
Fachbereich 4: Informatik

Erstellung einer 3D-Karte aus
RGB-D-Daten unter Benutzung
visueller Odometrie

Bachelorarbeit
zur Erlangung des Grades
Bachelor of Science
im Studiengang Computervisualistik

vorgelegt von

Raphael Memmesheimer

Betreuer: Dipl.-Inform. Viktor Seib, Institut für Computervisualistik,
Fachbereich Informatik, Universität Koblenz-Landau
Erstgutachter: Prof. Dr.-Ing. Dietrich Paulus, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau
Zweitgutachter: Dipl.-Inform. Viktor Seib, Institut für
Computervisualistik, Fachbereich Informatik, Universität Koblenz-Landau

Koblenz, im Dezember 2014

Kurzfassung
In dieser Arbeit prärentieren wir Methoden zum Schätzen von Kamerabewegun-
gen einer RGB-D-Kamera in 6 Freiheitsgraden und dem erstellen von 3D-Karten.
Als erstes werden die RGB- und Tiefendaten registriert und synchronisiert. Nach
der Vorverarbeitung extrahieren wir FAST-Merkmale in zwei aufeinander folgen-
den Bildern. Daraus wird eine Korrespondenzmenge erstellt und Ausreißer werden
herausgefiltert. Anschließend projezieren wir die Korrespondenzmenge in 3D um
die Bewegung aus 3D-3D-Korrespondezen mittels Least-Squares zu bestimmen.
Weiterhin präsentieren wir Methoden um 3D-Karten aus Bewegungsschätzungen
und RGB-D-Daten zu erstellen. Dafür benutzen wir das OctoMap-Framework und
erstellen wahlweise auch inkrementelle Karten aus Punktewolken. Anschließend
evaluieren wir das System mit dem weit verbreiteten RGB-D-Benchmark.

Abstract
In this thesis we present an approach to track a RGB-D camera in 6DOF and
construct 3D maps. We first acquire, register and synchronize RGB- and depth
images. After preprocessing we extract FAST features and match them between
two consecutive frames. By depth projection we regain the z-value for the inlier
correspondences. Afterwards we estimate the camera motion by 3D point set
alignment between the correspondence set using least-squares. This local motion
estimate is incrementally applied to a global transformation. Additionally we
present methods to build maps based on point cloud data acquired by a RGB-D
camera. For map creation we use the OctoMap framework and optionally create
a colored point cloud map. The system is evaluated with the widespread RGB-D
benchmark.

5

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-
beit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgele-
gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe für Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen.

ja � nein �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. ja � nein �

Koblenz, den 5. Januar 2015

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Goals . 11
1.3 Implementation . 12
1.4 Notation . 13
1.5 Outline . 13

2 State of the Art 15
2.1 Feature Based Methods . 16
2.2 Dense Methods . 18
2.3 Depth Based Approaches . 20

3 Visual Odometry 23
3.1 Image Preprocessing . 24
3.2 Feature Extraction . 24

3.2.1 FAST . 25
3.2.2 Scale Invariant Features (SIFT) Descriptor 25

3.3 Feature Matching . 26
3.4 Inlier Detection . 27
3.5 Motion Estimation . 28

3.5.1 SVD . 28
3.5.2 Least-Squares . 29
3.5.3 RANSAC . 30

3.6 Camera Calibration . 31
3.7 Depth Registration . 33
3.8 Time Synchronization . 35

4 Mapping 39
4.1 OctoMap . 40

4.1.1 Occupancy Gridmaps . 40
4.1.2 Octrees . 41

7

8 CONTENTS

4.1.3 Construction . 41
4.2 Point Cloud Map . 42

4.2.1 Iterative Closest Points . 42

5 Evaluation 45
5.1 RGB-D Benchmark . 45

5.1.1 Datasets . 46
5.1.2 Evaluation Metrics . 47

5.2 Results . 48
5.2.1 Accuracy . 48
5.2.2 Suitability for Mapping . 51
5.2.3 Comparison . 51
5.2.4 Runtime . 51

6 Conclusion 53
6.1 Conclusion . 53
6.2 Outlook . 54

A Detailed Evaluation Results 61

B Acronyms 75

C List of Symbols 77

D Coordinate System 79

Chapter 1

Introduction

1.1 Motivation

Extracting structure information of an environment is one major goal of the com-
puter vision community.

Lower dimensional visual odometry estimates are already widely spread in con-
sumer devices like optical mouses or mobile scanners. For these use cases the
motion estimation is realized in two dimensions, often by supporting light sources.

When we extend this idea to the third dimension, we have to track the camera
motion in 6DOF. By relying on a RGB-D camera we are able to regain distance
measurements for most of the pixels. With the tracked camera poses and the dis-
tance measurements we can reconstruct the environment just by walking through.
Additional modifications like markers, special lightning or external camera track-
ing is not needed.

Using a RGB-D camera, which has multiple sensors encapsulated in one device,
simplifies the later usage of the system as well as the sensor data fusion. It also
enables us to develop an approach that can be adapted to other RGB-D cameras.
With the Microsoft Kinect, that was developed for home entertainment, is a RGB-
D camera existing that is already widely spread and achievable for masses.

Currently some companies are investigating a lot in research to bring ap-
proaches similar to those presented in this thesis to the consumer market. For
instance the Google Tango project1 aims to bring the PrimeSense Technology
[AFMS12] as used in depth cameras like the Microsoft Kinect and Asus Xtion Pro
Live into consumer tablet and smartphone devices, which will spread the avail-
ability of this technology even more and increases the mobility. The Structure

1tango.google.com

9

tango.google.com

10 CHAPTER 1. INTRODUCTION

IO2 project also aims to bring companion depth cameras to consumer devices that
could be attached onto tablets.

The methods presented in this thesis can be useful for several tasks like:

Measuring / Reconstruction Today futuristic sounding scenarios like extend-
ing the image sharing process into a third dimension can be reality in a few
years. The placing of virtual furniture into your captured flat, will show up
if it fits into your room, both optical and in size, just before your bought
it. A virtual inspection of a flat you want to buy, a famous building or your
next trip are only some use cases that could be imagined in the future.

Augmented- / Virtual Reality Having information about the structure of an
environment as well as the position and orientation of a camera enables us
to develop Augmented Reality (AR) and Virtual Reality (VR) applications.

The paracosm3 aims for 3D reconstruction with depth data for bigger scenar-
ios and also captured by different devices. By this it is imaginable that 3D
structure information is available more globally and easier accessible. Dy-
namic augmented informations can be encoded into this data collection for
static scenarios. VR will also profit from these techniques, as the 3D map
can be used for gaming, tourism or teaching applications in virtual previously
scanned environments.

Robotics In unstructured environment, when wheels slip, it is not guaranteed to
get reliable movement information from wheel encoders, which also hardens
the mapping and localization task. A complete visual approach will be robust
against such cases as long as the visual sensor is able to see the environment.
Since 2008 the NASA shows how they successfully use a visual odometry
approach on two Mars Exploration Rover (MER)s and how it outperforms
wheel odometry in unstructured environments (see Figure 1.1).

RGB-D odometry, mapping and Simultaneous Localization and Mapping
(SLAM) technologies can also be used on Unmanned Areal Vehicles (UAV)
and it was recently shown that it is possible to control quadrocopter based
on this input data [KSC13b] and even navigate.

Generating 3D maps will also enable robots to interact better with the envi-
ronment in many cases such as higher dimensional obstacle avoidance, or a
more global grasp planning. A full 3D map of an environment will also enable
us to add semantics , i. e. obtained from an object recognition system, to a
map and can be used for robot task planning. In general it will enable robots

2http://www.structure.io
3http://paracosm.io

http://www.structure.io
http://paracosm.io

1.2. GOALS 11

to understand the environment better which could improve Human-Robot
Interaction (HRI).

In cases where no Global Positioning System (GPS) signals are available,
such as tunnels, will visual odometry estimates support the localization.

Inspection Another use case is covered by the Dot Product 3D4 company which
develops mobile devices attached with a depth camera to reconstruct indus-
trial facilities for planning or inspection purposes. In comparison to laser
scanner technology they provide low cost mobile scanning technologies giv-
ing instant visual feedback about the reconstruction quality. This will lead
to a more spread and accessible scanning technology for industrial use cases.

Figure 1.1: This Figure shows the feature tracking component between pairs of im-
ages as used by the visual odometry approach by the NASA for motion estimations in
unstructured environments on their mars exploration robot Spirit [MCM07]. The dots
denote the feature points whereas the lines denote the 2D projection of motion applied
between the image pairs.

1.2 Goals
The goal of this thesis is to implement an approach for estimating camera motions
in 6 Degrees Of Freedom (DOF) and building 3D maps using only a RGB-D
camera as an input device. Thus we have access to color- and depth images. We

4http://www/dotproduct3d.com

http://www/dotproduct3d.com

12 CHAPTER 1. INTRODUCTION

try to achieve this by following an approach that estimates the camera poses using
a sparse method but at the same time be able to construct a dense 3D map from
registered intensity- and depth images.

1.3 Implementation

The motion estimation and mapping system developed in this thesis was imple-
mented in C++ 11 using the Robot Operation System (ROS) [QCG+09]. The
modular nature of ROS enables us to separate the motion estimation from the
mapping component and also comes with a tool-chain that supports online in-
terchangeability of the components. Furthermore ROS supports the debugging
process by serving tools for visualization as well as data flow inspection.

Image processing was supported by using the Open Computer Vision (OpenCV)
[Bra00] library. We made use of all kinds of algorithms from stereo camera cali-
bration, feature extraction and matching over to motion estimation with RANdom
SAmple Consensus (RANSAC). The matching process was also supported by the
Fast Library for Approximate Nearest Neighbors (FLANN)[ML09]. Additionally
we made use of the Fast Odometry From Vison (Fovis) [HBM12] library which
implements the approach by Huang et al. [HBH+11] for visual odometry.

For point cloud processing the Point Cloud Library (PCL) [RC11] was used
intensively for registration using Iterative Closest Points (ICP), closed form motion
estimation using Singular Value Decomposition (SVD) as well as reducing the
amount of data using a voxel grid filter to construct colored point cloud maps.

The OctoMap [HWB+13] 3D mapping framework was used for efficient map-
ping and the comparison against 2D occupancy grid maps generated by a scan
matching slam system.

Mathematical operations, particularly matrix and vector operations were real-
ized with the Eigen [GJ+10] Library. For general purpose algorithms, as getting
a list of all files in a directory or reading and manipulation configuration files, the
Boost Library [SLL01] was used during this thesis.

At some points python scripts were written for testing purposes as well as
extraction from encapsulated data in container file formats.

During the creation of this thesis the RGB-D benchmark [SEE+12] was also
a great support in the development process with its sequences for testing and
debugging as well as for the evaluation.

1.4. NOTATION 13

1.4 Notation
In this thesis, the following conventions are used for denoting mathematical enti-
ties:

• Vectors are denoted by lowercase letters like t

• Points are denoted by lowercase letters, annotated with the corresponding
space in the superscript and the according reference frame in the subscript
like xcrgb for instance describes a point in camera coordinates with it’s origin
in the center of the RGB camera.

• Matrices are denoted by bold, uppercase letters like R

• Sets, like point clouds, are denoted by uppercase, italic letters like P

• Images are defined as two dimensional functions, and are denoted by lower-
case letters like f . An image element is accessed by its x and y coordinate
like f(y, x)

An overview of the symbols used in this thesis is given in Appendix A.

1.5 Outline
This thesis is divided into a state of the art chapter 2 which describes related
methods and research activities.

Then in the visual odometry chapter 3 we introduce the algorithms to estimate
the motion applied to a RGB-D camera. The motion estimate serves as input for
the mapping approach (described in Chapter 4), where we introduce algorithms
and data structures that are used for building 3D maps. The evaluation methods,
using the widely used RGB-D benchmark [SEE+12] as well as the results from our
approach, are described in chapter 5.

This thesis closes with a conclusion and suggestions to improve on top off the
proposed methods in Chapter 6.

Each chapter starts with a graphical overview like Figure 1.2. This Figure
shows the implementation pipeline of each of the both main problems covered in
this thesis - the motion estimation and the mapping - in context of the whole
system. The steps, data and their relations covered in the chapter are highlighted
in front of each chapter. In these graphics rounded boxes denote data while boxes
with sharp corners describe actions.

14 CHAPTER 1. INTRODUCTION

RGB-D Image
Sequence

Incremental
Pose Cal-
culation

Mapping

Feature
Extraction

Feature
Matching

Inlier
Detection

PointCloud

2D Robot
Pose

Octomap
PointCloud

Map

Figure 1.2: Implementation Overview

Chapter 2

State of the Art

There are three basic approaches to estimate the motion of a visual system:

• Feature Based Methods
• Direct Methods
• Depth Based Methods

Figure 2.1: Comparison of feature and direct based methods for camera tracking
[ESC14]

Feature based (also sparse) methods extract and match interest points between
consecutive frames to calculate the camera motion. Direct methods skip the feature
extraction and matching by minimization of the photometric error between images.
Depth based methods estimate motions given point clouds or directly on depth
maps and also can be realized on data obtained by laser scanners. All presented

15

16 CHAPTER 2. STATE OF THE ART

methods have in common that they estimate the camera motion in 6DOF and
construct maps in 3D. Figure 2.1 shows the differences between feature and dense
methods for motion estimation and mapping.

2.1 Feature Based Methods
We now give an overview of methods used for motion estimation and/or mapping
that follow a sparse approach. All these methods rely on a feature extraction
and matching step and thus won’t be able to give correct motion estimates on for
instance blank walls where not enough features could be extracted and matched.
Further when relying on features for mapping we only can triangulate 3D points
for matched interest points which will lead to very sparse maps that can hardly
be interpreted by humans. To overcome this it is possible to interpolate distances
in between and map parts of the image to interpolated values. This however will
only support the eye candy aspect and won’t support accuracy for localization.
By additional usage of depth data acquired from RGB-D camera we are able to
reconstruct dense maps using sparse motion estimates.

Figure 2.2: RGB-D SLAM GUI showing the constructed 3D map on top. On the
bottom left we can see the input image and in the center the corresponding depth image.
On the bottom right we can see the extracted SIFT features and matches [EHS+14].

RGB-D SLAM RGB-D SLAM is a system presented by Endres et al. in 2010
[EEH+11] [EHS+14]. The system for motion estimation developed in this

2.1. FEATURE BASED METHODS 17

thesis is very similar to the one proposed by Endres et al.. The SLAM-
backend extracts sparse image features with SIFT, Speeded Up Robust Fea-
tures (SURF) or Oriented BRIEF (ORB). Those features are projected into
3D using the depth value at the feature locations. After matching features
from consecutive intensity images, the camera pose is calculated incremen-
tally using RANSAC. To speed up the algorithm, they also integrated a
Graphical Processing Unit (GPU) version of SIFT. The SLAM front end
optimizes the pose graph using g2o [KGS+11]. The map is represented either
as an octree map using the OctoMap framework [HWB+13] or an incremen-
tally built point cloud. Figure 2.2 shows the RGB-D SLAM in application. In
a later publication [EHE+12] the approach was evaluated against the RGB-D
benchmark.

Figure 2.3: Parallel Tracking And Mapping (PTAM) showing an initialized and feature
points building the map. The dot colors denote on which coarse to fine level a feature
point was extracted.

PTAM PTAM [KM07] was introduced in 2007 for estimating camera pose from
a handheld camera in unknown scenes for small AR workspaces. To speed
up the tracking and mapping process they decoupled the components each in
its own thread. This approach processes relative detailed maps of thousands
of features and is able to overlay AR information in a large scale.

Essential Matrix decomposition For monocular cameras a multiple view ap-
proach that estimates the Essential matrix which then can be decomposed
into a translation and a rotation component [HZ04] is widely used. As with
other monocular approaches we won’t have any exact distance metrics and
thus we will get the transformation only up to scale. There are possibilities
to overcome this by fusing the estimation for instance with data of an Inertial
Measurement Unit (IMU) [WS11].

18 CHAPTER 2. STATE OF THE ART

2.2 Dense Methods
Dense (also direct) methods estimate the camera motion by direct image alignment
that is achieved using a minimization of the photometric error. As Figure 2.1
shows, the motion estimate is based on direct image alignment on the difference
minimization, therefore the feature extraction and matching is not needed and
one step is skipped. However, as more image information is used, the estimation is
more costly and was only recently optimized to run in realtime on a GPU[NLD11],
Central Processing Unit (CPU)[KSC13b], or even mobile devices [ESC14]. We
now introduce the current state of the art methods for dense motion estimates
and mapping.

DTAM In 2010 Dense Tracking And Mapping (DTAM) [NLD11] was published
by Newcombe et al. being the first dense tracking and mapping method
running online. This was possible due to the usage of optimized algorithms
for parallelism that where executed on modern GPU hardware. By min-
imization of the photometric error between a bundle of frames and a key
frame using an exhaustive search algorithm they incrementally constructed
an inverse depth map. In comparison to PTAM the DTAM method is more
robust against fast camera movements and defocused cameras but will fail
on global illumination changes that more likely will converge to a wrong
minima. Figure 2.4 shows an incrementally built map and also compares the
map details to PTAM.

Real-Time Visual Odometry from Dense RGB-D Images Steinbrucker et
al.[SSC11] showed an energy based approach to estimate visual odometry
from RGB-D images. Instead of relying on image features this approach
minimizes the photometric error. The idea is to compute the rigid body
motion which optimally transforms the second image into the first, i.e. the
difference image, computed for locations of reliable depth, should be zero
[SSC11]. The minimization is executed from a coarse to fine level to be more
robust against bigger movements.

DVO Based on the approach proposed by Steinbrucker et al.[SSC11] the Dense
Visual Odometry (DVO) [KSC13b] approach extended it to also minimize
the depth error and proposed the use of error functions to make it robust
against moving objects in the scene[KSC13b]. Kerl et al. make heavy use
of Single Instruction Multiple Data (SIMD) to run it on a single CPU core
and also on embedded devices which enables it to run on quadrocopters for
instance.

Using this visual odometry estimation they later extended the approach to
build a SLAM system in [KSC13a] which is accomplished by building a

2.2. DENSE METHODS 19

Figure 2.4: Visualization of the incremental constructed inverse depth map over time.
[NLD11] On the bottom a map overlay created by PTAM for the same scene containing
fewer information.

20 CHAPTER 2. STATE OF THE ART

graph representation and optimization using g2o [KGS+11] resulting in global
consistent maps.

LSD-SLAM: Large-Scale Direct Monocular SLAM Also based on the ap-
proach by Steinbrucker et al. Engel et al. presented a direct monocular
SLAM technique able to build large scaled dense maps. The camera track-
ing is realized using direct image alignment and also generates geometry
in form of semi dense depth maps [ESC14] based on the image alignment.
For global consistent maps and loop closure detection they build a key frame
based pose graph. In comparison to DTAM the technique could be executed
on a CPU and even on mobile devices.

2.3 Depth Based Approaches

In this section we introduce methods for motion estimation based on depth maps
or point clouds using registration algorithms like ICP [ZHA92].

Kinect Fusion [IKH+11] was introduced in 2011 aiming at rapid, visual impres-
sive reconstruction of scenes. They first convert the depth map of a RGB-D
camera into 3D points with normals in camera coordinate space (a). The
next step is the camera pose calculation in 6DOF by running ICP on the
points between the current and the last frame (b). The global transforma-
tion is incrementally calculated based on this transformation. The mapping
consists of incrementally fusing 3D meshes instead of the point cloud data
using a volumetric surface representation based on Signed Distance Function
(SDF) (c). The global transformation is used for the mesh transformation.
For rendering they cast rays out of the global pose by a ray casting algo-
rithm. The calculations are done on a GPU in order to achieve higher frame
rates (d)[IKH+11]. The complete pipeline as described is shown in Figure
2.5.

Direct Camera Pose Tracking and Mapping With Signed Distance Functions
Just like the Kinect Fusion method, this approach estimates the camera mo-
tion using SDFs but instead of using ICP on an synthesized depth image
created by SDFs Bylow et al.[BSK+13] proposed an approach to run ICP
directly on a SDF.

RGB-D Mapping as proposed by Henry et al.[HKH+10] creates colorized 3D
maps, only supported by pose estimations from the RGB-D camera. They
extract SIFT features and perform alignment using RANSAC. Then they
propose to use RGB-D-ICP [HKH+10] which runs the ICP algorithm on the

2.3. DEPTH BASED APPROACHES 21

Figure 2.5: Kinect Fusion pipeline. See description in Section 2.3

reduced set of image features. They also optimize the camera pose and detect
loop closures using a pose graph. For a more efficient map representation
they suggested to use a surfel based structure which combines points at
similar locations and colors to reduce the amount of data.

Chapter 3

Visual Odometry

RGB-D Image
Sequence

Incremental
Pose Cal-
culation

Mapping

Feature
Extraction

Feature
Matching

Inlier
Detection

PointCloud

2D Robot
Pose

Octomap
PointCloud

Map

In this chapter we describe the process of estimating the camera transformation.
The problem is reduced to a transformation estimation between two consecutive
frames based on 3D-3D correspondences. These estimates are then used for an
incremental motion estimation.

We start with a brief introduction followed by a description of each step of the
motion estimation process, each separated in subsections.

The following steps are executed:

• Image preprocessing

23

24 CHAPTER 3. VISUAL ODOMETRY

• Feature extraction

• Feature matching

• Inlier detection

• Motion estimation

Odometry describes the position estimate of a robot usually with observations
of the wheel spins [Pel11]. Visual odometry however does not rely on wheel odom-
etry and describes the motion of a camera or a robot platform only with visual
information obtained from an optical system like a camera. In this thesis the mo-
tion estimation is calculated using the color and depth information of a RGB-D
camera.

3.1 Image Preprocessing

In the image preprocessing step we obtain the RGB and depth image. The RGB
image is converted to gray scale and smoothed with a Gaussian kernel of σ = 0.85
[HBH+11]. Additionally Gaussian pyramid is constructed for feature extraction on
different scales in order to be more robust against motion blur by fast movements.
In the preprocessing step we also register and synchronize the intensity information
to the depth information. This process is described in Section 3.6.

3.2 Feature Extraction

In this section the methods to extract features from an intensity image are de-
scribed. The extracted features from image space are associated with the corre-
sponding depth values. If the depth value at the feature location could not be
estimated, for instance they are not in the visible depth range or the infrared light
was absorbed, they are simply discarded. This step is necessary because we rely
on 3D-3D correspondences for the motion estimation step (described in Section
3.5) We project the successfully matched 2D image features into 3D by associating
the depth information to the image coordinate of the feature points as described
in Section 3.7.

For feature extraction we rely on the Features from accelerated segment test
(FAST) feature detector, as described in Section 3.2.1, which is applied on each
level of the Gaussian pyramid [HBH+11].

3.2. FEATURE EXTRACTION 25

Figure 3.1: FAST corner detector - This Figure shows the Bresenham circle of radius
3 around a center pixel. When a certain amount of contiguous pixels on this circles is
brighter and darker than a given a threshold the center pixel is a feature [RD06].

3.2.1 FAST

FAST [RD06] and its successor FASTER [RPD10] are, as the name suggests,
optimized for significant faster detection then other methods. For comparison the
Harris corner detector is 20 to 30 times slower [Eng11]. They extract features using
a simple threshold convention for the brightness of pixels on a circle with a given
radius around a center pixel. This simple definition of a feature yields in an efficient
implementation with accelerated segment tests. Further improvement is realized
with a machine learning approach which generates code, in form of thousands lines
of if-statements, for a pre trained decision tree. Beside the efficiency of FAST, due
to this simple feature definition, it will also result in a high amount of detected
features. For sparse 3D reconstruction using multiple views this would result in a
dense map because more features will lead to more correspondences for which a 3D
point can be triangulated. On the other hand we have to match more features and
dismiss more false positive correspondences resulting in false motion estimates. As
we use the depth map of the RGB-D camera we could neglect the reconstruction
aspect but have to focus on the correspondence aspect as we show in Section 3.3.

A descriptor is then calculated for each extracted feature, which supports the
matching process 3.3

3.2.2 SIFT Descriptor

For the SIFT [Low99] descriptor creation a 16 × 16 neighborhood around a key
point is taken and divided into 16 sub blocks each of size 4× 4 as shown in Figure
3.2. For each sub block a 8 bin histogram of orientations, based on the gradient,
is calculated. This sums up in a key point descriptor of size 128 [Bra00]. We now

26 CHAPTER 3. VISUAL ODOMETRY

have local key point descriptors for each feature supporting the correspondence
association between consecutive frames.

Figure 3.2: SIFT Descriptor - On the left a key point with its corresponding search
window of size 16× 16 and the sub blocks of size 4× 4 are visualized. On the right the
visualization of the orientation histograms for each sub block is shown[Yua13].

3.3 Feature Matching

Figure 3.3: Visualization of matched features between two consecutive intensity frames
in this case using a SIFT detector and descriptor with an adaptive thresholding on the
descriptor distance

Now we are able to extract feature points from images, we want to know which
feature feature points are corresponding between two consecutive frames.

3.4. INLIER DETECTION 27

Given the descriptors we calculated in the Feature Extraction section 3.2, we
can match features by computing the euclidean distance d between their descriptors
p and q:

d =

(
128∑
i=1

(pi − qi)2

)1/2

(3.1)

Features with a low descriptor distance will be marked as matches. Instead
of canceling the matching process when the descriptor distance is below a certain
threshold we go on and search for features that may have even better descriptor
distance. As the matching is a very fundamental step for the motion estimation
results we try to find the best feature matches in this step. This however is due
to the amount of features and the 128 dimensional descriptor a costly function
and could be optimized. We additionally discard feature matches that are above
a certain descriptor distance as they most likely will be false matches. Using the
FLANN library we found a good trade off between efficiency and accuracy.

The most computationally expensive part of many computer vision algorithms
consists of searching for the closest matches to high-dimensional spaces. [ML09]
Given a dataset and a degree of accuracy the FLANN library is able to deter-
mine the best algorithm and parameter values to find the approximate nearest
neighbour. FLANN represents the descriptor space as randomized k-d trees or
k-means trees, depending on the input, which have be shown to perform best on
approximate neighbour search. In Figure 3.3 the result of the matching process is
shown.

This approach will in general lead to very good associations by itself, but it is
still possible to have false key point matches between frames that will lead to wrong
motion estimations. To further optimize this we have to detect false matches.

3.4 Inlier Detection

As we still get some false associations due to false matches with low descriptor dis-
tances we have to add an additional step for inlier detection. A greedy algorithm
is executed to approximate the maximal clique on a graph of consistent feature
matches [HIG02]. This leads to a runtime of O

(
n2
)
depending on the number of

feature matches. We could neglect this due to the efficiency of the consistence
checks. A comparison between this method and RANSAC has been shown by
Huang et al. in [HBH+11]. The motion estimation process is canceled for corre-
spondence sets with fewer then ten inlier to get more robust motion estimates.

28 CHAPTER 3. VISUAL ODOMETRY

3.5 Motion Estimation
We now introduce methods for motion estimation given two 3D point sets with
known correspondences. We implemented methods by:

• SVD

• Least-Squares

• RANSAC

Beside these methods there are other approaches like ICP [ZHA92] or Maxi-
mum Likelihood Estimation (MLE) [MSS09].

3.5.1 SVD

Given a set of 3D-3D correspondences we are able to compute the transformation
of two consecutive frames in closed form using the SVD. A complete deviation can
be found in [N+06] P. 33-34.

First we calculate the center of mass of the source and destination depth values
at the extracted features points.

p̄ =
1

n

∑
i

pi (3.2)

and

q̄ =
1

n

∑
i

qi (3.3)

Then we have to calculate the covariance matrix H.

H =
N∑
i=0

(pi − p̄)(qi − q̄)T (3.4)

[Nüc09]
The SVD says that each n×m Matrix could be decomposed into 3 matrices:

H = UΣV T (3.5)

If rank(H) = 3 holds, the optimal solution is unique and the rotation is given
by:

R = V UT (3.6)

3.5. MOTION ESTIMATION 29

To calculate the translation between the two sets we can simply subtract the
centroid of the source set and subtract it by the rotated centroid of the destination
set:

t = p̄−Rq̄ (3.7)

The complete transformation between source and target is then given by:

T = Rpi + t (3.8)

3.5.2 Least-Squares

A Least-Squares formulation for the transformation of two 3D point sets was given
by Horn [AHB87] and Umeyama [Ume91].

Given two point sets p and q and the transformation T by R and t the residual
error can be written as [Yan14]:

ei = q −Rp− t (3.9)

We want to minimize the sum of squared errors:

n∑
i=1

||ei||2 (3.10)

First we have to calculate the centroid (as in equations 3.2, 3.3) and then
translate the point sets into their centroid with:

p′i = (pi − p̄) (3.11)

and

q′i = (qi − q̄) (3.12)

We now can write the error term as:

ei = q′ −Rp′ − t (3.13)

where

t′ = t− q̄ + Rp̄ (3.14)

This yields a Least-Squares formation by:

n∑
i=1

||ei||2 =
n∑

i=1

||q′i −Rp′i − t||
2 (3.15)

30 CHAPTER 3. VISUAL ODOMETRY

3.5.3 RANSAC

The RANSAC algorithm was first proposed by Fischler and Bolles in 1981 [FB81]
to fit a model to noisy sensor data using minimal data to represent a model. After
outlier detection a least-squares estimation is executed on the inlier set to further
improve the estimate.

In our case we want to estimate the best transformation T given two sets of
3D correspondences P and Q. This leads us to the following equation:

Q = TP (3.16)

This can be read as we want to find a transformation T such that Q fits best
into TP. In this case the model is given by T. The best fit is defined as the lowest
distance between all elements of P and Q [Fre13].

3.6. CAMERA CALIBRATION 31

(a) Mono Calibration Image (b) Infrared Calibration Image

Figure 3.4: Calibration Images - The images above are images from the calibration
process. While the mono calibration image (a) could be recorded without special condi-
tions the infrared image (b) on the right was recorded in a well-lit environment with a
blocked Infrared (IR) projector.

3.6 Camera Calibration

The goal of the camera calibration process is to find the intrinsic parameters that
describe how the light information maps to a camera sensor and the extrinsic
parameters that describe the geometric transformation between a world reference
frame and the camera reference frame. Extrinsic camera parameters from different
cameras according to the same world reference frame also deliver the relation
between cameras.

A good calibration is prerequisite for accurate motion estimation algorithms.
While the Microsoft Kinect delivers a standard intrinsic calibration by itself, it is
not suitable for accurate computer vision tasks as it does not model lens distortion.

To calibrate a RGB-D camera, the RGB- and the IR camera need to be cali-
brated. Both cameras were calibrated using a chessboard pattern with a camera
calibration method proposed by Zhang [Zha00]. An additional stereo calibration
process between the RGB- and IR camera gives us the extrinsic parameters and
therefore the geometric relations between them. We show in Figure 5.5 example
calibration images acquired by the RGB- and IR camera.

While the IR projector disturbs the IR camera during the calibration process
Smisek et al. [SJP13] suggest to light the calibration pattern by a halogen lamp
to block the IR projector. Another possibility is to cover the IR projection, while
this leads to a darker IR image and corner detection will be harder.

The image taken by a camera projects 3D information in a world reference
frame with a transformation T composed of rotation R and translation t also [R|t]

32 CHAPTER 3. VISUAL ODOMETRY

f

cC

Y

fY/Z

Z

Figure 3.5: Pinhole camera model - f denotes the focal length. Y,Z are object coor-
dinates in the camera frame, c denotes the principal point (center of projection) on the
image plane

into pixel coordinates. The image recorded by a camera projects points given in
the camera frame onto image coordinates coordinates by the camera calibration
matrix C

xc = [R|t]xw (3.17)

Using the focal length and the principal point of a camera we can build the
camera calibration matrix C (see Equation 3.19), which projects a point given in
homogeneous camera coordinates xc to homogeneous image coordinates xi:

xi = [C|0]xc (3.18)

Due to the 3D-2D projection with C we loose scale information and thus exact
distance information which we can regain using a depth projection as described in
Section 3.7.

We now explain the intrinsic and extrinsic parameters more detailed.

Intrinsic parameters

• Focal length f

• Principal point cx, cy on image plane

• radial distortion coefficients κ1, κ2

The camera matrix is composed by:

C =

f 0 cx
0 f cy
0 0 1

 (3.19)

3.7. DEPTH REGISTRATION 33

With the radial distortion coefficients we are able to calculate a rectified (or
undistorted) version of the image using(

xi
′

yi
′

)
= (1 + κ1r

2 + κ2r
4)

(
xi

yi

)
(3.20)

.
where r is defined as:

r =
√
xi2 + yi2 (3.21)

The success of the rectification can be visually inspected by observing the edges
of the resulting image: all edges should be straight. If this is not the case there
are most likely poses of the calibration pattern missing in the calibration images.

Note that we will now assume that the image coordinates are already undis-
torted. As the undistortion process removes the influence of the lens onto the
projected image coordinates we are now able to use the pinhole camera model,
which simplifies calculations.

Extrinsic parameters

The extrinsic camera parameters

• Rotation R

• Translation t

describe the geometric relation to a reference, in our case the center of the
chessboard pattern, in the world frame for each camera. Given the extrinsic pa-
rameters we can calculate the relative transformation between both cameras. For
simplification we name the camera relations now rotation R and translation t as
we don’t need the world transformation any longer.

Those parameters are needed for the transformation of the IR camera coordi-
nates into the RGB camera frame as described in the depth registration section
3.7.

3.7 Depth Registration

Image registration is the process of overlaying two or more images of the same scene
taken at different times, from different viewpoints and/or by different sensors. It
geometrically aligns two images - the reference and sensed images [Bro92]. Figure
3.6 shows the difference between registered and unregistered depth data. This

34 CHAPTER 3. VISUAL ODOMETRY

(a) Unregistered depth (b) Registered depth

Figure 3.6: Depth Registration - The image on the left shows an image overlay with
unregistered depth information. Depth values are not corresponding to the image infor-
mation and thus will lead to false depth associations. The right image shows an registered
version where depth information match the corresponding image information. [col11]

R

t

xw

xcir xcrgb

xirgbxiir

Figure 3.7: Depth Color Registration

3.8. TIME SYNCHRONIZATION 35

section describes the registration process for two different sensors (RGB- and IR
camera). Their viewpoints are nearly parallel but horizontally translated.

With the camera matrices Cir, Crgb, the orientation R and the translation t
between the cameras we are able to register the data in a way that the depth values
which have their origin in the infrared camera coordinate system can be projected
into the RGB camera coordinate system. This enables us to lookup corresponding
depth values given a pixel coordinate in the RGB camera frame.

This process is essential for the motion estimation process described in Sec-
tion 3.5, because otherwise we would not be able to determine correct motion
estimates between two consecutive image frames if the depth values are already
wrong. Figure 3.7 visualizes the problem of the image registration process.

xcir = Cir
−1xiir (3.22)

xcir can be transformed to the RGB camera frame by the relative rotation R
and t.

xcrgb = Rxcir + t (3.23)

Then, we project xcrgb onto the RGB camera image and we obtain a 2D point
xirgb.

xirgb = Crgbx
c
rgb (3.24)

Finally, the depth value corresponding to the location xirgb in RGB image is
xcrgb’s corresponding z value[col11].

3.8 Time Synchronization
A problem similar to the registration problem could appear if the depth and color
information are not synchronized. A RGB-D camera needs more time to produce
depth images than it needs to produce the color images. On a Microsoft Kinect
the depth information are received by the driver around 20ms later then the color
information [SEE+12].

This will lead to the effect that the color information are transfered earlier
then the depth information and could lead to false associations between extracted
image features and depth values. This effect could be neglected for static cameras
or very slow movements as we get RGB and depth information with 30Hz, but
will affect the motion estimation with fast camera movements dramatically as we
get old depth associations for the current frame. The faster the camera is moved,
the higher will be the influence of unsynchronized color/depth images. Figure 3.8
illustrate the synchronization problem.

36 CHAPTER 3. VISUAL ODOMETRY

(a) Color image (b) Unsynchronized depth image

(c) Color image (d) Synchronized depth image

Figure 3.8: Comparison between synchronized and unsynchronized color- and depth
images. These figures show for illustration purposes the synchronization problem. While
the upper images show a color image (a) and its delivered depth image (b) by the RGB-D
camera which belongs to a color image a few frames behind. The color image (c) and the
time synchronized depth image (d) match together. Now imagine if we would associate
depth values at interest points in the upper unsynchronized case with a consecutive frame,
we would get useless motion estimates.

3.8. TIME SYNCHRONIZATION 37

The ASUS Xtion camera provides the possibility to associate the depth and
color frames with a timestamp given by a hardware clock. This timestamp is stored
when the infrared and RGB shutter is opened. We assume that the frames with
the closest timestamps belong together. When using a Microsoft Kinect, which
does not store a hardware timestamp, we have to associate the depth values that
are incoming approximately 20ms later to the current color frame.

An other possibility that leads to lower frame rates is to use an exact association
(up to nanosecond precision), which means that only frames with an exact match-
ing timestamp are considered. As this is not the case in general the consequence
will highly be a reduced frame rate.

Chapter 4

Mapping

RGB-D Image
Sequence

Incremental
Pose Cal-
culation

Mapping

Feature
Extraction

Feature
Matching

Inlier
Detection

PointCloud

2D Robot
Pose

Octomap
PointCloud

Map

In this chapter we describe how to incrementally build maps based on depth
data and the global transformation from the previous chapter. The mapping com-
ponent is decoupled from the motion estimation system. Thus we are able to
use other motion estimates as input for the mapping. For instance we can use a
pose from a domestic robot or integrate motion estimates from a motion capturing
system without relying on the motion estimate from the previous chapter.

39

40 CHAPTER 4. MAPPING

Further improvement i.e. by constructing a pose graph for global pose opti-
mization to reduce drift. Sensor fusion using a Kalman filter can be integrated
modularly and is suggested.

4.1 OctoMap

For mapping we use the OctoMap [HWB+13] framework. OctoMap focusses on an
efficient representation for scalable maps. The underlying data structure, is as the
name suggests an octree. The idea of occupancy grid maps using a probabilistic
representation for the occupation of a cell is extended to the third dimension. This
results in an efficient mapping framework that can cope with sensor noise. Using
an 3D OctoMap we can also project a 2D occupancy gridmap.

4.1.1 Occupancy Gridmaps

Maps can be represented using an occupancy grid data structure. An occupancy
grid is a grid which holds for each cell the probability that this cell is occupied.
Cells that are very likely occupied hold a maximum value whereas the cells that are
most likely not occupied get a minimum value. This raster based map representa-
tion was first introduced by Moravec and Elves in 1989 [Elf89]. This representation
is often used for 2D gridmaps in robotic systems because it gives a good foundation
for path planning, obstacle avoidance and map supported localisation. [Pel11]

In practise the grid is discretized. Each cell represents a specific size like
for example 5cm2. In 2D this amount of data can be represented uncompressed
even with bigger maps. When we try to extend this representation to the third
dimension the uncompressed size of a map will grow exponential. Thus the data
needs to be compressed. Equations 4.1 and 4.2 show this problem by example.

(
40

0.05

)2

= 640.000 cells = 4.88mb (4.1)

Memory consumption for a 40m2 occupancy grid map in 2D, where each element
is 0.05m2

(
40

0.05

)3

= 512.000.000 cells = 3.8 gb (4.2)

Memory consumption for a 40m3 occupancy grid map in 3D, where each element
is 0.05m3 [Stu13]

4.1. OCTOMAP 41

4.1.2 Octrees

An octree is a hierarchical data structure for spatial subdivision in 3D [Mea82].
Each node is a subdivision in space of it’s parent node. The benefits for mapping
are that the volumes are only allocated when needed and it scales to multiple
resolutions. Thus more detailed parts of the map get more nodes with more
structure information. Figure 4.1 shows the data structure. For mapping each
node stores the occupancy probability of a voxel.

Figure 4.1: Octree data structure - This figure shows a visualization of the octree data
structure. At the first level is no subdivision. The second level shows a subdivision for all
eight child nodes and on the third level only the third and seventh node are subdivided.
Each cube at the left shows an visual interpretation of the corresponding node level on
the right. [oct14]

4.1.3 Construction

For node construction we need an inverse sensor model. Based on this model we can
calculate the occupation probability by intersection tests along a beam. Initially all
nodes are assigned with an occupation probability of 0.5. When a beam does not
intersect with a volume it is encoded as free space, else the occupation probability
is calculated using the inverse sensor model [HWB+13]. Figure 4.2 shows the input
data as well as their occupied and free space octree representations. Figure 4.3
shows an OctoMap of a 360 degree handheld scan in an office environment.

42 CHAPTER 4. MAPPING

Figure 4.2: This figure shows an example of the incoming point cloud (left) and the
constructed octree representations of the occupied cells (center) and the free space (right).

[HWB+13]

4.2 Point Cloud Map

A depth camera with a resolution of 640× 480 pixels and a frame rate of 30 Hz is
able to produce 30 colored point clouds with 307200 points each. This means we
potentially get 9216000 points per second. Thus we have to reduce the amount
of points. We only process each n − th frame and the second and subsample the
point cloud. The subsampling is achieved by removing points with distances below
a certain threshold to an other point. We transform the subsampled point cloud
using the motion estimate or an other pose source. We refine the transformation
then using ICP on the current point cloud and the incrementally global point
cloud.

This gives us colored 3D maps by transforming subsampled point cloud. For
navigation or path planning it is suggested to convert the resulting point cloud to
an OctoMap.

4.2.1 Iterative Closest Points

When we have given two point cloud sets and a transformation estimate between
the two sets we can register both sets using ICP. The approach is similar to
the dense approach for motion estimates. But instead of minimizing intensity
values the ICP algorithm minimizes transformations. The input of the algorithm
is an estimated transformation, i.e. from visual odometry, and two point cloud
sets. In our case Q is given by the current point cloud acquired from the depth
image and P will be the global point cloud. Specific points are then given by pi
and q. The ICP algorithm will then estimate the transformation T by refining
the rotation R and translation t until the overall distance between the points
of P and Q is below a certain threshold or a maximum number of iterations is
exceeded. Correspondence association is handled by the ICP itself i.e. by a K-d
tree [GY03] and stored in a correspondece set C. The transformation between the

4.2. POINT CLOUD MAP 43

Figure 4.3: Map generated using the fr1/360 sequence from RGB-D benchmark with a
resolution of 0.05m and unfiltered ground. The color encodes the height of each voxel.

44 CHAPTER 4. MAPPING

correspondences is calculated by the SVD as described in Section 3.5.1. Afterwards
the current point cloud is transformed and the errors (as given by Equation 4.3)
are calculated between the correspondences of the point clouds [Nüc09]. It is not
guaranteed that the ICP converges to the right solution.

E(R, t) =
∑
i,j∈C

|‖qi −Rpj + t‖|2 (4.3)

Chapter 5

Evaluation

This section presents the RGB-D Benchmark with a brief introduction of the
datasets and error metrics used to evaluate the results of this thesis.

5.1 RGB-D Benchmark

Figure 5.1: This figure shows a handheld Kinect RGB-D camera with attached motion
capture markers used during the recording of the dataset. The markers are tracked my
a motion capture setup for ground truth [SEE+12].

The RGB-D Benchmark created by Sturm et al. was used to evaluate the imple-
mentation. This benchmark contains datasets for benchmarking RGB-D methods
for motion estimation and visual SLAM systems.

The dataset contains 39 sequences recorded using three different handheld Mi-
crosoft Kinect RGB-D camera and some sequences using manual controlled Pioneer
3 robot platform in different indoor environments.

Beside the image sequences, the dataset also contains time synchronized ground
truth data. The ground truth data was recorded using eight 100 Hz motion capture

45

46 CHAPTER 5. EVALUATION

cameras capturing reflective markers that were mounted on the camera as you can
see in Figure 5.1

Next to the sequences itself and the ground truth data, the dataset also includes
calibration files and image sequences for all three Kinect cameras that were used
during the creation of the sequences. The Pioneer dataset also contains odometry
data from the robot platform as well as 2D distance measurements from a mounted
laser scanner.

5.1.1 Datasets

The RGB-D benchmark contains several datasets for motion estimation and/or
reconstruction. In our evaluation we focus on the use of the following datasets:

Testing and Debugging This dataset contains sequences meant for testing pur-
poses and to support the development process. All sequences contain camera
movements along the principal axes of the camera in an typical office desk
environment. The xyz-Datasets contain sequences translating the camera
while the rpy contains sequences with a rotating camera.

Handheld SLAM This dataset contains a lot of different sequences recorded by
a person carring a camera. There are scenes with a log trajectory at different
speed but all recorded with natural movements. Some scenes are recorded
with a down tilted camera to ensure a planar surface. Another dataset is
recorded while performing a 360 degree rotation. Most of the scenes are also
recorded in an typical office environment.

Robot SLAM This dataset contains sequences recorded on a moving robot plat-
form that was controlled with a joystick through a hall, with bigger distances
to objects, and less noisy structure. In addition the dataset contains laser
scanner data by an SICK 2D scanner as well as odometry data delivered by
the Pioneer robotics platform. Special sequences simulate sensor failures or
sensor occlusion by covering the sensor while moving and then uncovering it
again which lead to the famous kidnapped robot problem. All sequences are
recorded at different speeds but all containing a long trajectory.

In this thesis we focus on evaluation for the Testing and Debugging, Handheld
SLAM and the Robot SLAM datasets as they are intended for usage in motion
estimation, mapping and SLAM systems. As we did not propose any error function
for cases like moving persons we don’t evaluate against those datasets.

5.1. RGB-D BENCHMARK 47

5.1.2 Evaluation Metrics

We evaluate the local accuracy of the camera trajectory as well as the global
consistency. We don’t evaluate the map quality as it is hard to construct ground
truth maps and not strictly necessary because the map quality heavily depends on
the pose estimates.

For the evaluation process the computed poses resulting in a trajectory esti-
mation P1...Pn are compared against the ground truth trajectory Q1...Qn. For
simplification the evaluation metrics presented are time synchronized, equally sam-
pled and have both the same length n. In practice this association step has to be
done in advance, as we can’t assume the ground truth to be time synchronized
and sampled with the same rate [SEE+12].

Relative Pose Error (RPE)

The Relative Pose Error (RPE) measures the local accuracy, in our case in meters,
of the trajectory over a fixed time interval ∆. The pose error at timestep i is then
defined as [SEE+12]:

Ei := (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (5.1)

From a sequence of n camera poses, we obtain in this way m = n−δ individual
relative pose errors along the sequence. From these errors, Sturm et al. propose
to compute the root mean square error (RMSE) over all time indicies of the
translational component as: [SEE+12]

RMSE(E1:n,∆) :=

(
1

m

∑
||trans(Ei)||2

)1/2

(5.2)

trans(Ei) refers to the translational components of the relative pose error Ei.

Absolute Trajectory Error (ATE)

Beside the local consistency it is also important to measure the global consistency
of the estimated trajectory [SEE+12]. The global consistency can be evaluated
by comparing the absolute distances between the estimated and ground truth
trajectory [SEE+12]. For comparing the differences we first have to transform
them into the same coordinate frame. This can be done in closed form by a least
squares as proposed by Horn [Hor87]. The estimated rigid body transformation is
stored in S

The Absolute Trajectory Error (ATE) is calculated by:

Fi = Q−1
i SPi (5.3)

48 CHAPTER 5. EVALUATION

Sequence avg. trans. vel. avg. rot. vel. RPE ATE
[m/s] [deg/s]

fr1/xyz 0.24 8.92 0.0218 0.0513
fr1/rpy 0.06 50.15 0.0477 0.0977
fr2/xyz 0.06 1.72 0.0038 0.0130
fr2/rpy 0.01 5.77 0.0037 0.0187

Table 5.1: Evaluation results on Testing and Debugging sequences

As for the RPE Sturm et al. suggest to evaluate the RMSE over all time
indices of the translation component:

RMSE(F1:n,∆) :=

(
1

m

∑
||trans(Fi)||2

)1/2

(5.4)

5.2 Results

We now present the evaluation results on all relevant datasets. More detailed
evaluation results are given in Appendix A.

The evaluation was executed with focus on precision of the estimated motion
on a workstation notebook holding a Intel Core i7-2720QM CPU @ 2.20GHz and
12GB of memory.

5.2.1 Accuracy

First we show the effects of different velocities (see Table 5.1) by comparing the
errors for similar trajectories using the fr1/xyz and fr2/xyz on the Testing and
Debugging sequences. The system performs well for low velocities with a RPE of
0.0038 on the fr2/xyz sequence while pose estimates with higher velocities result
in a much higher RPE of 0.0218 on the fr1/xyz sequence. This effect could be
explained by the motion blur of the images and the rolling shutter of the camera.
Also the block matcher, interpolating the depth values, will have a higher influence
on bigger movements. By using a RGB-D camera delivering higher frame rates
with an equal image quality or distances measurement for each pixel we will be
able to further improve the results. Figure 5.4 shows a RPE plot for both datasets.
While accuracy of the fr2/xyz is in a centimeter range with an max error of 1.7 cm
it will have errors up to 9 cm on the faster fr1/xyz dataset. We also can observe
that the accuracy decreases on camera rotation in comparison to translation.

5.2. RESULTS 49

0 5 10 15 20 25 30
time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure 5.2: RPE on fr1/xyz

0 20 40 60 80 100 120 140
time [s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure 5.3: RPE on fr2/xyz

Figure 5.4: RPE comparison with different velocities on fr1/xyz and fr2/xyz sequences

50 CHAPTER 5. EVALUATION

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
x [m]

1.8

1.6

1.4

1.2

1.0

0.8

0.6
y

[m
]

ground truth
estimated
difference

(a) ATE on fr2/xyz

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

ground truth
estimated
difference

(b) ATE on fr1/desk

Figure 5.5: While the ATE on the fr2/xyz dataset (1) is low and thus suitable for
mapping, the pose drift on the fr1/desk dataset (2) is to high to create accurate maps.

5.2. RESULTS 51

Method fr1/desk2 fr1/desk fr2/desk
[m/s] [m/s] [m/s]

DVO 0.0687 0.0458 0.0188
Fovis (used by us) 0.0424 0.0327 0.0118
avg. camera velocity 0.413 0.426 0.193

Table 5.2: Comparison to DVO

5.2.2 Suitability for Mapping

For sequences with a low ATE like fr2/xyz and fr2/rpy we are able to build plausi-
ble maps. While for sequences recorded with higher velocities the accumulated pose
drift will influence the map quality. Once a motion estimate is inaccurate there is
currently no chance to correct for this error. For global consistent maps at higher
velocities, we recommend an integration into a graph-based SLAM framework.
The pose estimates of the visual odometry fill the pose vector x while distance
measurements of interest points fill the measurement vector z. A keyframe based
approach can be used for loop closures as in RGB-D-SLAM [EEH+11].

5.2.3 Comparison

We now will compare our integration of Fovis with other state-of-art methods.
First, in Table 5.2 we compare the visual odometry results with the DVO approach.
For global consistency we compare our integration with RGB-D-SLAM [EEH+11],
DVO-SLAM [KSC13a] and the open source PCL implementation of Kinect Fusion
[IKH+11].

The accuracy outperforms current state-of-art methods for dense visual odom-
etry estimation DVO [KSC13b] in static scenes as shown in Table 5.2 but due to
the missing global alignment will perform worse on the absolute trajectory (see Ta-
ble 5.3). In comparison to Kinect Fusion our ATE is lower for longer trajectories
and Kinext Fusion tends to drift more on rotations. Like our approach Kinect Fu-
sion does not handle any global optimization on the estimated poses while RGB-D
SLAM and DVO_SLAM integrate into a graph-based SLAM.

5.2.4 Runtime

The runtime, dependent on the parameter set, can be optimized to run up to 2Hz.
For more accuracy the system can take up to 2 s per frame. The rate will be
sufficient for handheld or human operated devices, but will not be sufficient for
autonomous systems in domestic environments. We therefore suggest to further
optimize for parallelism in the motion estimation process. Also the performance

52 CHAPTER 5. EVALUATION

Dataset Fovis (used by us) DVO SLAM RGB-D SLAM KinFu
fr1/xyz 0.051 0.011 0.014 0.026
fr1/rpy 0.097 0.020 0.026 0.133
fr1/desk 0.258 0.021 0.023 0.057
fr1/desk2 0.124 0.046 0.043 0.420
fr1/room 0.184 0.053 0.084 0.313
fr1/360 0.140 0.083 0.079 0.913
fr2/desk 0.102 0.017 - -

Table 5.3: Comparison to other state-of-art methods. Other results are taken from
DVO_SLAM [KSC13a] publication

comparison between the current clique-graph inlier detection and RANSAC ap-
proach will be of interest.

Chapter 6

Conclusion

In this chapter a summarization of the presented approaches for the motion esti-
mation and mapping using a RGB-D camera is given. Then in the outlook section
(Section 6.2) we describe methods for further improvement and extension.

6.1 Conclusion

In this thesis an approach to create a dense 3D map in real time using only a
RGB-D camera was presented.

For the motion estimation a feature based approach was used. After extracting
features from the color image, the corresponding depth values where extracted.
When the depth values where assigned the extracted features where matched with
the previous RGB-D image. This leads to 3D-3D correspondences on which the
relative motion between the camera was estimated using a Least-Squares approach
or alternatively an direct approach using the SVD. The relative motion estimate
is then multiplied incrementally and leads to a global motion estimation.

To represent a 3D map an octree data structure was chosen, to reduce the high
amount of data. The incremental calculated motion estimate serves as input to
the OctoMap framework which leads to a incremental build 3D map.

The system presented in this thesis then was evaluated using the RGB-D bench-
mark.

Camera poses and maps for slow camera movements are very accurate while
the system needs further improvement on faster moving cameras.

In general the system is very modular. For instance the visual motion estima-
tion can be replaced by an other estimation method i. e. the odometry of a robotic
platform or the pose estimation of a robot.

53

54 CHAPTER 6. CONCLUSION

6.2 Outlook
We now suggest further improvements to get more accurate poses and maps.

Graph SLAM While, in general, it would be desirable to be able to extract
accurate motion estimates based on this approach, we have to deal with
noisy measurements and thus accumulate errors in a way that the motion
estimate drifts. To threshold that problem, the visual odometry approach
should be integrated in a graph-based SLAM [GKSB10], [N+07] by building
a pose graph using the motion estimates. For loop closing, key frames giving
strong image features can be saved. If a new incoming frame matches very
good with the keyframe we detected a loop and could optimize the pose
graph.

IMU integration Li et al. showed in [LM13] and [LM12] that camera based
motion estimation could be improved by fusing it with motion data of an
IMU using an Extented Kalman Filter (EKF). They demonstrated this on
a smart phone camera and an integrated IMU on an one kilometer walk
without any pose refinement or loop closing and got an absolute error of
only 5 m.

Time of Flight (TOF) evaluation During the creation of this thesis Microsoft
released a developer version of their second Kinect version, which uses a TOF
approach to produce a depth image. In comparison to the depth cameras
with a PrimeSense chip they deliver 640× 480 depth map with a real depth
value for each pixel in the depth map, in comparison to an estimated depth
by an 9 × 9 block matcher from the previous generation. This should lead
to more accurate and detailed maps and also to less errors in the motion
estimation process.

Adaptive Depth / Sparse Approach While sparse image feature approaches
work quite well for texture rich environments they tend to fail in homo-
geneous scenes. An idea how to overcome this is when there won’t be
enough features found we could use a depth based fall-back like extract-
ing and matching 3D geometry features or use direct SDF approach like
[BSK+13].

Robustness againt enviromental changes The proposed approach of this the-
sis will likely fail when the environment changes while estimating the motion.
To overcome this Kerl et al. proposed in [KSC13b] to use weight functions
on the residuals of an dense approach. An other idea is to track features
an calculate an optical flow. When have a higher movement or differ from
surrounding features they could be rejected from the motion estimation.

6.2. OUTLOOK 55

Volumetric Mapping Steinbrücker et al. showed in [SSC14] a visual impressive
method to represent highly detailed RGB-D maps. This approach could be
additionally integrated into the proposed system. While the approach from
Steinbrücker et al. works on ground truth camera poses it also needs to be
evaluated how accurate the generated maps would be from visual estimated
camera poses.

List of Tables

5.1 Evaluation results on Testing and Debugging sequences 48
5.2 Comparison to DVO . 51
5.3 Comparison to other state-of-art methods 52

A.1 Detailed evaluation results . 62

57

List of Figures

1.1 Feature tracking on the NASA Spirit MER 11
1.2 Implementation Overview . 14

2.1 Comparison of feature and direct based methods for camera tracking 15
2.2 RGB-D SLAM . 16
2.3 PTAM . 17
2.4 DTAM . 19
2.5 Kinect Fusion pipeline . 21

3.1 FAST [RD06] corner detector . 25
3.2 SIFT Descriptor . 26
3.3 Matched key points between two consecutive intensity frames 26
3.4 Calibration Images . 31
3.5 Pinhole camera model . 32
3.6 Depth registration . 34
3.7 Depth Color Registration . 34
3.8 Comparison between synchronized and unsynchronized color- and

depth images . 36

4.1 Octree data structure . 41
4.2 Generated octree map example . 42
4.3 OctoMap for fr1/360 sequence . 43

5.1 Handheld Kinect . 45
5.2 RPE on fr1/xyz . 49
5.3 RPE on fr2/xyz . 49
5.4 RPE comparison with different velocities on fr1/xyz and fr2/xyz

sequences . 49
5.5 ATE comparison for mapping . 50

A.1 RPE on fr1/xyz . 63
A.2 ATE on fr1/xyz . 63

59

60 LIST OF FIGURES

A.3 RPE on fr1/rpy . 64
A.4 ATE on fr1/rpy . 64
A.5 RPE on fr2/xyz . 65
A.6 ATE on fr2/xyz . 65
A.7 RPE on fr2/rpy . 66
A.8 ATE on fr2/rpy . 66
A.9 RPE on fr1/360 . 67
A.10 ATE on fr1/360 . 67
A.11 RPE on fr1/floor . 68
A.12 ATE on fr1/floor . 68
A.13 RPE on fr1/desk . 69
A.14 ATE on fr1/desk . 69
A.15 RPE on fr1/desk2 . 70
A.16 ATE on fr1/desk2 . 70
A.17 RPE on fr1/room . 71
A.18 ATE on fr1/room . 71
A.19 RPE on fr2/360_hemi . 72
A.20 ATE on fr2/360_hemi . 72
A.21 RPE on fr2/360_kidnap . 73
A.22 ATE on fr2/360_kidnap . 73
A.23 RPE on fr2/desk . 74
A.24 ATE on fr2/desk . 74

D.1 World frame convention . 79
D.2 Camera frame convention . 79

Appendix A

Detailed Evaluation Results

61

62 APPENDIX A. DETAILED EVALUATION RESULTS
Sequence

D
uration

Length
Avg.

Trans.
Avg.

R
ot.

R
P
E

A
T

E
R
untim

e
[s]

[m
]

V
el.

[m
/s]

V
el.

[deg/s]
Testing

/
D
ebugging

fr1/xyz
30.09s

7.112m
0.24

8.92
0.0218544356933

0.051337
6m

11.686s
fr1/rpy

27.67s
1.664m

0.06
50.15

0.0477871834046
0.097700

5m
35.695s

fr2/xyz
122.74s

7.029m
0.06

1,72
0.00385282416511

0.013073
27m

47.608s
fr2/rpy

109.97s
1.506m

0.01
5.77

0.00374915698089
0.018747

21m
42.376s

H
andheld

SL
A

M
fr1/360

28.69s
5.818m

0.21
41.60

0.0720565844545
0.140682

6m
37.161s

fr1/floor
49.87s

12.569m
0.26

15.07
0.0449647603323

0.250151
13m

42.953s
fr1/desk

23.40s
9.263m

0.41
23.33

0.032735059229
0.258913

17m
20.607s

fr1/desk2
24.86s

10.161m
0.43

29.31
0.0424628827188

0.124799
4m

50.280s
fr1/room

48.90s
15.989m

0.33
29.88

0.0460558630087
0.184176

11m
35.210s

fr2/360
hem

isphere
91.48s

14.773m
0.16

20.57
0.104729726504

0.534881
15m

32.294s
fr2/360

kidnap
48.04s

14.286m
0.30

13.43
0.124198983592

0.909020
7m

44.058s
fr2/desk

99.36s
18.880m

0.19
6.34

0.0118710324953
0.102925

22m
11.227s

fr2/large
no

loop
112.37s

26.086m
0.24

15.09
0.0817289735221

1.059697
81m

11.407s
fr2/large

w
ith

loop
173.19s

39.111m
0.23

17.21
0.119136371982

2.757940
29m

12.723s
fr2/long

offi
ce

household
87.09s

21.455m
0.25

10.19
0.0126214725687

0.101096
82m

23.346s
R
obot

SL
A

M
fr2/pioneer

360
72.75s

16.118m
0.23

12.05
0.128221063606

0.644579
5m

33.814s
fr2/pioneer

slam
155.72s

40.380m
0.26

13.38
0.0867684238886

1.000429
66m

39.400s
fr2/pioneer

slam
2

115.63s
21.735m

0.19
12.21

0.0741344135691
1.712665

14m
23.118s

fr2/pioneer
slam

3
111.91s

18.135m
0.16

12.34
0.0709210119758

1.102463
12m

58.770s

T
ab

le
A

.1:
D
etailed

evaluation
results

-D
uring

the
evaluation

w
e
w
ere

not
able

to
associate

allground-truth
and

estim
ated

poses
m
easurem

ents
(nam

ely
fr2/large

w
ith

loop,fr2/desk,fr2/large
no

loop)
w
hich

results
on

high
R

P
E

and
A
T

E
on

these
datasets

even
if
the

estim
ated

trajectory
looks

plausible.

63

0 5 10 15 20 25 30
time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.1: RPE on fr1/xyz

0.9 1.0 1.1 1.2 1.3 1.4 1.5
x [m]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
[m

]

ground truth
estimated
difference

Figure A.2: ATE on fr1/xyz
Evaluation results using the fr1/xyz dataset

64 APPENDIX A. DETAILED EVALUATION RESULTS

0 5 10 15 20 25
time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.3: RPE on fr1/rpy

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
x [m]

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

y
[m

]

ground truth
estimated
difference

Figure A.4: ATE on fr1/rpy
Evaluation results using the fr1/rpy dataset

65

0 20 40 60 80 100 120 140
time [s]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.5: RPE on fr2/xyz

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
x [m]

1.8

1.6

1.4

1.2

1.0

0.8

0.6

y
[m

]

ground truth
estimated
difference

Figure A.6: ATE on fr2/xyz
Evaluation results using the fr2/xyz dataset

66 APPENDIX A. DETAILED EVALUATION RESULTS

0 20 40 60 80 100 120
time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.7: RPE on fr2/rpy

0.20 0.15 0.10 0.05 0.00 0.05 0.10
x [m]

1.20

1.15

1.10

1.05

1.00

0.95

0.90

y
[m

]

ground truth
estimated
difference

Figure A.8: ATE on fr2/rpy
Evaluation results using the fr2/rpy dataset

67

0 5 10 15 20 25
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.9: RPE on fr1/360

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
x [m]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

y
[m

]

ground truth
estimated
difference

Figure A.10: ATE on fr1/360
Evaluation results using the fr1/360 dataset

68 APPENDIX A. DETAILED EVALUATION RESULTS

0 10 20 30 40 50
time [s]

0.0

0.1

0.2

0.3

0.4

0.5
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.11: RPE on fr1/floor

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

y
[m

]

ground truth
estimated
difference

Figure A.12: ATE on fr1/floor
Evaluation results using the fr1/floor dataset

69

0 5 10 15 20
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.13: RPE on fr1/desk

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

ground truth
estimated
difference

Figure A.14: ATE on fr1/desk
Evaluation results using the fr1/desk dataset

70 APPENDIX A. DETAILED EVALUATION RESULTS

0 5 10 15 20 25
time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.15: RPE on fr1/desk2

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

ground truth
estimated
difference

Figure A.16: ATE on fr1/desk2
Evaluation results using the fr1/desk2 dataset

71

0 5 10 15 20 25 30 35 40 45
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.17: RPE on fr1/room

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x [m]

1.5

1.0

0.5

0.0

0.5

1.0

y
[m

]

ground truth
estimated
difference

Figure A.18: ATE on fr1/room
Evaluation results using the fr1/room dataset

72 APPENDIX A. DETAILED EVALUATION RESULTS

0 10 20 30 40 50 60 70 80 90
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.19: RPE on fr2/360_hemi

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x [m]

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y
[m

]

ground truth
estimated
difference

Figure A.20: ATE on fr2/360_hemi
Evaluation results using the fr2/360_hemisphere dataset

73

0 10 20 30 40 50
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tra
ns

la
tio

na
l e

rro
r [

m
]

Figure A.21: RPE on fr2/360_kidnap

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x [m]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
[m

]

ground truth
estimated
difference

Figure A.22: ATE on fr2/360_kidnap
Evaluation results using the fr2/360_kidnap dataset

74 APPENDIX A. DETAILED EVALUATION RESULTS

0 20 40 60 80 100
time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
tra

ns
la

tio
na

l e
rro

r [
m

]

Figure A.23: RPE on fr2/desk

1 0 1 2 3 4
x [m]

4

3

2

1

0

1

2

y
[m

]

ground truth
estimated
difference

Figure A.24: ATE on fr2/desk
Evaluation results using the fr2/desk dataset

Appendix B

Acronyms

AR Augmented Reality. 10, 17

ATE Absolute Trajectory Error. 47, 48, 50, 51, 62–74

CPU Central Processing Unit. 18, 20

DOF Degrees Of Freedom. 11

DTAM Dense Tracking And Mapping. 18, 20

DVO Dense Visual Odometry. 18, 51, 52

EKF Extented Kalman Filter. 54

FAST Features from accelerated segment test. 24, 25

FLANN Fast Library for Approximate Nearest Neighbors. 12, 27

Fovis Fast Odometry From Vison. 12, 51, 52

GPS Global Positioning System. 11

GPU Graphical Processing Unit. 17, 18, 20

HRI Human-Robot Interaction. 11

ICP Iterative Closest Points. 12, 20, 21, 28, 42, 44

IMU Inertial Measurement Unit. 18, 54

IR Infrared. 31, 35

75

76 Acronyms

MER Mars Exploration Rover. 10

MLE Maximum Likelihood Estimation. 28

OpenCV Open Computer Vision. 12

ORB Oriented BRIEF. 17

PCL Point Cloud Library. 12, 51

PTAM Parallel Tracking And Mapping. 17–19

RANSAC RANdom SAmple Consensus. 12, 17, 20, 27, 28, 30, 52

RMSE root mean square error. 47, 48

ROS Robot Operation System. 12

RPE Relative Pose Error. 47–49, 62–74

SDF Signed Distance Function. 20, 54

SIFT Scale Invariant Features. 16, 17, 20, 25, 26

SIMD Single Instruction Multiple Data. 18

SLAM Simultaneous Localization and Mapping. 10, 17, 20, 46, 51, 52, 54, 62

SURF Speeded Up Robust Features. 17

SVD Singular Value Decomposition. 12, 28, 44, 53

TOF Time of Flight. 54

UAV Unmanned Areal Vehicles. 10

VR Virtual Reality. 10

Appendix C

List of Symbols

H Covariance matrix between two point cloud sets. 28

Cir Intrinsic matrix for infrared camera. 35

Crgb Intrinsic matrix for RGB camera. 35

C Matrix containing the intrinsic camera parameters. 32

z Measurement vector. 51

x Pose vector. 51

xcir Point in IR camera frame. 35

xcrgb Point in RGB camera frame. 13, 35

xiir Point in IR image frame. 35

xirgb Point in RGB image frame. 35

E Relative pose error. 47

F Absolute trajectory error. 47, 48

C Correspondence set. 42, 44

e Error value. 29

S Rigid body transformation for alignment. 47

p Point in 3D. 28, 29, 42, 44

q Point in 3D. 28, 29, 42, 44

77

78 List of Symbols

P Set of poses. 30, 42, 47

Q Set of poses. 30, 42, 47

trans Translational pose error component. 47, 48

R Rotation Matrix. 13, 28, 29, 31–33, 35, 42, 44

T Transformation Matrix. 29–31, 42

t Translation vector. 13, 29, 31–33, 35, 42, 44

Appendix D

Coordinate System

x

y

z

Figure D.1: World frame convention

x

y

z

Figure D.2: Camera frame convention

79

Bibliography

[AFMS12] Arieli, Yoel ; Freedman, Barak ; Machline, Meir ; Shpunt,
Alexander: Depth mapping using projected patterns. April 3 2012.
– US Patent 8,150,142

[AHB87] Arun, K S. ; Huang, Thomas S. ; Blostein, Steven D.: Least-
squares fitting of two 3-D point sets. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on (1987), Nr. 5, S. 698–700

[Bra00] Bradski, Gary: The opencv library. In: Doctor Dobbs Journal 25
(2000), Nr. 11, S. 120–126

[Bro92] Brown, Lisa G.: A survey of image registration techniques. In: ACM
computing surveys (CSUR) 24 (1992), Nr. 4, S. 325–376

[BSK+13] Bylow, Erik ; Sturm, Jürgen ; Kerl, Christian ; Kahl, Fredrik ;
Cremers, Daniel: Direct Camera Pose Tracking and Mapping With
Signed Distance Functions. In: RGB-D Workshop on Advanced Rea-
soning with Depth Cameras (RGB-D 2013), 2013

[col11] Kinect Color - Depth Camera Calibration. http://cv4mar.blogspot.
de/2011_03_01_archive.html. Version:März 2011

[EEH+11] Engelhard, Nikolas ; Endres, Felix ; Hess, Jürgen ; Sturm, Jür-
gen ; Burgard, Wolfram: Real-time 3D visual SLAM with a hand-
held RGB-D camera. In: Proc. of the RGB-D Workshop on 3D Per-
ception in Robotics at the European Robotics Forum, Vasteras, Sweden
Bd. 180, 2011

[EHE+12] Endres, Felix ; Hess, Jürgen ; Engelhard, Nikolas ; Sturm, Jür-
gen ; Cremers, Daniel ; Burgard, Wolfram: An evaluation of the
RGB-D SLAM system. In: Robotics and Automation (ICRA), 2012
IEEE International Conference on IEEE, 2012, S. 1691–1696

81

http://cv4mar.blogspot.de/2011_03_01_archive.html
http://cv4mar.blogspot.de/2011_03_01_archive.html

82 BIBLIOGRAPHY

[EHS+14] Endres, F. ; Hess, J. ; Sturm, J. ; Cremers, D. ; Burgard,
W.: 3D Mapping with an RGB-D Camera. In: IEEE Transactions on
Robotics 30 (2014), Feb, Nr. 1, S. 177–187

[Elf89] Elfes, Alberto: Using occupancy grids for mobile robot perception
and navigation. In: Computer 22 (1989), Nr. 6, S. 46–57

[Eng11] Engel, J.: Autonomous Camera-Based Navigation of a Quadrocopter.
Germany, Technical University Munich, Diplomarbeit, Dec. 2011

[ESC14] Engel, J. ; Schöps, T. ; Cremers, D.: LSD-SLAM: Large-Scale Di-
rect Monocular SLAM. In: European Conference on Computer Vision
(ECCV), 2014

[FB81] Fischler, Martin A. ; Bolles, Robert C.: Random sample consen-
sus: a paradigm for model fitting with applications to image analysis
and automated cartography. In: Communications of the ACM 24
(1981), Nr. 6, S. 381–395

[Fre13] Freiling: RANSAC Point Cloud Align-
ment. http://users.csc.calpoly.edu/ zwood/teach-
ing/csc570/final13/freiling/, 2013

[GJ+10] Guennebaud, Gaël ; Jacob, Benoît u. a.: Eigen v3.
http://eigen.tuxfamily.org, 2010

[GKSB10] Grisetti, Giorgio ; Kummerle, Rainer ; Stachniss, Cyrill ; Bur-
gard, Wolfram: A tutorial on graph-based SLAM. In: Intelligent
Transportation Systems Magazine, IEEE 2 (2010), Nr. 4, S. 31–43

[GY03] Greenspan, Michael ; Yurick, Mike: Approximate kd tree search
for efficient ICP. In: 3-D Digital Imaging and Modeling, 2003. 3DIM
2003. Proceedings. Fourth International Conference on IEEE, 2003, S.
442–448

[HBH+11] Huang, Albert S. ; Bachrach, Abraham ; Henry, Peter ; Krainin,
Michael ; Maturana, Daniel ; Fox, Dieter ; Roy, Nicholas: Visual
odometry and mapping for autonomous flight using an RGB-D camera.
In: International Symposium on Robotics Research (ISRR), 2011, S.
1–16

[HBM12] Huang, Albert S. ; Bachrach, Abraham ; Maturana, Daniel: Fast
Odometry from VISion. https://code.google.com/p/fovis/, 2012

BIBLIOGRAPHY 83

[HIG02] Hirschmuller, Heiko ; Innocent, Peter R. ; Garibaldi,
Jonathan M.: Fast, unconstrained camera motion estimation from
stereo without tracking and robust statistics. In: Control, Automation,
Robotics and Vision, 2002. ICARCV 2002. 7th International Confer-
ence on Bd. 2 IEEE, 2002, S. 1099–1104

[HKH+10] Henry, Peter ; Krainin, Michael ; Herbst, Evan ; Ren, Xiaofeng
; Fox, Dieter: RGB-D mapping: Using depth cameras for dense
3D modeling of indoor environments. In: In the 12th International
Symposium on Experimental Robotics (ISER Citeseer, 2010

[Hor87] Horn, Berthold K.: Closed-form solution of absolute orientation using
unit quaternions. In: JOSA A 4 (1987), Nr. 4, S. 629–642

[HWB+13] Hornung, Armin ; Wurm, Kai M. ; Bennewitz, Maren ; Stach-
niss, Cyrill ; Burgard, Wolfram: OctoMap: An Efficient Proba-
bilistic 3D Mapping Framework Based on Octrees. In: Autonomous
Robots (2013). http://dx.doi.org/10.1007/s10514-012-9321-0.
– DOI 10.1007/s10514–012–9321–0. – Software available at http:
//octomap.github.com

[HZ04] Hartley, R. I. ; Zisserman, A.: Multiple View Geometry in Com-
puter Vision. Second. Cambridge University Press, ISBN: 0521540518,
2004

[IKH+11] Izadi, Shahram ; Kim, David ; Hilliges, Otmar ; Molyneaux,
David ; Newcombe, Richard ; Kohli, Pushmeet ; Shotton, Jamie ;
Hodges, Steve ; Freeman, Dustin ; Davison, Andrew u. a.: Kinect-
Fusion: real-time 3D reconstruction and interaction using a moving
depth camera. In: Proceedings of the 24th annual ACM symposium on
User interface software and technology ACM, 2011, S. 559–568

[KGS+11] Kummerle, Rainer ; Grisetti, Giorgio ; Strasdat, Hauke ; Kono-
lige, Kurt ; Burgard, Wolfram: g 2 o: A general framework for
graph optimization. In: Robotics and Automation (ICRA), 2011 IEEE
International Conference on IEEE, 2011, S. 3607–3613

[KM07] Klein, Georg ; Murray, David: Parallel tracking and mapping for
small AR workspaces. In: Mixed and Augmented Reality, 2007. ISMAR
2007. 6th IEEE and ACM International Symposium on IEEE, 2007,
S. 225–234

http://dx.doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
http://octomap.github.com

84 BIBLIOGRAPHY

[KSC13a] Kerl, C. ; Sturm, J. ; Cremers, D.: Dense Visual SLAM for RGB-
D Cameras. In: Proc. of the Int. Conf. on Intelligent Robot Systems
(IROS), 2013

[KSC13b] Kerl, C. ; Sturm, J. ; Cremers, D.: Robust Odometry Estimation
for RGB-D Cameras. In: Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2013

[LM12] Li, Mingyang ; Mourikis, Anastasios I.: Improving the accuracy
of EKF-based visual-inertial odometry. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on IEEE, 2012, S. 828–
835

[LM13] Li, Mingyang ; Mourikis, Anastasios I.: 3-D motion estimation and
online temporal calibration for camera-IMU systems. In: Robotics and
Automation (ICRA), 2013 IEEE International Conference on IEEE,
2013, S. 5709–5716

[Low99] Lowe, David G.: Object recognition from local scale-invariant fea-
tures. In: Computer vision, 1999. The proceedings of the seventh IEEE
international conference on Bd. 2 Ieee, 1999, S. 1150–1157

[MCM07] Maimone, Mark W. ; Cheng, Yang ; Matthies, Larry: Two years
of Visual Odometry on the Mars Exploration Rovers. In: J. Field
Robotics 24 (2007), Nr. 3, S. 169–186

[Mea82] Meagher, Donald: Geometric modeling using octree encoding. In:
Computer graphics and image processing 19 (1982), Nr. 2, S. 129–147

[ML09] Muja, Marius ; Lowe, David G.: Flann, fast library for approximate
nearest neighbors. 2009

[MSS09] Myronenko, Andriy ; Song, Xubo ; Sahn, DavidJ.: Maximum
Likelihood Motion Estimation in 3D Echocardiography through Non-
rigid Registration in Spherical Coordinates. In: Ayache, Nicholas
(Hrsg.) ; Delingette, HervÃ c© (Hrsg.) ; Sermesant, Maxime
(Hrsg.): Functional Imaging and Modeling of the Heart Bd. 5528.
Springer Berlin Heidelberg, 2009. – ISBN 978–3–642–01931–9, S. 427–
436

[N+06] Nüchter, Andreas u. a.: Semantische dreidimensionale Karten für
autonome mobile Roboter. Aka, 2006

BIBLIOGRAPHY 85

[N+07] Neuhaus, Frank u. a.: A Full 2D/3D GraphSLAM System for Glob-
ally Consistent Mapping based on Manifolds. (2007)

[NLD11] Newcombe, Richard A. ; Lovegrove, Steven J. ; Davison, An-
drew J.: DTAM: Dense tracking and mapping in real-time. In: Com-
puter Vision (ICCV), 2011 IEEE International Conference on IEEE,
2011, S. 2320–2327

[Nüc09] Nüchter, A.: 3D Robotic Mapping: The Simultaneous Localization
and Mapping Problem with Six Degrees of Freedom. Springer, 2009
(Springer Tracts in Advanced Robotics 52)

[oct14] Microsoft Kinect. http://en.wikipedia.org/wiki/Octree.
Version:Oktober 2014

[Pel11] Pellenz, Johannes: Aktive Sensorik für autonome mobile Systeme.
Der Andere Verlag, 2011

[QCG+09] Quigley, Morgan ; Conley, Ken ; Gerkey, Brian ; Faust, Josh
; Foote, Tully ; Leibs, Jeremy ; Wheeler, Rob ; Ng, Andrew Y.:
ROS: an open-source Robot Operating System. In: ICRA workshop
on open source software Bd. 3, 2009, S. 5

[RC11] Rusu, Radu B. ; Cousins, Steve: 3d is here: Point cloud library
(pcl). In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on IEEE, 2011, S. 1–4

[RD06] Rosten, Edward ; Drummond, Tom: Machine learning for high-
speed corner detection. In: European Conference on Computer Vision
Bd. 1, 2006, 430–443

[RPD10] Rosten, Edward ; Porter, Reid ; Drummond, Tom: FASTER and
better: A machine learning approach to corner detection. In: IEEE
Trans. Pattern Analysis and Machine Intelligence 32 (2010), 105–119.
http://dx.doi.org/10.1109/TPAMI.2008.275. – DOI 10.1109/T-
PAMI.2008.275

[SEE+12] Sturm, J. ; Engelhard, N. ; Endres, F. ; Burgard, W. ; Cre-
mers, D.: A Benchmark for the Evaluation of RGB-D SLAM Systems.
In: Proc. of the International Conference on Intelligent Robot Systems
(IROS), 2012

[SJP13] Smisek, Jan ; Jancosek, Michal ; Pajdla, Tomas: 3D with Kinect.
In: Consumer Depth Cameras for Computer Vision. Springer, 2013,
S. 3–25

http://en.wikipedia.org/wiki/Octree
http://dx.doi.org/10.1109/TPAMI.2008.275

86 BIBLIOGRAPHY

[SLL01] Siek, Jeremy G. ; Lee, Lie-Quan ; Lumsdaine, Andrew: Boost Graph
Library: User Guide and Reference Manual, The. Pearson Education,
2001

[SSC11] Steinbrucker, F ; Sturm, Jürgen ; Cremers, Daniel: Real-time
visual odometry from dense RGB-D images. In: Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Conference
on IEEE, 2011, S. 719–722

[SSC14] Steinbruecker, F. ; Sturm, J. ; Cremers, D.: Volumetric 3D
Mapping in Real-Time on a CPU. In: Int. Conf. on Robotics and
Automation. Hongkong, China, 2014

[Stu13] Sturm, J.: Dense Reconstruction. http://vision.in.tum.
de/_media/teaching/ss2013/visnav2013/lecture8_dense_
reconstruction.pdf. Version: 2013

[Ume91] Umeyama, Shinji: Least-squares estimation of transformation param-
eters between two point patterns. In: IEEE Transactions on pattern
analysis and machine intelligence 13 (1991), Nr. 4, S. 376–380

[WS11] Weiss, Stephan ; Siegwart, Roland: Real-time metric state estima-
tion for modular vision-inertial systems. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on IEEE, 2011, S. 4531–
4537

[Yan14] Yaniv, Ziv: Point based Rigid Registration.
http://yanivresearch.info/educationalMaterial.html, 2014

[Yua13] Yuan, Eric: SIFT Image. http://eric-yuan.me/sift/, 2013

[ZHA92] ZHANG, Zhengyou: Iterative Point Matching for Registration of Free-
form Curves. 1992

[Zha00] Zhang, Zhengyou: A flexible new technique for camera calibration.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on
22 (2000), Nr. 11, S. 1330–1334

http://vision.in.tum.de/_media/teaching/ss2013/visnav2013/lecture8_dense_reconstruction.pdf
http://vision.in.tum.de/_media/teaching/ss2013/visnav2013/lecture8_dense_reconstruction.pdf
http://vision.in.tum.de/_media/teaching/ss2013/visnav2013/lecture8_dense_reconstruction.pdf

	Introduction
	Motivation
	Goals
	Implementation
	Notation
	Outline

	State of the Art
	Feature Based Methods
	Dense Methods
	Depth Based Approaches

	Visual Odometry
	Image Preprocessing
	Feature Extraction
	FAST
	sift Descriptor

	Feature Matching
	Inlier Detection
	Motion Estimation
	SVD
	Least-Squares
	RANSAC

	Camera Calibration
	Depth Registration
	Time Synchronization

	Mapping
	OctoMap
	Occupancy Gridmaps
	Octrees
	Construction

	Point Cloud Map
	Iterative Closest Points

	Evaluation
	RGB-D Benchmark
	Datasets
	Evaluation Metrics

	Results
	Accuracy
	Suitability for Mapping
	Comparison
	Runtime

	Conclusion
	Conclusion
	Outlook

	Detailed Evaluation Results
	Acronyms
	List of Symbols
	Coordinate System

