
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6 Evaluation

After developing the process and the evaluation scheme framework the evaluation
scheme itself is required to evaluate the different tools. The evaluation scheme is
build using the evaluation scheme framework described in the previous chapter.
The first part of the scheme is a model-independent part where the tools are eval-
uated based on criteria that are not dependent on the process. The second part is
the model-dependent part that evaluates the tools based on criteria that is influ-
enced by a specified model or process as described in chapter 3.7. After defining
the evaluation scheme and describing the criteria the tools are evaluated based on
the scheme. Subsequent to the evaluation the result of each tool is compared to the
networks manually generated and depicted in chapter 2. The full evaluation table
can be found in the appendix.

6.1 Evaluation Scheme

The evaluation scheme is developed using the model-dependent software evalu-
ation model introduced in chapter 3.7. The focus of the evaluation scheme is on
the model-dependent part. Nonetheless the model-independent part is considered
as well. To enhance the clarity of the evaluation scheme the single criteria will be
divided in main criteria with sub criteria. In most cases of the model-dependent
criteria it will be a binary evaluation whether a tool supports a specific functionality
or not. In some cases on the other hand it will be an evaluation about availability of
specific attributes like models for different languages. The aim of this evaluation is
to give an overview about the tools and their functionality in focus of the use for text
processing extortion related data. The evaluation is aimed to support a future user
to decide which tool fits the best for the specific purpose of text processing on extor-
tion data. Therefore the evaluation is designed for a user perspective. The Software
Sustainability Institute11 differentiates between a user evaluation, a user-developer
evaluation, a developer evaluation and member evaluations. The only one suitable
is the user evaluation, since this evaluation focuses on the usability of the software
as-is without the need of writing code [Jackson et al., 2011b].

6.1.1 Model-Independent Criteria

The first part of the model-dependent software evaluation framework is the model-
independent part. In this part the criteria are developed based on suggestions by
the Software Sustainability Institute who derived the criteria from ISO/IEC 9126-1
Software engineering - Product quality 12 [Jackson et al., 2011a]. Three main criteria
are used for the evaluation of the model.independent part. The criteria are Gen-
eral, Usability and Sustainability. The sub criteria are show in the following list and
described in each subsection.

11http://www.software.ac.uk
12http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749
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• General

– Publisher / Developer

– Country

– Extensions

– Specialization

• Usability

– User Interface

– Documentation

– Supported Operation System

• Sustainability

– Support

– License

– Accessibility

– Interoperability

– Version

6.1.1.1 General

The first criteria of the model-dependent part are summarized under the main cri-
teria General. These criteria help to gain an brief overview about a tool. The first
criteria shows the publisher or the developer of the tool followed by the country
where the tool is developed. The third criteria is an import criteria for the evalua-
tion since it lists extensions that are necessary to enable text processing capabilities
for the tools that are more general and not specified for natural language process-
ing processes. The last general criteria is the specialization of a tool. The tools are
selected by two different aspects as described in chapter 4.1. This criteria captures
the specialization aspect of the selection process. The second aspect is covered by
the Accessibility criteria under the Sustainability main criteria.

6.1.1.2 Usability

Usability is the extend to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency, and specified context of use [ISO, 2008].
It is an important criteria in every user perspective evaluation since it has a huge im-
pact on the user experience. For this evaluation scheme the Usability main criteria
is split into three sub criteria. The first one is the User Interface which sums up the
general user interface of a tool. Tools have different user interfaces that will be eval-
uated on a range from good to bad with the fact in mind that it is a user perspective
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evaluation. Therefore aspects like error-handling, learnability and memorability are
considered. The second criteria is the Documentation of the tool. The criteria is used
to measure the quality of the documentation. The documentation of a tool may vary
in detail and in completeness. The documentation can be available in different lan-
guages additionally to English which sometimes can be helpful even if the English
documentation usually is more detailed. The last usability criteria is the Supported
Operation System criteria. It is used to display on which operating system is sup-
ported by the tool.

6.1.1.3 Sustainability

The sustainability main criteria is the last criteria of the model-independent part of
the evaluation scheme. The criteria summarizes criteria that show how sustainable
a tool is. The first criteria is the Support for the tool. Some developer offer support
for a tool, but for some tools the support is only available for commercial packages
of the tool. The support itself can vary between boards supervised by the develop-
ers to phone or email support. The advantage of boards is that topics created by
other users can already help to find a solution and that developers can be informed
about errors in specific versions. These information then help to improve upcoming
releases. The License of a tool is the second criteria. It helps to achieve an overview
of the tool and to determine how the tool can be used or how it can be further devel-
oped. The third criteria is Accessibility, the second aspect of the tool selection process
described in chapter 4.1. It is differed between open source and commercial tools.
Open Source tools usually offer a greater user base which leads to faster develop-
ment, whereas commercial software usually are better tested before a release. The
Interoperability criteria is used to list other tools that can be combined with the tool
evaluated to offer more possibilities for the user. The visualization of data is usually
a part that is performed by additional tools. The last criteria is the Version of the
tool that is evaluated. The version of a tool sometimes indicate how oftern a tool is
released or updated. Commercial tools tend to have bigger release cycles then open
source tools.

6.1.2 Model-Dependent Criteria

The model-dependent criteria are based on the process developed in chapter 5.2.
Each main phase of the process is a main criteria in the evaluation scheme consisting
of at least two sub criteria. These sub criteria are desired functionalities or methods
of a text processing tools to support the text processing process. They are evaluated
based on their availability and their scope. Some methods use models for specific
languages to optimize the result. Not every tool offers models for every language.
The availability of languages for different methods are part of this evaluation. For
the evaluation court documents from a German case are used. Nonetheless the per-
formance on English texts in general are evaluated as well. The main criteria and
each sub criteria are listed below and then described in each sub section.
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• Data Preparation

– Input Format

– Language Identification

– Error Cleaning

– Anonymization

– Tokenization

– Stop Word Filter

– Stemming

• Concept Identification

– Part-Of-Speech Tagging

– Dictionaries

– Taxonomies

– Named Entity Recognition

• Relationship Identification

– Co-Occurrence

– Pattern Matching

• Concept Network Analysis

– Visualization

– Social Network Analysis

– Export for Visualization

6.1.2.1 Data Preparation

Data preparation is the first phase of the process and therefore the first main crite-
rion of the model-dependent part of the evaluation scheme. The sub criteria of the
first phase include functionalities and methods to prepare the data for the follow-
ing steps. This phase contains the most sub criteria since there are many methods
that are required to clear the data an enrich it with information for the following
phases. The first sub criterion is the Input Format. Each tool supports different ways
to import unstructured data. First of all the requirement is that the documents are
available in a machine readable version. In the case used for the evaluation the data
was allocated as scanned copies. These images had to be transformed into machine
readable documents using an OCR tool. This step is not part of the evaluation since
it always depends on the given input data. For some of the methods in further steps
language dependent models are required to deliver valuable results. Therefore the
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second criterion of the first phase is the Language Identification to determine the lan-
guage of the input data. In some cases, especially when the input data is the result
of transformation via OCR tools data cleaning steps are required. The third crite-
rion is the Error Cleaning. Common OCR errors are handled in this step to clean the
input data. In the input data for this evaluation some common errors in the spelling
of suspect names occurred which lead to wrong relationships in further steps if they
are not handled in the preparation phase. Since extortion related input data some-
times contains real names an anonymization step is required to secure all involved
persons. The fourth criterion Anonymization is used to evaluate the possibilities to
anonymize data inside a tool to ensure this security. This step is only required if
the results are published in any kind of way. For this work it is important and the
data is anonymized to match the description of the case in chapter 2. The last three
criteria are methods of text processing tools to transform the input data into opti-
mized structures for further procesing. The availability of Tokenization allows the
user to transform a document in single sentences or paragraphs to reduce part that
is evaluated. Stop Word Filter help to delete unnecessary words from the document
to speed up methods depending on the amount of words. The last criterion is Stem-
ming. Stemming helps to reduce variants of words by cutting them down to the stem
of a word. Stemming can be achieved by different methods and is language depen-
dent. Due to this the available stemming methods and the available languages are
evaluated for each tool.

6.1.2.2 Concept Identification

The second main criterion based on the process is Concept Identification. It contains
sub criteria that are used to create concepts that can be used in the next phase to
identify relationships between these concepts. In this work a concept can be a name
of an involved person or a location. These parts of a text can be determined with
different methods. The first criterion in the second phase is Part-Of-Speech Tagging.
Part-Of-Speech tagging is dependent on the tagset which is used to tag the input
data. These tagset are language dependent since languages differ in their struc-
ture. Therefore the criterion is based on the available tagsets and the supported
languages. One structure that can be detected by Part-Of-Speech tagging are named
entities. The second criterion is Named Entity Recognition. Named entity recogni-
tion works similar to Part-Of-Speech tagging but it is optimized to differ between
named entities. Named entity recognition identifies persons, locations and organi-
zation based on a model. Like Part-Of-Speech tagging these models are build up for
specific languages whereby the availability and the language support are evaluated
with this criterion. Dictionaries can be used to support the quality of the named
entity recognition. Therefore the third criterion are the availability of Dictionaries,
or the support to create dictionaries. Similar to dictionaries Taxonomies can be used
to enhance the quality of the concept identification. The availability of taxonomy
support is the last criterion of the concept identification phase.
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6.1.2.3 Relationship Identification

Relationship Identification is the third main criterion of the evaluation of the model-
dependent part. It consists of two sub criteria which are based on text processing
methods that can be used to identify relationships between concepts. The first cri-
teria is Co-Occurrence. Co-Occurrence of terms can be measured in different ways.
The main focus is the availability of this method since it is a key component of the
process. Co-Occurrence can be completely automated and requires no user input,
whereas the second criterion Pattern Matching defines relationship based on given
pattern. These pattern can be automated by specified regular expressions but it is a
manual work since there are no regular expression dictionaries for extortion related
data. For both criteria the focus of the evaluation is the availability of at least one
method. If they are supported, the quality of the method is evaluated for each tool.

6.1.2.4 Concept Network Analysis

The last main criterion is Concept Network Analysis. It is used to evaluate the last
phase of the process in which the identified relationships are visualized and mod-
ified. The first sub criterion is Visualization. It is used to show if the tool is able to
visualize the data of the previous step in any kind of usable way. The best way of
visualization is a network of concepts with labeled relations. Social Network Analysis
is the second criterion and it the best possible way of visualization. The criterion
show if the tool is able to produce a network itself. If tools are not able to visualize
previous identified relations the last criterion Export for Visualization shows if the
data can be exported in any kind of way to visualize it using a different tool. If so
the format and the tool for visualization are named.

6.2 Model-Independent

All six tools are developed for different purposes. As described in the selection
process for the tools (chapter 4.1) they range from big machine learning suites to
specific programs for natural language processing. WEKA is the most general tool
whereas GATE Developer and AutoMap are natural language processing tools. All
tools except the IBM SPSS Modeler are at least available in a free version. To gain
access to text processing features some tools required to download additional ex-
tensions/plugins. In the following section each tool is evaluated using the model-
independent part of the evaluation scheme. The full evaluation table can be found
in the appendix.

6.2.1 IBM SPSS Modeler

IBM SPSS Modeler is the only commercial tool which is evaluated in this work. It
was developed by Integral Solutions Limited under the name Clementine in 1994.
Since then it was continuously developed and enriched with more functionalities.
Since 1994 the name changed twice. In 2009 it was renamed to PASW Modeler. At
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this point it was version 13 of the original Clementine tool that was designed as a
consulting tool [Shearer, 1994]. In 2009 it was acquired by IBM, an American multi-
national technology and consulting corporation, and it was renamed to IBM SPSS
Modeler. Since then the tool was released three more times in newer version. The
current version released end of 2013 is version 16. "It is an extensive predictive ana-
lytics platform that is designed to bring predictive intelligence to decisions made by
individuals, groups, systems and the enterprise."13 IBM SPSS Modeler is a general
data mining tool that offers many data preprocessing steps. The tool is available in
different editions as desktop and as server configurations. The Professional edition is
the basic version and requires the Text Analytics extension to enable text processing
functionalities. The Premium edition of the IBM SPSS Modeler already includes this
extension. IBM also offers a version for educational purposes. This edition is similar
to the Premium edition and it is used for this evaluation.

The IBM SPSS Modeler is a node-based data mining tool. It offers nodes for
different data mining tasks that can be combined by connecting the nodes. Nodes
required for text processing are added with the Text Analytics extension. A workflow
created in the Modeler is called a stream. Errors are displayed to the user when they
occur in an extra window. IBM offers a detailed documentation for the Modeler.
The documentation14 covers everything from the installation to the usage of the ba-
sic data mining methods. The extensions are documented as well in great detail.
The Text Analytics extensions documentation offers over 200 pages of detailed infor-
mation about functionalities included in the extension. The whole documentation
is available in twelve different languages. The Modeler is available for Windows,
Linux and UNIX systems as desktop or server version. For this evaluation the Mod-
eler was installed on a Windows 8 device as desktop version.

Since the IBM SPSS Modeler is a commercial tool the support is different then
on most open source tools. IBM offers contract based support for paying customers.
There is no official support forum where users can search for help. The only way
besides searching in the documentation is the direct support by IBM or third party
fora. The Modeler is sold as proprietary Software which is common for commercial
tools. In this case the source code is not available and customizing functionalities
can only be done in the scope offered by the modeler itself.

6.2.2 WEKA

WEKA (Waikato Environment for Knowledge Analysis is a collection of machine
learning algorithms for data mining tasks [Hall et al., ]. It was developed by the
Machine Learning Group at the University of Waikato in New Zealand. The devel-
opment startet in 1993 primarily designed as a tool for analyzing data from agricul-
tural domains [Holmes et al., 1994]. This version was programmed in the Tool Com-
mand Language. In 1997 the development of the current Java version startet. Today

13http://www-01.ibm.com/software/analytics/spss/products/modeler/
14http://www-01.ibm.com/support/docview.wss?uid=swg27038316
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WEKA is a powerful suite combining multiple data mining and machine learning
methods using the Java programming language.

Since WEKA is completely programmed in Java it is easy portable to different
operating systems. It runs under Windows, Linux and UNIX operating systems.
WEKA can be used using a simple user interface or by using the console. The WEKA
Explorer is the user interface version and it is split into six registers which can be
compared to the workflow of a process. The first register is for the data prepro-
cessing, the next is for classification and the last register is for the visualization. All
methods can be used by self-written Java applications which allow the user to use
machine learning method inside a Java application by adding the WEKA libraries.
The WEKA Explorer is the user interface version which is a simple user interface
restricted on the main functionalities. All methods as well as the installation on dif-
ferent operating systems is well documented for each available version of WEKA15.
It is officially only documented in English. Additionally version 3, which is the cur-
rent main version of WEKA, is covered in the Book "Data Mining: Practical Machine
Learning Tools and Techniques" [Witten et al., 2011] which is written as companion
book. The current third edition is only available in English, Chinese and Korean.
The first edition is also translated into German. To get deeper understanding of the
functionalities of the mighty workbench the website offers tutorials for general data
mining tasks.

WEKA is a free software available under the GNU General Public License in the
current stable version 3.6.11 or the developer version 3.7.11. In this evaluation the
stable version 3.6.9 is evaluated. One disadvantage of WEKA is the requirement of
a specified input format. It is not possible to use unstructured text as input data
without transforming it into the required Attribute Relation File Format (ARFF). The
data needs to be available as flat file or inside a SQL database since WEKA supports
database connectivity. WEKA offers no direct support. Users can search a mailing
list archive for threads where other users had similar problems. Since WEKA has a
great userbase the mailing list archive consists of many threads hat may help a user.
If a problem is not tackled in any thread or documented in the documentation or
the book the user can add a new thread and wait for other users to help finding a
solution.

6.2.3 RapidMiner

RapidMiner is a data mining software developed by the Technical University of
Dortmund. It was developed under the name Yet Another Learning Environment
(YALE) in 2001 by the Artificial Intelligence department. In 2006 the main devel-
opers founded the company Rapid-I and continued the development of the tool.
In 2007 YALE was renamed to RapidMiner. The company changed the name from
Rapid-I to RapidMiner and it has offices in Boston, London and Dortmund where
it origins. RapidMiner is a mighty tool for data mining and machine learning. To

15http://www.cs.waikato.ac.nz/ml/weka/documentation.html
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enable the full capabilities for text processing it offers two extensions bringing im-
portant methods required for a text processing workflow. The first extension is the
Text Processing extension. It brings many methods for data preparation and data en-
richment. Information Extraction is the second extension which adds methods mainly
for relationship identification. The current version 2.0 of the Information Extraction
extension is bugged which results in important methods not working. The docu-
mentation and the examples made with this extensions itself show that they should
perform the required steps of the Relationship Identification phase.

RapidMiner is a node-based tool with a user friendly user interface. Nodes can
be connected to produce a workflow and warnings and errors are shown to the user
to prevent nodes being combined that can not work together. In the option the user
can active the expert mode which allows the user to change parameters that are
usually not available. These parameters are not required but they can be used to op-
timize methods. These parameters should only be changed if the user knows what
impact the change of the parameter has on the result. An icon inside the node rep-
resents the status of the node. A green dot show a successful execution and a green
arrow indicates that the node is still executed. A yellow dot indicates that the node
is not run yet and a red dot indicates that the connection is invalid, or that the node
failed to execute. The user interface of RapidMiner is split into two main views.
The first one shows the process and the second view contains the results. Previous
results of the process can be viewed and inspected in the result view. Like all other
tools RapidMiner offers a good documentation16 where the installation process and
the tool with each node are documented in English. Additionally tutorials and ex-
ample workflows are available to allow a quick entry into the tool. It is based on Java
and it runs on Windows, Linux and UNIX operating systems. Besides the client ver-
sion RapidMiner offers a server version to make use of dedicated computing power
for powerful analysis on big data.

RapidMiner is available with different licensing methods. The core and ear-
lier versions of the software are available under the Affero General Public License
whereas other editions are sold as proprietary software in different version with
different additional services. One important difference is that the free versions are
restricted to use a maximum of 1GB memory for computation which restricts the
user to perform only analysis on small data. The free version is used to introduce
new users to the tool. Some CPU-intensive algorithms can already run into the 1GB
memory limit on small data sets. The current stable version of RapidMiner is ver-
sion 6.1, released in October 2014. For the evaluation the free version 5.3 is used
since it is available as open source. On the RapidMiner website a forum17 is hosted
which is used to offer support by users for users. Besides the forum the RapidMiner
GmbH itself offers support for the commercial versions of the software.

16https://rapidminer.com/learning/
17http://forum.rapid-i.com/

39



6.2.4 KNIME

KNIME is the abbreviation for Konstanz Information Miner which is based on its
development origin. In 2004 a team at University of Konstanz in Germany started
the development of KNIME and in 2006 the first version was released. Today KN-
IME is managed by the KNIME.com AG based in Zurich, Switzerland. KNIME is a
tool that supports data mining and machine learning functionalities. To enable the
tool to support text processing it requires the Text Processing extension which can be
added with the Extension Manager. The Extension Manager offers many extensions
that add functionalities for different tasks since these extensions can be developed
and provided by everyone for everyone. The Text Processing extension is part of
the KNIME Community Contributions which are provided and maintained by var-
ious community developers. KNIME also offers commercial extension that can be
acquired to increase the productivity. These extensions are not required for the pur-
pose of this evaluation.

KNIME offers a node based user interface similar to RapidMiner and IBM SPSS
Modeler. The nodes can be connected to generate a workflow of multiple methods.
Nodes can only be combined when the output of the first node is compatible with
the input of the second node to prevent errors before they occur. This helps the
user to identify errors while preparing a workflow. Nonetheless errors can occur
even when the input and output are compatible since only the meta information is
checked. If the output of the first node contains invalid data the following node
might fail. In this case the user get notified and the workflow is stopped. An error
message is shown which helps the user to identify the error. When a node is run and
succeeded without error an small traffic light beneath it shows a green light. Failed
nodes are marked with a red light and a node which is not yet run is marked with
a yellow light. An exclamation mark shows warnings. The ouput data of each node
can be inspected to verify the results manually or to search for possible invalid data
leading to an error in the following node. Every node offers parameters that can and
in some cases have to be adjusted to perform the desired method. KNIME offers a
detailed documentation18 for every node. This documentation, which is available
only in English, can be viewed online or in the tool itself by clicking on a node.
The documentation shows a description of the node itself and a description about
parameters and the input and output ports. Additionally KNIME offers a starting
guide which helps new users to set up KNIME and to get used to the interface.
Since it is based on Java it is available for Windows, Linux and UNIX operating
systems. It is build on the eclipse19 framework which is a common framework for
Java development.

The documentation of the nodes is detailed but in some cases users might re-
quire additional help. Therefore KNIME offers a forum on their website where users
search for threads with a similar problem. New topics can be created and other

18http://tech.knime.org/documentation
19https://eclipse.org/
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users or members of the KNIME development team can help to find a solution. In
this work the forum was helpful since a member of the KNIME development team
found a missing German model for a required method. KNIME is an open source
software available under the GNU General Public License which is one reason for
the availability of the extensions and the continuous development. The current ver-
sion is 2.10, which stable release was in July 2014. In this evaluation version 2.9.4 is
used since not all extensions already support in version 2.10.

6.2.5 AutoMap

AutoMap is a text mining tool developed by the Center for Computational Analysis
of Social and Organizational Systems (CASOS) at the Carnegie Mellon University
in Pittsburgh, Pennsylvania, USA. AutoMap offers Network Text Analysis methods
to extract information from one or more unstructured texts as input data. Since
AutoMap is specialized on Natural Language Processing it does not require additional
plugins or extensions.

The user interface of AutoMap is different from the previous node based user-
interfaces of KNIME or RapidMiner. The main window is used to visualize the text
and the methods are applied by selecting them in the menu bar at the top. It is
not possible to create a workflow. The user has to perform every method by hand
in sequence. AutoMap offers a version of each text after each method is applied
which can be helpful to spot the changes. The CASOS offers a User Guide20 which
is regularly updated. AutoMap is the only tool in this evaluation which is only
available for Windows operating systems.

AutoMap was developed for research purposes. Due to this it is free available
for research purposes only. Since the commercial interest in the product grew it
can be acquired for commercial use as well. The commercial version offers contract
based support whereas the free version has no official support. AutoMap is able to
generate files as output that can be used by ORA, another tool developed by CASOS
of the Carnegie Mellon University, to visualize and modify relationships between
concepts. The current version available which is also used for this evaluation is
version 3.0.10.36.

6.2.6 GATE Developer

GATE Developer is an integrated development environment for language process-
ing components [Cunningham et al., 2013]. It is part of the GATE software family
which includes GATE Developer, GATE Teamware, GATE Mimir and GATE Em-
bedded. GATE is the abbreviation for General Architecture for Text Engineering. The
development of GATE started in 1995 as part of an project on Large Scale Informa-
tion Extraction lead by the Engineering and Physical Science Research Council (EP-
SRC)21. It is now continuously developed and maintained by a research group of the

20http://www.casos.cs.cmu.edu/publications/papers/CMU-ISR-13-105.pdf
21http://www.epsrc.ac.uk/
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University of Sheffield in the United Kingdom. Like AutoMap it is a tool specialized
on text processing.

The user interface of the GATE developer is simple and can be compared to the
user interface of AutoMap. In the main window the text is displayed. Besides the
user interface all methods can also be called and used by self-written Java appli-
cations. GATE Developer offers Processing Resources which are the methods that
are applied in form of a workflow. After running the workflow the main windows
allows to highlight detected parts in the text. Errors are shown as Java exceptions
which are not always clear. For new users GATE is offering tutorials and a good doc-
umentation to make the entry simple. The structure of GATE developer is not that
easy to understand at a first glance. The tutorials and the documentation provided
on the webpage22 help to install and to use GATE Developer. The documentation
is only available in English like all other evaluated tools except IBM SPSS Modeler
which offers 12 different languages. The user guide is available for the last ver-
sions and it is always updated with new releases. GATE Developer is available for
Windows, Linux and UNIX operating systems. The early versions had been only
available for Linux, but since version 2.2, which was released in 2003, it is available
for Windows and UNIX operating systems as well.

The user guide offers a good documentation of the functionalities of the GATE
Developer. Users who run into problems can search in the FAQ, the documenta-
tion or in the mailing list archive. Besides these options the University of Sheffield
also offers contracts to provide support or customization. Additionally professional
services can be acquired by key partners of GATE. GATE Developer is currently
available in version 8.1 as free software under the GNU Lesser General Public Li-
cense 3.0. In the evaluation the stable version 8.0 is used. The development team
released newer versions annually in the past.

6.3 Model-Dependent

Since the input documents for this work are written in German the evaluation will
take this into account. Nonetheless different available languages are mentioned to
give an overview of the tools. Each phase of the process is described for each tool.
Example workflows are described and results of the workflows are visualized.

6.3.1 Data Preparation

The most important phase in the process is the data preparation phase since it con-
tains the steps which prepare the data for further steps. Each tool offers more or less
the same amount of methods for data preparation but they differ in the way the user
can combine them. Some methods are only capable to perform good on text for the
English language, but most methods offer models for multiple common languages
like English, German, Spanish or Italian. Some tools offer more options for the user

22https://gate.ac.uk/releases/gate-8.0-build4825-ALL/doc/tao/split.html
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to have impact on the results by giving customizable parameters. Some tools of-
fer nodes for each single data preparation method which allows the user to change
the order of some steps, whereas some tools only offer one node which includes all
methods and the user can not change the order.

6.3.1.1 IBM SPSS Modeler

The Text Analytics extensions adds the required functionality to IBM SPSS Modeler
to analyze unstructured data. The whole process covering all four phases is realised
with a two node stream (Figure 12). The first node is the Var. File node which
loads a document into the modeler. IBM SPSS Modeler also offers other nodes to
import data from different data sources. It can import data from other IBM tools
like IBM Cognos, Excel or from external databases. The second node is the Text
Mining node which supports the full text processing process. When the Text Mining
node is inserted for the first time all required packages are automatically installed.

Figure 12: IBM SPSS Modeler Stream

The Text Mining node has build in data preparation methods that can be adjusted
with some parameters. Other parameters are hidden in the Resource Editor. This ed-
itor contains information about Language Identification, Language Handling and Non-
linguistic Entities for seven languages including English, German, French and Italian.
If the Text Mining node is used with default values it will assume that the text is in
English. The node offers the Text Language parameter in the Model tab. When the pa-
rameter is set to ’All’ the node will identify the language based on a script placed in
the Resource Editor. The language is determined based on the first 10000 characters
and the languages are checked based on an order that can be changed in the editor.
This helps to speed up the process for large data sets. A fallback language can be set
for the case that a language is not identified.

Fuzzy Grouping is used to remove common spelling errors in the text. Mis-
spelled names or abbreviations of names are not fixed by this method. Names can
be grouped by selecting a parameter in the Expert tab. This reduces the amount of
identified persons by Named Entity Recognition since it removes duplicates. Excep-
tions for the Fuzzy Grouping algorithm can be added to a list in the Resource Editor.

IBM SPSS Modeler offers a Anonymization node which can be used to anonymize
the whole document. This node is not suited for the process since it does not allow
to anonymize single tokens. The Text Mining node also includes no option to use a
dictionary to change tokens.
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Tokenization and Stop Word Filter are included in the Text Mining node. The mod-
els and lists that are used are based on the language which is identified in before.
These methods are performed automatically and can not be opted out or changed
by a parameter. The filter which is used for stop words is build in and can not be
edited. IBM SPSS Modeler uses linguistic tokens for the Tokenization process which
allows concepts consisting of words.

The Text Mining node does not offer a parameter for Stemming and the documen-
tation gives no indication if stemming is used at all. The results show that similar
words are identified as the same concept based on the Fuzzy Grouping method which
is also used to remove common spelling errors.

6.3.1.2 WEKA

WEKAs strength is the preprocessing of data since it offers a lot of methods. WEKA
requires a specific input format which is called the Attribut-Relation-File Format
(ARFF). The file format is simple and an unstructured text file can be converted
easily by hand. The file contains a relation name, a list of attributes and the type of
the attribute which for example can be numerical or a string. Afterwards the data is
defined. For classification the last attribute is always the class attribute. In the first
step the attributes are a single attribute containing the whole text as string.

For the preprocessing a filter is used. When the ARFF file is loaded into the
WEKA Explorer only filters are shown that can be applied on this kind of data.
The StringToWordVector filter is used to perform the methods of the Data Preparation
phase. The filter contains the methods and offers parameters to adjust these. By
default the filter uses only WordTokenizer based on pre-defined delimiters (Figure
13). WEKA offers no Language Identification and all build in methods only support
English models by default. The filter offers the possibility to select a stemmer and
a word list. One of four stemmers included in WEKA is the Snowball Stemmer. The
language of the stemmer can not be changed. To use a stemmer for a different lan-
guage a stemmer has to be added to WEKA which is using a different model. WEKA
only allows to use a build in stop word list which can not be modified. Error Cleaning
and Anonymization are not supported by WEKA and have to be performed manually
when converting the input data into the required format.

Figure 13: WEKA StringToWordVector Filter
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The result of the preprocessing is a new ARFF File with a different structure.
Every single word is now an attribute and the data contains the frequency of the
word inside the whole document. This filter is usually used to classify multiple
documents into a class based on occuring words. The missing tokenization into
sentences reduce the possibilities for further work with WEKA. It is possible to build
filters yourself in Java which would allow the whole process to be supported by
WEKA.

6.3.1.3 RapidMiner

RapidMiner is a node based data mining tool and it always starts with an input
interface and ends with a result node. RapidMiner offers multiple nodes that can
be connected to produce a workflow which is processed on execution. For the Data
Preparation phase it offers all important methods. The input files can be read with the
Read Documents Files node which is included in the Text Processing extension. In this
node the directory of the input files can be selected. Additionally the file extension
can be setup whereby all files with a specific extension are taken as input out of the
given directory. Files with a different extension are not read. With a parameter all
structural information like xml or html tags can be removed while importing the
files into RapidMiner. The encoding of the data can be selected to guarantee the
correct encoding. The default setting for the encoding is on automatic. With this
setting the encoding is determined based on the input data. This works fine for the
input data used in this evaluation, but selecting the proper encoding is guaranteed
by selecting it from approximately 50 different encodings.

After the data is imported into RapidMiner it can be preprocessed. For this pur-
pose RapidMiner offers the Process Documents node (Figure 14). This node takes
the input data, processes it with data preprocessing methods provided by the Text
Processing extension and creates an word vector as output data. The node can be ex-
panded and the preprocessing can be developed as sub process. Inside this node all
methods of the Data Preparation phase are performed (Figure 15). Additionally the
data is already enriched with Part-Of-Speech tags which is described in more de-
tail in the Concept Identification phase. The Process Documents node accepts different
inputs. It accepts word lists or one or more documents.

Figure 14: RapidMiner Data Preparation Process
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Language Identification is not supported in RapidMiner. The user has to set the
language for each method where a language specific model is required. Error Clean-
ing and Anonymization are performed with a single node. The Replace Token node
replaces tokens based on a list of regular expressions manually provided by the
user. The list can be edited inside RapidMiner which is good for small lists. The
usage of regular expressions is bad since they are complex to define for each word.
It is not possible to import a dictionary that can be used to replace strings.

Figure 15: RapidMiner Process Documents Subprocess

The document can be split into tokens using the Tokenize node. It tokenizes the
document based on a mode selected by the user. It can tokenize based on specific
characters, regular expressions, linguistic sentences or linguistic tokens. The lin-
guistic sentences and tokens are available for English, German and a generic Asian
language. The linguistic sentence tokenization with the German language is se-
lected in this evaluation.

The next method is the filter for stop words. Therefore RapidMiner offers the
Filter Stopwords nodes which are available for English, French, Czech and Arabic
language. Additionally a node exists which allows the use of a dictionary containing
the stop words. The node for the German filter uses a build in standard stop word
list which can be switched to a build in sentiment stop word list. The node requires
the execution of the Tokenize node in a previous step.

The last method in the Data Preparation phase is stemming. The Text Processing
extension includes seven different stemming nodes. The Stem (Snowball) is the most
comprehensive stemmer using the Snowball language. It can perform stemming
for sixteen different languages, including German, English, French and Italian. For
German texts the Stem (German) node can be used as well which is a stemmer for
German texts using a simple stemming algorithm. RapidMiner also offers the Stem
(Dictionary) node which allows stemming based on a pattern matching rule. This
node requires a lot of work and it is not recommended since stemming nodes are
available supporting the required language.

6.3.1.4 KNIME

The Data Preparation phase in KNIME is implemented in seven different nodes (Fig-
ure 16). The nodes need to follow a specific order to work properly. To anonymize
the data a node is used multiple times in a row which is outsourced into a sub pro-
cess to maintain clarity.
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Figure 16: KNIME Data Preparation

The first node that is required for the workflow is the Flat File Document Parser.
It is used to read the input data and it is the start for the workflow. KNIME is able
to read multiple input formats. Word documents can be read with the Word Parser
node or PDF files can be read with the PDF Parser node. These files need to be
readable. For example the scanned copies of the court documents can not be read
by the PDF Parser since they are image PDF files. The Flat File Document Parser node
offers two important parameters. The first one is the directory which contains the
input files, and the second one is the charset. It allows to import multiple files from
a single directory.

The next step in the data preparation workflow is the identification of the lan-
guage. The Text Processing extension itself offers no node for this task, but the Com-
munity Contributions contain a Java snippet for Language Identification which identi-
fies the language for each sentence.

KNIME offers a Dict Replacer node which is used for the next phases of the pro-
cess. Based on a dictionary with name value pairs it replaces words inside the doc-
ument. In the first step common OCR errors are replaced. Therefore a dictionary is
required which contains a list of common errors. Afterwards the Dict Replacer node
is also used to anonymize the data by replacing names of persons, locations and
organizations based on an additonal dictionary containing a list of the names that
have to be removed. The dictionaries can be optimized by a user who knows the
data and all involved persons. Additonally other nodes in KNIME help to optimize
the dictionaries. Named Entity Recognition which is used in the Concept Identification
phase helps to identify named entities in the data. If names are found that are not
yet replaced the dictionaries can be edited and the workflow can be run again. This
is a common approach described in the CRISP-DM reference model. Building up
the dictionaries for Anonymization and Error Cleaning is an iterative approach. The
simple structure of the dictionaries used by the Dict Replacer node force the user
to chain them if a string of two words should be anonymized into a single string
(Figure 17). The string "FIRSTNAME LASTNAME" is replaced by the string "FIRST-
NAME_LASTNAME" by the first node. The second node then replaces it with the
string "SUSPECT1". A Case Converter node can be used to reduce the complexity of
the dictionaries by requiring only lower or upper case words in the dictionary.

47



Figure 17: KNIME Anonymization Sub Process

The Sentence Extractor node extracts each sentence out of the input data and re-
turns them as data table with an additional row containing the amount of words in
the sentence. KNIME offers no node for Tokenization of paragraphs, but the sentence
level is the best for the following methods. This node is not required for some meth-
ods in the following phases since these nodes have internal tokenization steps, but
it is required for the Named Entity Recognition based on dictionaries in the Concept
Identification phase and the Pattern Matching in the Relationship Identification phase.

Stop words are removed with the Stop Word Filter node. If not configured the
node is using a build in list for the English language. In this case the stop word list
is not case sensitive. The node offers three parameters which can be changed to use
a user specific list, change the language of the build in list and to make the filter case
sensitive. KNIME offers build in stop word filter lists for many languages including
English, German, French and Italian. The user-specific list needs to be a single flat
file containing a stop word in each column.

For Stemming the Text Processing extension of KNIME offers three different nodes.
They differ in the algorithm which is used for the stemming process and the lan-
guages supported. The Kuhlen Stemmer is using the Kuhlen stemming algorithm
and it is trained only for English words. The second stemmer is the Porter Stemmer
using the Porter stemming algorithm and similar to the Kuhlen Stemmer it is also
only trained for English words. The third stemmer node is the Snowball Stemmer.
It uses the Snowball stemmer library23 and it can be used for sixteen different lan-
guages including German, English, French, Italian, Dutch and Russian. Since this
node is the only stemming node supporting the German language it is used to stem
the text.

6.3.1.5 AutoMap

AutoMap offers different ways to import text. The first one is to import one or mul-
tiple text file from the harddrive. The second one is to extract the text from a web
page. In this case AutoMap removes the meta information of the file. When the
documents are imported the encoding and the text direction have to be selected.
AutoMap is developed to work on English documents whereby most preprocess-

23http://snowball.tartarus.org/
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ing methods are only available for English documents. This is also the reason why
AutoMap does not offer any Language Identification method.

Common errors can be fixed using the Fix Common Typos method. It works based
on an English dictionary containing common typos of English words. On German
texts this method shows no useful changes. Anonymization of names is not possi-
ble. The only way to anonymize names is by changing them manually in before.
AutoMap automatically tokenizes the document into words when the concepts are
created. Many methods are offered for text preparation. They can be applied to re-
move numbers, noise verbs or symbols. Like the Fix Common Typos method they are
also only developed for English documents.

For Stemming the user can select between three different stemming algorithms.
KStemmer, Porter Stemmer and Lex Stemmer. They use different algorithms and dif-
ferent models. Since version 2.6.1, which was released in 2006, the Porter Stemmer
supports new languages including German, French and Italian.

6.3.1.6 GATE Developer

The structure of GATE Developer can be compared to AutoMap. Methods are called
Processing Resources and the documents are called Language Resources. A workflow
is called Application and it consists of chained Processing Resources working on Lan-
guage Resources. The system used by GATE Developer is called ANNIE, a Nearly-
New Information Extraction System. Processing Resources for ANNIE are available
by default. ANNIE works on English documents and for documents in different lan-
guages additional plugins are required which can be added using the Plugin Man-
ager of GATE Developer.

GATE Developer can import different kind of text files as Language Resource. A
text is loaded into GATE by creating a new GATE document or a GATE corpus. A
corpus can contain multiple GATE documents and a GATE document is a normal
text file. The creation of a GATE corpus allows to run the workflow on multiple
documents inside the corpus at the same time. A corpus can be populated by select-
ing a directory and defining the extensions that will be imported. Additionally the
encoding can be manually defined.

For Language Identification the TextCat Language Identification plugin can be used.
It offers the TextCat Language Identification processing resource which can be the start
of a workflow. The result of this method can then be used to determine which
method is applied next. This helps to build a workflow for documents where the
input language is unknown. The methods returns a single language for the whole
document. A document consisting of multiple different languages will return the
language which is detected with the highest confidence.

Anonymization, Error Cleaning and Stop Word Filter are not supported automati-
cally by any processing resource. It has to be performed manually or with a different
tool before the document is imported into GATE Developer.

Tokenization is performed by the ANNIE English Tokenizer and the ANNIE Sen-
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tence Splitter. Both processing resources are designed for English documents and
currently no processing resources for different languages are available in the plu-
gin manager. Nonetheless the methods can be applied on German texts since the
methods are quite simple and the language does not really affect the tokenizer.

For stemming different stemming methods are available as plugin. The Porter
Stemmer can be used for English documents and the Snowball Stemmer can be used
for multiple other languages. The Snowball stemmer supports 11 different Euro-
pean languages including English, German, Italian and French.

6.3.2 Concept Identification

The main purpose of the Concept Identification is to identify the underlying concepts
in unstructured data. The tools that are evaluated fulfill this task in different ways.
The second phase of the process is compared in this section for each of the six tools.

6.3.2.1 IBM SPSS Modeler

The methods of the Concept Identification phase are included inside the Text Mining
node. Part-Of-Speech tagging and Named Entity Recognition are performed after the
Data Preparation methods are executed. The user has no influence on the order in
which the methods are executed. Concepts can not be identified with Dictionaries or
Taxonomies since the node encapsulates the methods and does not allow additional
changes of the data set.

The model used for Part-Of-Speech tagging and Named Entity Recognition are cus-
tom models. The tag set used for Part-Of-Speech tagging depends on the identified
language. The tags used are described in the documentation and in the Resource
Editor. The custom tag set used for the tagging is more simple than the tag sets pro-
vided in other tools. It consists of 11 tags whereas the STTS tag set which is used for
German Part-Of-Speech tagging by different tools consists of more than 30 tags. Spe-
cial models exist for seven different languages including English, German, French
and Italian. For other languages a generic model is used.

Named Entity Recognition classifies named entities into different types. The most
common type is ’Unknown’ which is assigned as the default type. Other types iden-
tified in the evaluation input data are ’Person’, ’Location’, ’Organization’, ’Date’ and
’url’. 1462 concepts are identified. The main persons involved in the case are iden-
tified as concept with the type Person. Some persons appear as duplicates. On suc-
cessful execution of the Text Mining node the Interactive Workbench is opened. This
view shows a list of all identified concepts and their type (Figure 18). The concepts
can be filtered by type or by the minimum amount of appearance in the document.
Additional custom types can be added by the user which than can be manually al-
located to a concept.
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Figure 18: IBM SPSS Modeler List of Concepts

6.3.2.2 WEKA

The strength of WEKA is classifying documents. Therefore it supports many meth-
ods used for data preprocessing. WEKA itself offers no build in filter for Concept
Identification. Part-Of-Speech tagging can be performed using the TagHelper24 de-
veloped by the Computer Science department of Carnegie Mellon University. The
TagHelper is a tool for WEKA which allows detection of Part-Of-Speech bigrams
[Rose et al., 2007].

Named Entity Recognition in WEKA is very complex and requires annotation of
the input data set. The CoNLL-2003 Shared Task25 corpus is used as trainings data
since it is annotated in German and in English. The data set is splitted into trainings
and test data for classification. Afterwards the input document can be classified us-
ing different algorithms. Algorithms that can be used are Support Vector Machines
(LibSVM or SMO), Maximum Entropy, Boosting approaches (AdaBoostM1) or Decision
Trees (J48). The results of the algorithm is visualized with a confusion matrix show-
ing how the words have been classified (Figure 19).

Figure 19: WEKA Named Entity Recognition Confusion Matrix

WEKA offers no method for Dictionaries or Taxonomies. These have to be manu-
24http://www.cs.cmu.edu/ cprose/TagHelper.html
25http://www.cnts.ua.ac.be/conll2003/ner/
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ally tagged in the training data set. It is also possible to create an own training set.
This would require a lot of work since a training set needs to contain many exam-
ples. For small training sets WEKA offers the option to use cross validation on the
training set instead of requiring huge training and test sets.

6.3.2.3 RapidMiner

The text is already enriched with Part-Of-Speech tags in the Process Documents sub
process. The Filter Token (by POS Tags) node allows to filter tokens based on their
tag. The node supports only English or German texts using the STTS tagset for
German and the Penn Treebank tagset for English texts. The filter helps to identify
the concept by reducing it to identified named entities (NE). The filter allows to filter
for specific tags or to invert the filter to remove all tokens with a specified tag. The
results are displayed in a data table containing all tokens tagged as named entity
(Figure 20). The main persons of the case are identified and the occurrences also
show that the main suspects and the main victim occur the most as expected.

Figure 20: RapidMiner List with Named Entities by POS-Filter

Named Entity Recognition (NER) besides the variant using the Filter Token (by POS
Tags) can not be performed by a different node of the Text Processing extension. The
Information Extraction extension offers node to perform Named Entity Recognition in
a modular system that can be easily adjusted. The extension is provided from the
department of Artificial Intelligence at the Technische Universität Dortmund. The
Plugin offers multiple nodes to perform NER and also examples how the workflow
is created. Unfortunately the extension is not working on the current version used
in this evaluation. The examples26 trained on an older version of the extension show
that in theory the methods offer good results (Figure 21). Nonetheless the nodes can
not be used in this evaluation.

Figure 21: RapidMiner Named Entity Recognition Example

26http://sourceforge.net/projects/ieplugin4rm/
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RapidMiner has no Dictionaries or Taxonomies nodes that can be used to create
concepts manually. The only way to import data is using a import data node and
read a document of an .csv-file. This manually created concepts can then be identi-
fied in the main document.

6.3.2.4 KNIME

KNIME offers different nodes for Concept Identification and it allows to perform all
methods of this phase. Not all methods are supported for German, but they all are
supported for the English language. The methods in this phase do not need to be
combined in a chain to retrieve good results. Some nodes output the original data
which can be used by further nodes to find relations. The Column Filter node is used
to specify a specific column for the following node containing only the required
data. Otherwise nodes would output error messages since they do not now which
column contains the input data.

The first node is the Part-Of-Speech tagger. KNIME offers multiple tagger nodes
for different purposes. Besides common Part-Of-Speech tagging it offers tagger for
specific areas like chemical named entities or simple dictionary tagger. For Part-
Of-Speech tagging the Stanford tagger node is used to enrich the data with Part-Of-
Speech tags. The models used by the tagger are of the Stanford NLP Group27 and are
applicable for German, English and French. Each language is using a different tag
set which is trained on the specific language. The STTS tagset is used for German
texts, the French Treebank tagset is used for French texts and the Penn Treebank
tagset is used for English texts. The Stanford tagger node offers different models
for each language which differ in speed and accuracy. Since the input data which
is used for the evaluation is quite small the most accurate model is chosen and it
finished in less then a minute. The STTS Filter node is used to filter the data for tags
of the STTS tagset for German language (Figure 22). The node allows to filter the
input data based on tags selected in the parameters. Filter nodes are also offered for
the other tag sets. The Stanford tagger node needs to be applied right after the input
node.

Figure 22: KNIME Part-Of-Speech tagging

Another tagger offered by KNIME is the OpenNLP NE tagger node. This node
allows to specify named entities in the document as persons, locations and organi-

27http://nlp.stanford.edu/software/tagger.shtml
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zations. It is specialized for Named Entity Recognition. The disadvantage of this node
is that it is not available with an German model. It can be used on a German text,
but the quality of the results are not comparable to the quality of the results on an
English text. On default the node is configured with a model for the English lan-
guage. Additional models for different languages for the OpenNLP NE tagger node
are developed by the Apache Software Foundation28. It is also possible to create
a model yourself. This requires expertise and a good and large training set. After
enriching the data the Standard Named Entity Filter node can be used to display all
discovered named entities in the data (Figure 23). To filter the data it needs to be
transformed with the BoW creator node which creates a bag of words. This is a list
of each word and a reference to the position in the sentence and the position in the
whole document. The results produced by the NE tagger show the main persons in-
volved in the case. Nonetheless some concepts are identified which are not expected
to be concepts. This is due to the use of the English model.

Figure 23: KNIME Named Entity Recognition

A Dictionary tagger node can be used to enrich the data based on words and tags
defined in a dictionary. This is used as a work around for the German language since
there is no model for the Open NLP NE tagger node. The creation of the dictionary
requires some manual work and it needs to be optimized when additional named
entities are discovered. The dictionaries are attached to the Dictionary tagger node
after importing them with the File Reader node. Filtering the results of the Stanford
tagger for named entities is a good starting point for the creation of a dictionary.
The dictionary for this tagger have to contain a token each row. The tag itself is
defined in the tagger. This results in single dictionaries for each tag. To enrich the
data with PERSON, LOCATION and ORGANIZATION tag three Dictionary tagger
nodes and three dictionaries are required (Figure 24). The OpenNLP NE tagger and
the Dictionary tagger can be combined to achieve the most accurate results. In this
case the Dictionary tagger node is used to add concepts, which are not discovered by
the automatic detection of the OpenNLP NE tagger node.

28http://opennlp.sourceforge.net/models-1.5/
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Figure 24: KNIME Dictionary tagging

KNIME supports Taxonomies only with the Dict Replacer node in the Data Prepa-
ration phase. Afterwards the other nodes previously described in this section can
be used.

6.3.2.5 AutoMap

In the Concept Identification phase all automatic methods of AutoMap work with
models trained for English text documents. There is no support for different lan-
guages in the current version for Part-Of-Speech tagging and Named Entity Recogni-
tion.

AutoMap offers four methods for Part-Of-Speech tagging in the Generate tab. The
first one is to perform the tagging using the default parameters. The second method
is to generate an attribute list. The third metod is to extract only all verbs and the
last is to extract only all nouns. The Part-Of-Speech tagging is based on the Hidden
Markov Model which is a statistical model. It can be considered as the simplest
Dynamic Bayesian Network [Carley et al., 2013]. The tags are assigned using the Penn
Treebank tagset which is the common tagset for English documents.

Named entities can be extracted using the Named Entities method in the Generate
tab. It extracts the named entities into a list. The list is a .csv file with three columns.
The first one contains the entity, the second one the frequency of the entity and
the last one the number of texts. After extracting the named entities a generalized
thesauri can be created based on that list. For the German document the Named
Entity Recognition is not suited. The quality of the result is bad. Most of the persons
are identified, but additionally many capitalized words are detected as persons. For
example the token ’Sachverhalt (transl.: facts)’ is detected as a person. This can be
traced back to the fact that simple methods assume capitalized words to be named
entities in the English language.

Since the automatic creation of a thesauri is not working properly for German
text documents the thesauri needs to be created manually. A thesauri for English
texts can be created automatically using multiple methods provided by AutoMap
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which differ in the purpose of the thesauri. The structure of a thesauri is simple. It
consists of four columns. The first one contains the original concept, the second one
the transformed concept, the third one the type and the last one the name. Auto-
matic created thesauri usually assign no name. The type for the automatic created
thesauri of the named entity thesauri is ’agent’.

"conceptFrom","conceptTo","metaOntology","metaName"

The structure of the thesauri can be used to support Dictionaries and Taxonomies.
AutoMap offers methods in the Procedure tab to automatically enhance the thesauri.
Duplicates and circular logic can be detected and removed.

6.3.2.6 GATE Developer

The Concept Identification phase is supported by different processing resources in
GATE Developer. By default the ANNIE POS Tagger is available to enrich the doc-
ument with Part-Of-Speech tags based on the Penn Treebank tagset. This tagger
is developed for English documents only. For other languages plugins are offered
for different languages. For German the Lang_German plugin offers processing re-
sources to perform Part-Of-Speech tagging using a TreeTagger. It is assumed that
the STTS tagset is used by the processing resource, but it is not documented. Other
plugins including methods for different languages are Lang_French, Lang_Hindi and
Lang_Italian. The quality of these processing resources differ since they are devel-
oped by different contributors and mostly derived from the original processing re-
source.

ANNIE Gazetteer, ANNIE NE Transducer and ANNIE OrthoMatcher are processing
resources that can be used for Named Entity Recognition on English documents. The
plugins previously imported for Part-Of-Speech tagging also include processing re-
sources for Named Entity Recognition. The types for the annotation can be defined
in the parameters of the single processing resource. By default ’Persons’, ’Locations’,
’Organizations’ and ’Dates’ are annotated.

The ANNIE Gazetteer is using a list containing names of entities which can be
described as a Dictionary. The list used by the Gazetteer can be edited manually.
It is named ’lists.def ’ and can be found in the GATE developer directory. GATE
Developer does not support Taxonomies. These have to be edited manually before
the file is imported.

6.3.3 Relationship Identification

The Relationship Identification phase consists of methods used to identify relation-
ships between the previous identified concepts. In this section the capability of these
methods are evaluated for each tool.
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6.3.3.1 IBM SPSS Modeler

Relations between the concepts identified during the Concept Identification are also
developed with the Text Mining node. The relations between concepts are based on
similarity and co-occurrence. Concepts are automatically categorized using linguis-
tic techniques. In the advanced settings for the category building the user has the
option to specify the linguistic techniques. For example the user can choose which
grouping techniques are used. On default the categories are grouped using Concept
Root Derivation and Concept Inclusion. Co-Occurrence is not set as default. Addition-
ally specific category pairs can be defined which should not be paired together. The
user has the option to build categories using term frequencies instead of linguistic
techniques. The case data did not show a huge difference in the categories for both
methods. A category is based on a concept and contains one or multiple concepts.
A category can also contain a sub category containing more specialized concepts
(Figure 25). The amount minimum subcategories can be defined in the advanced
options for the category building.

Figure 25: IBM SPSS Modeler Concept Categories

The categories automatically created out of the concepts based on similarity can
be manually edited. Sub categories can be moved to the top level and new cate-
gories can be created and descriptors inside a category can be moved into a dif-
ferent category. This process is similar to qualitative analysis where text is coded.
IBM SPSS Modeler offers the possibility to inspect a category and see which other
category occurs in context with it. The category ’Victim’ occurs often close to the
category ’Suspect’. These categories are the biggest categories for the German case
documents.

Pattern Matching is not supported for Relationship Identification but it is not nec-
essary since the automatically identification using co-occurrence delivers a good
quantity of valid relations between main concepts.
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6.3.3.2 WEKA

WEKA offers many methods for Data Preparation. Concept Identification can be
achieved using additional methods that are developed by third parties but for Co-
Occurence and Pattern Matching there is no external tool. The user has the opportu-
nity to use a self created model. In this work the workflow of WEKA ends with the
Concept Identification phase since creating a model for Relationship Identification using
Co-Occurrence or Pattern Matching requires background knowledge of a user. For
this evaluation the focus is on a user perspective evaluation which means that tools
are evaluated from the perspective of a potential user. Developing own models is
not part of this definition.

6.3.3.3 RapidMiner

RapidMiner has no nodes for any Relationship Identification method. The Informa-
tion Extraction extension offer nodes for Relation Extraction. These nodes require the
Named Entity Recognition results of the Concept Identification phase. The problem is
that these results do not exists since the plugin is not working on the current ver-
sion of RapidMiner. The nodes for this task use composite kernel methods which
evolved of the tree kernel method [Jungermann, 2009].

6.3.3.4 KNIME

Relationships can be identified in KNIME with different methods which require dif-
ferent previous methods. Co-Occurrence can be realized with the Term Co-Occurence
counter node and Pattern Matching can be realized by querying a table consisting of
sentences with expressions including the identified concepts.

The Term Co-Occurrence counter can be applied after the Standard Named Entity
Filter node which is the last node of the Concept Identification phase (Figure 26). The
node identifies co-occuring concepts. The co-occurrence level shows if the concepts
occur inside a document, inside a sentence or if they occur as neighbours. The level
can be adjusted in the parameters of the node. Additional parameters can be ad-
justed to optimize the node for larger input data. For the small data set the default
configuration is used and the co-occurrence level is set to sentences. This method
reveals a relation between two concepts, but the type of relationship is not revealed.

Figure 26: KNIME Term Co-Occurrence
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Pattern Matching is more complex but the user has the opportunity to search for
specific relations. The Pattern Matching process requires the combination of multiple
nodes and it is applied after the Tokenization method which is the Sentence Extractor
node. First of all an index of the table needs to be created using the Table Indexer
node. In the parameters the columns needs to be selected which should be indexed.
After the Sentence Extractor node the table contains a SENTENCE column which is
selected in the parameters of the Table Indexer node. When the index is created for
the table the Index Query node can be used to search for a specific pattern inside the
table. The query is defined in the parameters where the rows and the operator for
the query are selected as well. The query language used in this node is a custom
query language described in the documentation of the node. The ’*’ character can
be used as a wildcard and each line is a single query which is combined with the
operator selected in the parameters. The concepts can be used from the dictionary
used for the anonymization. A query with the parameter ’OR’ and the following
input result in a list of sentences where either a suspect and a victim, a suspect and
a witness or a victim and a witness are mentioned. The sentences resulting from the
query show the main interactions between the main persons of the case.

SUSPECT* AND VICTIM*
SUSPECT* AND WITNESS*
VICTIM* AND WITNESS*

Figure 27: KNIME Index Query for Pattern Matching

The Table Indexer node takes a lot of computation which results in bad perfor-
mance. To optimize the performance the input table is split into multiple smaller
tables using the Row Filter node (Figure 27). For each smaller table a index is created
and the table is queried. Afterwards the resulting tables containing the sentences
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are concatenated using the Concatenate node which allows to merge two data ta-
bles. The disadvantage of Pattern Matching is that the query needs to be defined
manually whereas the Term Co-Occurrence counter node performs automatically. The
advantage on the other hand is that the type of relation can be better identified since
the whole sentence is given as result.

6.3.3.5 AutoMap

Relationships between concepts are detected based on the thesauri which is auto-
matically or manually generated in the previous phase. Therefore the thesauri is
applied on the imported text using the Apply Generalization Thesauri under Prepro-
cess > Text Refinement. Besides the thesauri generated in the previous phase some
standard thesauri are offered by AutoMap. These thesauri are optimized for loca-
tions, agents or organizations. When applying the thesauri the user can select if
he wants to use the thesauri content only. This reduces the text and speeds up the
process of the network creation in the next step.

In this step the relations between the concepts included in the thesauri are iden-
tified. For the German document used in this evaluation 298 relations and 249 con-
cepts are identified. In this evaluation the thesauri is created automatically and
shows many valuable relations. Due to the automatic creation many concepts with-
out relations are identified. Nonetheless most of the important relations between
the main persons are identified. A manually created thesauri is expected to achieve
better results. But the creation of a good thesauri requires a lot of manual work
and knowledge about the document. The common way is to generate a thesauri
automatically and to review and edit it.

6.3.3.6 GATE Developer

GATE Developer offers no plugins for automated Relationship Identification. Manual
methods like the windowing technique can be applied to identify relations between
previously identified concepts. Since GATE Developer can be enhanced by user
developed plugins it is possible to develop a plugin using Co-Occurrence or Pattern
Matching.

6.3.4 Concept Network Analysis

The last phase of the process is the Concept Network Analysis phase. In this section
the tools are described how far they are able to visualize the output of previous
phases in any kind of way. The best way is a visualization as a network diagram of
concepts connected based on their relations. Some tools already delivered unsatis-
fying results in previous phases which results in short descriptions of their ability
to visualize networks.
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6.3.4.1 IBM SPSS Modeler

IBMs Interactive Workbench of the Text Mining node already offers a visual output for
the user where the user can experiment with the concepts. Concepts map can be
created for each identified concept. A concept map shows relations between con-
cepts based on their similarity (Figure 28). The degree of the similarity is indicated
by the edge. The concept maps include all concept types by default. The focus of
this evaluation is on the relations between persons and locations. Therefore the map
can be filtered. The concept map for Suspect 1 does not show a relation to a location.
This is based on the fact that only 13 concepts with the type location are identified.
These concepts occur with a maximum of 8 times and usually are the place of birth
or the current address of a person.

Suspect 1

Suspect 3
Suspect 2

Vicm 1

Suspect 1

Witness 7
Witness 5

Figure 28: IBM SPSS Modeler Concept Map for Suspect 1

The network (Figure 28) shows the identified relations of Suspect 1. One relation
is to himself which is a result of a duplicate concept due to variable names in the
document. The strongest relation is with Suspect 2 who is the other main suspect of
the case. Victim 1 and Suspect 3 also show a relation to Suspect 1 and two witnesses
are also related. The witnesses are related since their names occur in the testimony
close to the suspects name. Suspect 3 shows a smaller similarity to Suspect 1. Suspect
3 is only a bystander in this case and he is not mentioned that often in the case
documents. The concept map automatically created reflects the results that have
been achieved manually.

Besides the concept map category networks can be created. A network shows
how categories relate to each other (Figure 29). The network diagram shows that
’Suspects (transl.: ’beschuldigten’)’ and ’Victims (transl.: ’geschädtigten’)’ have a strong
relationship based on their co-occurrence. The diagram is reduced on top level cate-
gories to maintain visibility. Nodes can be edited and moved around and the struc-
ture of the network can be changed based on four different network templates.
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Figure 29: IBM SPSS Modeler Category Network

The visualizations can be exported as images and a model can be generated us-
ing the category and concept list. The model can be used in new streams to classify
new documents.

6.3.4.2 WEKA

The workflow of the process in WEKA already ended in the Relationship Identifi-
cation phase. Therefore the methods in this section are only based on theoretical
possibilities. WEKA offers a register tab for visualization which is usually used to
visualize clusters or distributions of values. After preprocessing the Term Frequency
can be visualized. The graphs created can be exported as images. Additionally to
the graphical visualizations WEKA offers matrices that show the results of a clas-
sifier that had been applied to the data. A confusion matrix showing the result of
the Named Entity Recognition is shown in Figure 19. The internal format of WEKA is
always the ARFF format. After preprocessing the preprocessed file can be exported
as ARFF file. This file then can be used again without applying additional prepro-
cessing filters again. Models created with the training and test dataset can be saved
as model file or the Java code for the model can be exported. This allows the user
to implement the created model into a Java application. A Java application with
a visualization library for example can be used to visualize the recognized named
entities.

6.3.4.3 RapidMiner

The first two phases of the process are supported well by methods of RapidMiner.
Relations could not be identified in the third phase due to missing nodes. Rapid-
Miner is able to visualize results and to export or store them. Every node offers the
opportunity to inspect the outcome. Therefore the process needs to be stopped at
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the node by setting a breakpoint. The breakpoint can be set before or after the ex-
ecution of a node. At the end of a process the results are always displayed for the
user. The way of visualization depends on the last node used in the workflow. The
most common way are data tables showing the results. For documents the visual-
ization is a view split into two parts (Figure 30). One part is showing the original
document and the second part is showing the preprocessed one. After the Tokenize
node the tokens are marked in different colors to show where the Tokenizer split the
sentences.

Figure 30: RapidMiner Document View

RapidMiner itself has no nodes to create a network diagram or to visualize rela-
tions in any kind of way. It only offers many nodes to export the data into different
data formats. These formats range from simple flat files to Excel or Access data for-
mats. RapidMiner also offers nodes to write results into a database or to update a
database entry. Models created in RapidMiner can be exported as XML file or as
binary which then can be used in a Java application.

6.3.4.4 KNIME

KNIME is able to visualize the results in different ways. First of all it offers a Doc-
ument Viewer node which can be applied after each node to visualize the current
document with all preprocessing steps. The node is helpful while configuring the
nodes in the Data Preparation phase. Additionally the output of every node can be
inspected by the user after it is run. The view for the results depends on the out-
put and usually it is a data table. The data tables can be sorted by each column in
ascending or descending order. Maximum Distance Seperable (MDS) matrices can be
used to visualize distance in term co-occurrence using distance aware tag clouds
[Adä et al., 2010]. KNIME offers nodes to visualize these tag clouds. The most sim-
ple way is to visualize the amount of co-occurrences between concepts by chang-
ing the size of the concept. Two concepts that occur often will be displayed with
a greater font than concepts that occur less (Figure 31). In this case the concepts
Suspect 1 and Suspect 2 co-occur the most inside the document which reflects their
relation in the case. The second most co-occurrence is between Suspect 2 and Vic-
tim 1. This relation is strong since it is one of the few relations that appear in both
incidents of the case.
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Figure 31: KNIME Tag Cloud

The tag cloud is generated based on the results of the Term Co-Occurrence counter
node. For visualization it requires some additional nodes that prepare the data by
merging columns, removing tags and adding colors (Figure 32). The nodes are part
of the basic data mining methods of KNIME.

Figure 32: KNIME Tag Cloud Process

The results of the Pattern Matching method can be displayed as data table. The
result of this method are sentences containing a relationship between two concepts.
The results contain more information about the type of relation between two con-
cepts, but it would require many transformation steps to develop a network out of
it. A translated example revealed by Pattern Matching is displayed as a row in a table
and looks like the following.

SUSPECT1 went to the restaurant of VICTIM1 and VICTIM2

KNIME has nodes to create a Social Network. The input for the network has to be
created manually in form of dictionaries or the results of the Term Co-Occurrence
counter can be transformed to fit the desired input of the network nodes. First of
all an empty network is created using the Network Creator node. The Object Inserter
node is then used to insert the nodes and edges provided at the second input. Af-
terwards the Network Viewer node visualizes the network (Figure 33). Parameters of
this node can be changed to allow optical changes or to add weights to the edges
based on a third column.
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Figure 33: KNIME Social Network Analysis Process

The result of the Social Network Analysis offers an insight in the relations between
the discovered concepts. The weights give insights on the strength of the relation-
ship, but the nodes offer no insight on the type of relationship between the concepts.
For this social network the number of sentence co-occurences define the weights of
the edges. The network (Figure 34) shows similarity to the manually created net-
work in chapter 2. All relations between the main persons are represented. The
network is created with the Network Creator node and it can not be modified.

Figure 34: KNIME Social Network

KNIME offers multiple nodes to export the data and write it into different file
formats. Besides writing results into flat files or saving images of the created net-
works it can store results in a database.
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6.3.4.5 AutoMap

AutoMap is able to create a meta network containing nodes representing a concept
and relations represented by edges. A network is created using the MetaNetwork
DyNetML (Per Text) method under Generate > MetaNetwork. To create the network
the previous developed thesauri is required. AutoMap then creates a xml-file con-
taining the structure of the network.

The texts on which the selected methods are applied are always shown in the
main window. Nonetheless the window does not show concepts or relations be-
tween concepts in this window. A XML-viewer provided by AutoMap can be used
to inspect the xml-file which contains the nodes and their relations. AutoMap itself
offers no possibility besides this xml-viewer to view the results or to modify it. The
format used by AutoMap is the DyNetML language, a xml-derived language. It is
an xml based interchange language for relational data.

ORA is a tool developed by the same developers as AutoMap and its purpose
is to visualize networks provided in the DyNetML language format. The network
created in AutoMap can be visualized using ORA which is available as 180-day
free trial version (Figure 35). Meta information of the network are shown when the
DyNetML xml-file is loaded into ORA. ORA allows to modify the network. Rela-
tions can be hidden or displayed differently based on a given confidence value. Dif-
ferent layouts can be selected to visualize the network in a specific way. A MetaNet-
work Designer can be used to create a MetaNetwork manually.

Figure 35: MetaNetwork in ORA

The network visualized with ORA shows the main concepts in the center with
relationships to other main concepts. Due to the automatic creation on English lan-
guage the result is not perfect. Some relations are between a single concept which
is represented as multiple single concepts. Also German stop words are identified
as concepts with a huge number of relations. This is due to the fact that AutoMap
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just supports Stop Word Filter for English documents. Nonetheless relations between
the four main persons are identified. These concepts also show a huge number of
relations. Many concepts are represented without any relation. Compared to other
networks the network visualized in ORA is much more complex and contains many
wrong concepts.

6.3.4.6 GATE Developer

GATE Developer visualizes changes inside the main window. After running the
process, the document used for the process can be opened in the main window.
The workflow takes a little bit more than one minute for the German document.
The view allows the user to inspect the document. Annotation Sets can be selected
to highlight detected entities (Figure 36). The German Named Entity Recognition
included in the Lang_German plugin identifies the major named entities, but also
misses some. The English processing resource applied on the German text also
identifies some of the main named entities, but also classifies many words as named
entities which are none.

Figure 36: GATE Developer Identified Concepts

A network can not be visualized since there is no plugin for Relationship Identi-
fication which leads to a network of concepts. GATE Developer allows to save the
current application state of a specific workflow. The workflow can also be exported
for GATECloud, a cloudbased GATE solution.

6.4 Comparison

All six tools are able to perform methods of the analysis process developed in chap-
ter 5.2, but not all of them are able to perform the whole process. Each tool has
advantages and disadvantages and only three tools are able to visualize relations
between identified concepts. All tools support English documents and most of them
also offer models and methods for different common languages including German,
French and Italian. All tools, except AutoMap, run on Windows, Linux and UNIX
operating systems. AutoMap and ORA are only available for Windows. The general
usability of all tools differ a little bit. Most of the tools are quite easy to learn and
to use whereas WEKA requires the user to have deeper knowledge of each single
methods. Node-based tools like IBM SPSS Modeler, RapidMiner and KNIME offer
a great user interface which allows new users to handle the tool quite fast. GATE
Developer and AutoMap are not that intuitive and require the user to work close
with the documentation. The documentation is great for all of the tools and at least
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available in English. IBM SPSS Modeler offers a comprehensive documentation in
sixteen different languages.

The quality of the results produced by the tools differ. KNIME and IBM SPSS
Modeler offer the best results when compared to the manual results, but KNIME
requires a lot of manual work. IBM SPSS Modeler is able to produce good results
nearly completely automatic. AutoMap is the third tool that is able to visualize
relations, but the quality suffers from the automatic generated thesauri, which is
only recommended for English documents.

The three networks developed with the tools differ and are not equal to the net-
works manually developed. The reason is that the case covers two incidents that
happened in a time frame of one year. The networks automatically developed show
relations between concepts for both cases combined and the manual developed net-
works show each case. Both cases combined (Figure 5) are very complex and the
automatically developed networks miss some of the relations between persons that
are passively mentioned in the text. For example ’Victim 2 is married to Witness 4’
is not represented in any of the automatic developed networks. In the text it is only
mentioned when the victim refers to his wife. Nonetheless most of the important
relations are included in all networks.
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7 Conclusion and Outlook

In this work a framework to evaluate text processing tool was developed and six
different tools for data mining, machine learning and natural language processing
were evaluated. Therefore the process was derived from the Conceptual Analysis Pro-
cess of the GLODERS project and text mining methods were identified required to
perform each phase of the process. This process then was used to create an evalua-
tion scheme using the Model-Dependent Software Evaluation framework.

The evaluation of the tools based on a German court document shows that still
a lot of manual work is required for all tools to automatically generate a useful net-
work which can be compared to the manual results. IBM SPSS Modeler offers the
most comprehensive network without any manual work. KNIME offers a good net-
work after some manual work which is required since the model for German NER is
not available. AutoMap is good for English documents, but for German documents
it is not recommended since it requires a lot of manual work to create a thesauri.
WEKA, RapidMiner and GATE are not suited for automated text processing on Ger-
man documents since they currently lack the required methods in the Relationship
Identification and Concept Network Analysis phase.

The evaluation scheme developed can be applied for additional text processing
tools to identify if they are suited for the process and the scheme can help a user to
decide which tool he might use for a given purpose. Tools like GATE Developer,
RapidMiner, KNIME and WEKA have the advantage that they can be enhanced by
users with development experience by writing plugins or small code snippets. All
theses tools are developed in Java which is a common development language. GATE
Developer has the advantage that it already offers many official plugins provided
by trusted developers.

For German documents IBM SPSS Modeler is suggested since it allows to visual-
ize relations between concepts without any additional manual work. The downside
of IBM SPSS Modeler is that it is a commercial tool and all other tools are at least
available in a non-commercial version. KNIME can be used to develop a network
with some manual work for German documents since it lacks the German OpenNLP
model for Named Entity Recognition. For English documents KNIME allows to create
a workflow that is nearly completely automatic. The creation of the workflow is
much more complex than the creation of the workflow in IBM SPSS Modeler. Au-
toMap is the third tool which can be used on English documents. The quality for
documents in different languages depends on the amount on manual work put into
the creation of a thesauri.

All three research questions are answered in this work. The first research ques-
tion is answered in chapter 5.2. The second question is answered in chapter 6.1 and
the last question is answered in the whole chapter 6 but it is summarized in chap-
ter 6.4. In this work the evaluation and the conclusion focuses on an evaluation
of the users perspective. The results may totally differ when the scope of the user
is enhanced to a user who is able to develop additional code snippets. Tools like
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WEKA and GATE Developer can deliver great results when the required methods
are added.

Possible future work would be the expansion of the evaluation scheme for an
evaluation from a different perspective. Especially the extendability of a software
tool can have a huge impact on the results. The focus of this evaluation was to eval-
uate the tools based on a German document. This results in tools supporting the
German language to deliver better results. Documents are available in many differ-
ent language whereby a future work could also focus on an language independent
workflow taking the Language Identification results into account.

Which tool a user is going to select for future work depends on the user and on
the documents that the user wants to analyze. This work showed that for German
documents the IBM SPSS Modeler is the most suited and that for English documents
IBM SPSS Modeler, KNIME and AutoMap deliver good results. RapidMiner, WEKA
and GATE Developer can be used, but they don’t support the full process from Data
Preparation to Visualization. Besides the functionality the user can take the model-
independent facts into account to see which tool fits the best based on accessibility,
usability and sustainability.

70



References

[Adä et al., 2010] Adä, I., Thiel, K., and Berthold, M. R. (2010). Distance Aware Tag
Clouds.

[Apostolico and Galil, 1997] Apostolico, A. and Galil, Z. (1997). Pattern Matching
Algorithms. Oxford University Press.

[Bikel et al., 1997] Bikel, D., Miller, S., Schwartz, R., and Weischedel, R. (1997).
Nymble: a high-performance learning name-finder. Fifth Applied Natural Lan-
guage Processing Conf.

[Brill, 1992] Brill, E. (1992). A simple Rule-Based part of speech tagger. Proceedings
of the Third conference on Applied Natural Language Processing.

[Briscoe et al., 1994] Briscoe, T., Grefenstette, G., Padró, L., and Serai, I. (1994). Hy-
brid techniques for training hmm part-of-speech tagger. Technical Report MLTT-
007.

[Bundeskriminalamt, 2008] Bundeskriminalamt (2008). Trends in Organised Crime.
Organised Crime Situation.

[Carley et al., 2013] Carley, K. M., Columbus, D., and Landwehr, P. (2013). Au-
toMap User’s Guide 2013.

[Chapman et al., 2000] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinhartz,
T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining
guides. CRISP-DM Consortium.

[Charniak, 1993] Charniak, E. (1993). Statistical Language Learning. MIT Press.

[Church and Hanks, 1990] Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography. Computational Linguistics.

[Cucchiarelli et al., 2012] Cucchiarelli, A., D’Antonio, F., and Velardi, P. (2012). Se-
mantically interconnected social networks. Social Network Analysis.

[Cunningham et al., 2013] Cunningham, H., Tablan, V., Roberts, A., and Bontcheva,
K. (2013). Getting More Out of Biomedical Documents with GATE’s Full Lifecycle
Open Source Text Analytics. Computational Biology.

[Cutting et al., 1992] Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A
practical part-of-speech tagger. Proceedings of the Third Conference on Applied Nat-
ural Language Processing.

[DeRose, 1988] DeRose, S. J. (1988). Grammatical category disambiguation by sta-
tistical optimization. Computational Linguistics.

71



[Diesner, 2012] Diesner, J. (2012). Uncovering and Managing the Impact of Method-
ological Choices for the Computational Construction of Socio-Technical Net-
works from Texts. Carnegie Mellon University - Dissertation.

[Finin et al., 2005] Finin, T., Ding, L., Zhou, L., and Joshi, A. (2005). Social network-
ing on the semantic web. Learning Organization, The.

[GLODERS, 2013] GLODERS (2013). D2.1 Analysis of content and structure of data
sources leading into a shared ontology. GLODERS Deliverables.

[Grefenstette, 1995] Grefenstette, G. (1995). Comparing two language identification
schemes. Proceedings of the 3rd International Conference on the Statistical Analysis of
Textual Data.

[Grefenstette, 1997] Grefenstette, G. (1997). Short Query Linguistic Expansion Tech-
niques: Palliating One-Word Queries by Providing Intermediate Structure to Text.
Information Extraction - A Multidisciplinary Apporach to an Emerging Information
Technology.

[Grefenstette and Tapanainen, 1994] Grefenstette, G. and Tapanainen, P. (1994).
What is a word, what is a sentence? Problems of tokenization. 3rd Conference
on Computational Lexicography and Text Research.

[Grisham, 1997] Grisham, R. (1997). Information Extraction: Techniques and Chal-
lenges. Information Extraction - A Multidisciplinary Apporach to an Emerging Infor-
mation Technology.

[Hall et al., ] Hall, M., Frank, E., Witten, I., Holmes, G., Pfahringer, B., and Reute-
mann, P. The WEKA Data Mining Software: An Update, volume 11. SIGKDD Ex-
plorations.

[Holmes et al., 1994] Holmes, G., Donik, A., and Witten, I. (1994). Weka: A ma-
chine learning workbench. Proc Second Australia and New Zealaand Conference on
Intelligent Information Systems.

[Holsti, 1969] Holsti, O. (1969). Content analysis for the social sciences and human-
ities.

[Impresa, 2007] Impresa, S. (2007). Decimo Rapporto. Le mani della criminalita sulle
imprese.

[ISO, 2008] ISO (2008). Ergonomic requirements for office work with visual display
terminals (VDTs)– Part 11: Guidance on usability. International Organization for
Standardization.

[Jackson et al., 2011a] Jackson, M., Crouch, C., and Baxter, R. (2011a). Software
Evaluation: Criteria-based Assessment. Software Sustainability Institute Guides.

72



[Jackson et al., 2011b] Jackson, M., Crouch, C., and Baxter, R. (2011b). Software
Evaluation: Tutorial-based Assessment. Software Sustainability Institute Guides.

[Jungermann, 2009] Jungermann, F. (2009). Information Extraction with Rapid-
Miner.

[Knoke and Yang, 2008] Knoke, D. and Yang, S. (2008). Social network analysis.

[Krippendorff, 2012] Krippendorff, K. (2012). Content analysis: An introduction to
its methodology.

[Kroeger, 2005] Kroeger, P. (2005). Analyzing grammar. Cambridge University Press.

[Krukow, 2013] Krukow, O. (2013). Concept Network Extraction from Text - Meth-
ods and Tools for the Research into Extortion Racket Systems.

[Lovins, 1968] Lovins, J. B. (1968). Development of a Stemming Algorithm. Mechan-
ical Translation and Computational Linguistics.

[Manning et al., 2008] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Intro-
duction to Information Retrieval. Cambridge University Press.

[Marbán et al., 2009] Marbán, ., Mariscal, G., and Segovia, J. (2009). A Data Mining
& Knowledge Discovery Process Model. Data Mining and Knowledge Discovery in
Real Life Applications.

[Mika, 2007] Mika, P. (2007). Social networks and the semantic web. Semantic web
and beyond.

[Momtazi et al., 2010] Momtazi, S., Khudanpur, S., and Klakow, D. (2010). A Com-
paratice Study of Word-Co-occurrence for Term Clustering in Language Model-
based Sentence Retrieval. Human Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of ACL.

[Moore, 2007] Moore, M. (2007). Italy’s biggest business: the Mafia. The Daily Tele-
graph.

[Pisa, 2008] Pisa, N. (2008). Mafia free supermarket defies mob extortion. The Daily
Telegraph.

[Pyle, 1999] Pyle, D. (1999). Data Preparation for Data Mining.

[Roberts, 1997] Roberts, C. W. (1997). Methods for Drawing Statistical Inferences
from Texts and Transcripts. Text Analysis for the Social Sciences.

[Rose et al., 2007] Rose, C. P., Wang, Y., Cui, Y., Arguello, J., Stegmann, K., Wein-
berger, A., and Fischer, F. (2007). Analyzing Collaborative Learning Processes Au-
tomatically: Exploiting the Advances of Computational Linguistics in Computer-
Supported Collaborative Learning. International Journal of Computer Supported Col-
laborative Learning.

73



[Sager, 1981] Sager, N. (1981). Natural Language Information Processing.

[Sampson and Postal, 2005] Sampson, G. and Postal, P. M. (2005). The ’language
instinct’ debate.

[Scott, 2011] Scott, J. (2011). Social network analysis: developments, advances, and
prospects. Social network analysis and mining.

[Searle, 1969] Searle, J. (1969). Speech acts: An essay in the philosophy of language.

[Shearer, 1994] Shearer, C. (1994). Mining the data-lode. Times Higher Education.

[Smeaton, 1997] Smeaton, A. F. (1997). Information Retrieval: Still Butting Heads
with Natural Language Processing? Information Extraction - A Multidisciplinary
Apporach to an Emerging Information Technology.

[Tangenberg, 2007] Tangenberg, J. (2007). Seminar on Counteraction of Extortion
Racketeering. Seminar on counteraction of Extortion Rackets.

[Tjong Kim Sang and De Meulder, 2003] Tjong Kim Sang, E. F. and De Meulder, F.
(2003). Introduction to the conll-2003 shared task: Language-independent named
entity recognition. In Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 142–147, Stroudsburg,
PA, USA. Association for Computational Linguistics.

[TRANSCRIME, 2008] TRANSCRIME (2008). The need for an Instrument to Com-
bat Activities of Organised Crime. Study on Extortion Racketeering.

[UNODC, 2008] UNODC (2008). Good Practices for the Protection of Witnesses.
Criminal Proceedings Involving Organized Crime.

[van Atteveldt, 2008] van Atteveldt, W. (2008). Semantic network analysis: Tech-
niques for extracting, representing, and querying media content.

[Voutilainen et al., 1992] Voutilainen, A., Heikkila, J., and Antilla, A. (1992). A lexi-
con and constraint grammar of english. Proceedings of the Fourteenth International
Conference on Computational Linguistics.

[Wasserman, 1994] Wasserman, S. (1994). Social network analysis: Methods and appli-
cations.

[Wilks, 1987] Wilks, Y. (1987). Text searching with templates. Technical Report ML
162.

[Wilks, 1997] Wilks, Y. (1997). Information Extraction as a Core Language Technol-
ogy. Information Extraction - A Multidisciplinary Apporach to an Emerging Informa-
tion Technology.

74



[Winter et al., 1993] Winter, A., Ebert, J., Dumslaff, U., and Mertesacker, M. (1993).
Ein Vorgehensmodell zur Software-Evaluation. Universität Koblenz- . . . .

[Witten et al., 2011] Witten, I., Frank, E., and Hall, M. (2011). Data Mining - Practical
Machine Learning Tools and Techniques.

75



Appendix
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Figure 38: Evaluation Scheme (continued)
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