UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Reactive Construction of Planar
Overlay Graphs on Unit Disk Graphs

Master Thesis

for the Degree of Master of Science (M.Sc.)
in Course of Studies Computer Science

submitted by
Freya Surberg

Primary Reviewer: Prof. Dr. Hannes Frey
Institute for computer science

Secondary Reviewer: Florentin Neumann, M. Sc.
Institute for computer science

Koblenz, February 26, 2015

Erklarung

Hiermit bestétige ich, dass die vorliegende Arbeit von mir selbstiandig ver-
fasst wurde und ich keine anderen als die angegebenen Hilfsmittel — ins-
besondere keine im Quellenverzeichnis nicht benannten Internet—-Quellen
—benutzt habe und die Arbeit von mir vorher nicht in einem anderen Prii-
fungsverfahren eingereicht wurde. Die eingereichte schriftliche Fassung
entspricht der auf dem elektronischen Speichermedium (CD-Rom).

Ja Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. O [

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. O O

(Ort, Datum) (Unterschrift)

Zusammenfassung

Geographisches Cluster-basiertes Routing ist ein aktueller Ansatz wenn
es um das Entwicklen von effizienten Routingalgorithmen fiir drahtlose
ad-hoc Netzwerke geht. Es gibt bereits eine Anzahl an Algorithmen, die
Nachrichten nur auf Basis von Positionsinformationen durch ein draht-
loses ad-hoc Netzwerk routen konnen. Darunter befinden sich sowohl
Algorithmen, die auf das klassische Beaconing setzen, als auch Algorith-
men, die beaconlos arbeiten (keine Informationen iiber die Umgebung wer-
den benoétigt, aufler der eigenen Position und der Position des Ziels). Ge-
ographisches Routing mit Auslieferungsgarantie kann auch auf Overlay-
Graphen durchgefiihrt werden. Bisher werden die dafiir benétigten Overlay-
Graphen nicht reaktiv konstruiert. In dieser Arbeit wird ein reaktiver Algo-
rithmus, der Beaconless Cluster Based Planarization Algorithmus (BCBP),
tir die Konstruktion eines planaren Overlay-Graphen vorgestellt, der die
bendtigte Anzahl an Nachrichten fiir die Konstruktion eines planaren Over-
lay-Graphen, und demzufolge auch Cluster-basiertes geographishes Rout-
ing, deutlich reduziert. Basierend auf einem Algorithmus fiir Cluster-basierte
Planarisierung, konstruiert er beaconlos einen planaren Overlay-Graphen
in einem unit disk graph (UDG). Ein UDG is ein Modell fiir ein draht-
loses Netzwerk, bei dem alle Teilnehmer den gleichen Senderadius haben.
Die Evaluierung des Algorithmus zeigt, dass er wesentlich effizienter ist,
als die Baecon-basierte Variante. Ein weiteres Ergebnis dieser Arbeit ist
ein weiterer beaconloser-Algorithmus (Beaconless LLRAP (BLLRAP)), fiir
den zwar die Planaritit aber nicht die Konnektivitit nachgewiesen werden
konnte.

Abstract

Geographic cluster based routing in ad-hoc wireless sensor networks is a
current field of research. Various algorithms to route in wireless ad-hoc
networks based on position information already exist. Among them algo-
rithms that use the traditional beaconing approach as well as algorithms
that work beaconless (no information about the environment is required
besides the own position and the destination). Geographic cluster based
routing with guaranteed message delivery can be carried out on overlay
graphs as well. Until now the required planar overlay graphs are not being
constructed reactively. This thesis proposes a reactive algorithm, the Bea-
conless Cluster Based Planarization (BCBP) algorithm, which constructs
a planar overlay graph and noticeably reduces the number of messages
required for that. Based on an algorithm for cluster based planarization
it beaconlessly constructs a planar overlay graph in an unit disk graph
(UDG). An UDG is a model for a wireless network in which every par-

ticipant has the same sending radius. Evaluation of the algorithm shows it
to be more efficient than the non beaconless variant. Another result of this
thesis is the Beaconless LLRAP (BLLRAP) algorithm, for which planarity
but not continued connectivity could be proven.

Contents

1 Introduction

2 Related Work

21 OverlayGraphs
2.2 Reactive Algorithms
3 Basics
31 Clustering
3.2 Geographical based routing algorithms
33 UDG/QUDG it
3.4 Overlay graphs in UDGsand QUDGs
3.5 GraphProperties
35.1 Connectivity 0L
352 Planarity o oo o
353 Spanners
354 kmeighborhood
3.6 Beaconless Algorithms
37 GabrielGraph o L
3.8 Beaconless Forwarder Planarization
3.9 Planarization based upon Gabriel Graphs
3.10 LLRAP
3.11 Beaconless Clustering Algorithm
3.11.1 Description
3.11.2 Alterations
4 Algorithms
41 CommunicationModel
4.2 Beaconless LLRAP (BLLRAP)
421 Description
422 Messages.
423 Timers e
424 Proofs
4.3 Beaconless Cluster Based Planarization (BCBP)

U1 = =

CONTENTS ii
43.1 Description 42

4.3.2 Modified Beaconless Forwarder Planarization 43

433 Messages. 43

434 Timers e 49

435 Proofs 59

43.6 Optimizations 62

4.3.7 Adaptation for quasi unit disk graph (QUDG) 64

5 Evaluation 68
51 SimulationSetup 0 L. 68
511 Setup 68

512 MetricS o e e e 69

52 Results 71

6 Conclusion 80
A Message flow diagram of BCBP 82
Bibliograhy 86

List of Figures

3.1

3.2
3.3
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2

4.3
44
4.5
4.6

4.7

51

52

53

Distances between two neighboring clusters for hexagons
andsquares
Types of edges in an UDG overlay graph
Intersections between edges in an UDG overlay graph
Types of edges in a QUDG overlay graph
Intersections between edges in an QUDG overlay graph . . .
Types of irregular intersections in UDGs and QUDGs
Proximity region of a Gabriel Graph
BFP algorithm - protest necessary
Typesofedges
Redundancy property
Coexistence property
Resultofthe BCA
Overlay graph created when all clusters employ the algo-
rithm used to determine all outgoing edges

Intersections between edges in an UDG overlay graph
A contra-dictionary example for the coexistence property in
overlay graphsof UDG
Constellations of of possible detours (part1)
Constellations of of possible detours (part2)
A contradiction to the assumption that an overlay graph al-
ways remains connected after LLRAP
A node and the three proximity regions necessary to detect
an unavoidable protest o Lo
Proximity region between nodes u and v in an QUDG

Comparison between the number of sent messages between
the beaconless and the original algorithm
Active nodes in comparison to all possible active nodes (1-
hop and 2-hop neighbors)
Non used internal neighbors in comparison to all internal
neighbors. L o

1ii

LIST OF FIGURES iv

5.4 Number of edges per nodedensity 74
5.5 Irregular intersections per node density 75
5.6 Example of computed implicitedges 75
5.7 Spanning ratio with confidence intervals. 76
5.8 Example of a high spanning ratio 77
5.9 Hop spanning ratio with confidence intervals 78
5.10 Example of a high hop spanning ratio 79
A1 Message flow of gg algorithm part1 83
A.2 Message flow of gg algorithm part2 84

A.3 Message flow of gg algorithm part3 85

Chapter 1

Introduction

Wireless ad-hoc sensor networks usually consist of a number of (mobile)
nodes that communicate wireless with each other. A node is a mini com-
puter that can be equipped with any number of sensors, for example GPS
or temperature. Since nodes can be mobile or obstacles could have been
put between them, connections between nodes can shift over time. While
a connection might have existed at some point in time it cannot be as-
sumed that it exists always. Thus, connections between nodes need to be
determined every time a message is to be sent (ad-hoc). Two models for
wireless ad-hoc networks are unit disk graphs (UDGs) and quasi unit disk
graphs (QUDGs). Whereas in an UDG every node has the same consistent
sending and receiving radius, this is not the case in a QUDG. The QUDG
model allows for two different radii. One that is the same consistent radius
for all nodes in the graph, where messages can be sent and received in any
case, and one that can be different for every node and shift with time. In
that radius messages only might be received.

Applications of wireless ad-hoc sensor networks can be building automa-
tion or the detection of problematic changes in an environment, like traffic
jams or forest fires. To that purpose data from various nodes is collected
in a commonly named data-sink, which computes whether an alarm has
to be sent out (or another kind of action to be taken). Since the battery
power of sensor nodes is rather limited, and therefore their transmitting
radius, often a message cannot be send directly from source to destination,
but has to be sent over several intermediate nodes. This is called multi-hop
communication. To which node a message should be forwarded next is
determined by a routing protocol. Classical routing tables are not efficient
since they would need to be changed every time a connection is omitted or
a new connection arises. Two general approaches for wireless ad-hoc net-
works are Greedy routing and Geographic Greedy routing. With Greedy
routing the message is forwarded to the node which, after a specified met-
ric, has the greatest gain. Applied metrics are for example shortest path

to destination or lowest cost (battery power). Geographic Greedy routing
assumes that every node knows its own geographic location (for example
via GPS). A message is forwarded to the node which is nearest to the desti-
nation (no routing tables necessary). Basic Geographic Greedy routing has
the problem that message delivery cannot be guaranteed due to the possi-
ble existence of concave nodes. Concave nodes are nodes that have no out-
going connection to another node nearer to the destination. Routing back-
wards is usually not allowed, to avoid routing loops. One solution to that
problem is planar graph routing (for example the FACE protocol [2]). If a
message is sent to a concave node through Geographic Greedy routing, pla-
nar graph routing algorithms can take over as recovery strategy and thus
ensure guaranteed message delivery. One type of planar graph routing al-
gorithms are geographical cluster based routing algorithms. A key aspect
of geographical cluster based routing algorithms is the grouping of nodes
into clusters. Nodes are clustered according to their geographic position
and their sending radius. One node per cluster is determined as cluster-
head. This is often the node nearest to the middle of the cluster. Outwardly
the clusterhead of a cluster often lies directly in the middle (its a virtual
node). Edges between clusters, i.e their clusterheads, where an edge exists
if two nodes in different clusters form an edge, belong to an overlay graph,
which is called the aggregated graph [7]. An overlay graph is a subgraph
of the physical graph. It contains less edges. Geographical cluster based
routing algorithms route messages over planar, i.e. the graph has no inter-
sections, cluster based overlay graphs. Routing over cluster based overlay
graphs has the advantage, that edges between clusters tend to be more last-
ing than edges between (mobile) nodes [8]. As long as at least one node has
an edge to a node in another cluster, the cluster edge exists as well.

Routing algorithms for wireless ad-hoc networks are required to be energy
efficient, since battery power of wireless nodes is severely limited. The pri-
mary drain on that battery power is the sending of messages. In contrast,
the cost of local computations is minimal.[18] Minimizing the number of
messages that need to be sent to determine all current outgoing edges of a
node is therefore a key factor when trying to increase efficiency of routing
algorithms. Classic routing algorithms for wireless ad-hoc sensor networks
rely on so called beacon messages. A beacon message is periodically send
out by each node in the network to announce its continued existence. Con-
nections between nodes can be determined using those beacon messages.
A node has a connection to every other node it receives beacon messages
from. Disadvantages of beacon messages are that they cause considerable
traffic in the network, and therefore a higher chance of interference, and
that substantial energy is needed to send them. Consequently, the research
of beaconless routing algorithms has intensified. Beaconless algorithms do
without beacon messages. Nodes only send messages if they have to, i.e.
they either want to have information from another node or they answer a

specific request from one. This reduces the number of sent messages and
therefore interference as well as power usage considerably. The majority
of beaconless algorithms work local. In the context of this thesis the term
“reactive” will mean beaconless as well as local.

Although geographical cluster based routing algorithms offer guaranteed
delivery and are applicable in various scenarios, til now no beaconless al-
gorithm to construct a planar overlay graph existed. This thesis closes that
gap. With the development of the Beaconless Cluster Based Planarization
(BCBP) algorithm, it is now possible to reactively construct a planar over-
lay graph on UDGs. The BCBP algorithm is based upon an algorithm that
planarizes UDGs using Gabriel Graph construction (more information can
be found in Section 3.9). Besides proofing the correctness of the BCBP algo-
rithm, giving pseudo code descriptions and ideas for improvements, this
thesis evaluates the BCBP algorithm with a simulation. As expected, the
algorithm reduces the number of messages needed to construct a planar
overlay graph considerably (about 70%). The best performance is reached
in high node densities. Another result of this thesis is a beaconless variant
of the localized link removal and addition based planarization (LLRAP) al-
gorithm (Beaconless LLRAP (BLLRAP)) (see Section 3.10 for more details).
It could not be proven that the BLLRAP algorithm constructs connected
overlay graphs. Planarity, though, is another matter, and could be proven
(i.e. the property that leads to planarity could be proven).

This thesis is structured in the following way: the first two chapters deal
with work related to this thesis and basics the following chapters rely on.
Everything that is not directly used to produce the results of this thesis or
needed to understand those results is contained in the related work chap-
ter (most aspects described in the basics chapter can be considered related
work as well). Following that, the developed algorithms are described in
detail and seeral proofs are given. Chapter five presents the results of the
simulation of the BCBP algorithm, followed up by a discussion of afore-
mentioned results and further work proposals in chapter six.

Chapter 2

Related Work

This chapter contains an overview of work related to this thesis. It is di-
vided into two sections, which deal with different aspects. The first section
concentrates on works on overlay graphs, whereas the second section deals
with reactive algorithms for geographic routing.

2.1 Opverlay Graphs

An overlay graph is usually a subgraph of the original graph. While an
overlay graph does not have to be planar per definition, planarity is often
required. Thus, many algorithms focus on the extraction of planar overlay
graphs. One method to construct a planar overlay graph is the extraction
of a Gabriel Graph [11] from the original graph. Only edges that fulfill
the Gabriel Graph condition are accepted into the Gabriel Graph (more on
Gabriel Graphs in Section 3.7). In [14] a Gabriel Graph is used as a basis for
planar graph routing. In [9] a planar subgraph is constructed by nodes be-
ing organized into geographic clusters which form the vertices of a Gabriel
Graph. While the algorithm proposed in [9] may produce disconnected
overlay graphs, the algorithm proposed by Frey et al. in [6] does not (for
more details see Section 3.9).

A special kind of subgraph is a spanner (see Section 3.5.3). A spanner is a
subgraph of an original graph that spans the whole original graph, i.e. it
does not divide the graph into parts. Catusse presents in [3] an algorithm
to construct a planar hop spanner for UDGs with a constant stretch factor.
The stretch factor is the “worst factor by which distances increase” [18] in
the overlay graph in comparison to the original graph. Constant stretch
factors are preferable to not constant stretch factors, since assumptions can
be made that way.

Several algorithms were devised to extract a planar subgraph from an QUDG.
In [5] a “nearly planar backbone with a constant stretch factor” is the result
of the proposed algorithm. A local algorithm to extract a sparse constant

2.2. REACTIVE ALGORITHMS 5

spanner was defined by Lillis et al. in [15]. In contrast to “normal” span-
ners, sparse spanners have less nodes and edges and are therefore easier
manageable (concerning routing decisions). Barriere et. al. [1] construct
planar overlay graphs on QUDGs using Gabriel Graph construction. Since
just using Gabriel Graph construction on an QUDG can lead to a discon-
nected overlay graph, the inclusion of virtual edges was proposed.

2.2 Reactive Algorithms

One algorithm to route messages based on position information beacon-
less through a wireless ad-hoc sensor network is the Implicit Geographic
Forwarding (IGF) algorithm [20]. It works state-free, i.e. no information
about the environment besides the own position and the destination of the
message is required. Another algorithm is the contention-based forward-
ing scheme (CBF) [10]. It selects the next hop on route to the destination
with the help of biased timers. Selecting one node as next hop (timer fired)
stops the selecting of any other node (timers are stopped). The Beacon-
less Routing Algorithm (BLR) [13] works beaconless as well. To choose the
next hop the message is broadcasted to all potential forwarding nodes in a
specified area. Each node starts a timer dependent on their distance to the
destination (Greedy routing). The node nearest to the destination forwards
the message, thereby stopping all other timers. Another beaconless routing
algorithm that is based on position information is the Guaranteed Deliv-
ery Beaconless Forwarding (GDBF) algorithm [4]. This algorithm combines
geographic greedy routing with planar graph routing. Depending on the
situation the message is either forwarded to the node nearest to the desti-
nation (greedy mode) or a Gabriel Graph neighbor of the forwarding node
(recovery mode). In both cases candidate nodes are determined through
timers.

Chapter 3

Basics

This chapter contains basic information about concepts and algorithms on
which the following chapters of this thesis are based upon.

3.1 Clustering

Algorithms for routing messages in a wireless network sometimes require
clustering of nodes. There are different ways to cluster nodes. One way to
cluster nodes is based upon the assumption that every node in a cluster has
a connection to all other nodes in the cluster and preferably only a few to
nodes in other clusters. Geographical clusters use, beside the sending ra-
dius of a node, the node’s geographic location to assign nodes to clusters.
In [7] Frey points out the advantages of partitioning the plane in regular
polygons. Regular hexagons, squares and triangles are the only polygons
that can be used to divide the hole plane gap-less into clusters.

Regular hexagons have the advantage that the distance between two adja-
cent hexagons (from one clusterhead to another) is always the same, which
makes certain properties easier to proof. Figure 3.1 shows a comparison
between a hexagon and a square grid. Whereas all hexagons have the same
distance to each other, there are two different distances between neighbor-
ing clusters in the square grid. Each cluster in a hexagon grid can be un-
ambiguously identified by its center. Starting from the cluster at the origin
of the coordinates system (0/0), every cluster can be addressed by two vec-
tors (where the origin is assumed to be the left upper corner). Every node
can locally determine its own cluster with its own location information and
the origin of the coordinate system. With a total ordering on the plane the
assignment of clusters to nodes is unique.

3.2. GEOGRAPHICAL BASED ROUTING ALGORITHMS 7

(a) Square grid (b) Hexagon grid

Figure 3.1: Distances between two neighboring clusters for hexagons and squares

3.2 Geographical based routing algorithms

Geographical based routing algorithms are based upon the assumption,
that each node knows its own location. This information is used to find
a path through a graph. The advantage of such an algorithm is the fact that
no routing tables need to be maintained. Most geographical based routing
algorithms use a form of Greedy routing, where the node is forwarded in
the direction that brings the message closest to the destination. To avoid
routing loops, backwards routing is usually not allowed. This can how-
ever lead to a message being “stuck” with a concave node, so that message
delivery cannot be guaranteed. In those cases planar graph routing algo-
rithms on geographical clusters can be used to guarantee message delivery.
One planar graph routing algorithm is FACE [2]. It traverses the faces of
a planar subgraph in the general direction of the destination (clockwise
or counterclockwise) until the original Greedy routing algorithm can take
over again.

3.3 UDG/QUDG

An UDG is a model for a wireless sensor network. One of its key properties
is the fact, that all sensor nodes are assumed to have the same sending and
receiving radius. This allows for easier theoretical reasoning with UDGs.
A more realistic model is the QUDG which is first mentioned in [1]. In con-
trast to UDGs, QUDGs consider not one but two radii. One in which a node
can send and receive messages in any case (7,;,) and another one where

3.4. OVERLAY GRAPHS IN UDGS AND QUDGS 8

Figure 3.2: Types of edges in an UDG overlay graph

it may be able to send and receive messages(r,q.). Thus, it is possible to
model more natural circumstances. It was shown by Barriére et al that 7,
and 7,4, should have a maximum ratio of 7mez < V2 so that for all inter-
sections in a QUDG at least one node of the edges forming an intersection
can reach a node from the other edge and therefore detect the intersection
with 2-hop neighborhood information.

3.4 Overlay graphs in UDGs and QUDGs

When constructing an overlay graph of an UDG based on a hexagon grid,
the size of the regular hexagons are usually chosen such, that all nodes in a
cluster can reach each other. This means the diameter of a regular hexagon
matches the size of the unit disk radius. That fact limits the number of
possible reachable clusters and the number of edge types that can occur
between clusters. In [7] Frey describes those edge types. It is differentiated
between short (green), medium (black) and long (blue) edges, which can
be seen in Figure 3.2. Those edges can intersect with each other in a lim-
ited number of ways, shown in Figure 3.3. To preserve the property that
every node in a cluster can reach all other nodes in the same cluster, with
QUDGs the diameter of a regular hexagon matches the size of 7y, i.e. it
is assumed r = 7,,;,,. It follows that an QUDG cluster could potentially
reach more clusters than an UDG cluster and that another edge type (red),

3.4. OVERLAY GRAPHS IN UDGS AND QUDGS 9

X

(a) Between short and medium edges (b) Between medium and medium edges

RN
IS

(c) Between medium and long edges (d) Between long and long edges

Figure 3.3: Intersections between edges in an UDG overlay graph

3.5. GRAPH PROPERTIES 10

Figure 3.4: Types of edges in a QUDG overlay graph

with more possibilities to intersect, can occur. This can be seen in Figures
3.4 and 3.5 In both graph models, edges can intersect in an irregular way.
They are formed by a long edge and any other kind of edge that has an
endpoint in the cluster the long edge passes through. Those intersections
are called irregular intersections and can be seen in Figure 3.6. As can be
seen, irregular intersections can only occur with long edges, since those are
the only edges passing through cluster middles.

3.5 Graph Properties

This section describes some graph properties that are relevant for this the-
sis.

3.5.1 Connectivity

Connectivity is one of the key properties of graphs. A graph consists of
nodes and edges between those nodes. If it is possible to find a way from
one node to every other node in the graph using only existing edges, the
graph is called connected. Otherwise the graph consists of several sub-
graphs. For some routing and recovery algorithms it is necessary, to con-
struct an overlay graph of an original graph. If the original graph was
connected it is important that the constructed overlay graph remains con-
nected as well. Otherwise the results of routing in the original graph and
routing in the overlay graph would differ concerning the success of deliv-
ering a message.

3.5. GRAPH PROPERTIES 11

(a) Between short and overlong edges (b) Between medium and overlong edges

/

(c) Between long and overlong edges

Figure 3.5: Intersections between edges in an QUDG overlay graph

3.5. GRAPH PROPERTIES 12

Figure 3.6: Types of irregular intersections in UDGs and QUDGs

3.5.2 Planarity

A graph is called planar if there are no intersections between straight line
edges of embedded nodes. This property is important for algorithms that
are used to recover from routing failures which may occur with algorithms
like Greedy forwarding routing. Recovery algorithms based on geographi-
cal information usually explore the faces of an overlay graph to route a mes-
sage. This can only be done if no intersections exist in the overlay graph,
since routing loops could occur otherwise.

3.5.3 Spanners

A spanner is a subgraph of an original graph that spans the whole original
graph, i.e. it does not divide the graph into parts. One possibility to mea-
sure the quality of a subgraph, is the spanning ratio. The spanning ratio is
the “worst factor by which distances increase” [18] in the subgraph in com-
parison to the original graph. There are different kinds of spanning ratios.
The two that are used the most are the euclidean spanning ratio and the
hop spanning ratio. With the euclidean spanning ratio, the length of the
shortest path is measured as the accumulated euclidean distance between
the nodes on that path. The hop spanning ratio considers the length of a

3.6. BEACONLESS ALGORITHMS 13

path as the number of hops that need to be taken from start to end. In
general the spanning ratio should be as low as possible. A general defini-
tion of the spanning ratio with graph G = (V, F) and a spanning subgraph
G’ = (V,E'") with E' C E, is given in [18] as follows:

dister (u,w)

Stretch(G') =
retch(G) eV distg(u,w)

}

3.5.4 k-neighborhood

The k-neighborhood of a node v in a graph is defined as all nodes reachable
by v with at most k-steps. For example the 2-hop neighborhood of a node
v consists of all nodes that can be reached in one or two hops.

3.6 Beaconless Algorithms

Sensor nodes only have a limited amount of battery power, so it is im-
portant that that power is conserved as much as possibly. Since sending
messages is the most power consuming action of a sensor node, reduc-
ing the number of messages to be send is a good approach to save energy.
In classical algorithms each sensor node periodically sends out a so-called
beacon message. This message contains information about the nodes posi-
tion and confirms at the same time that it still exists. Beaconless algorithms
do without such beacon messages. Nodes only send messages if they have
to, i.e. they either want to have information from another node or they an-
swer a specific request from one. Getting information from a whole x-hop
neighborhood should only be a worst case scenario with those kinds of al-
gorithms. A key element of beaconless algorithms are timers. They can
be used to structure the course of events i.e. a node is waiting a specified
amount of time before continuing with the next step of the computation,
thus avoiding that requests have to be answered. Another application of
timers is delaying answering to requests. The amount of time an answer
is delayed may depend on different criteria, for example the distance to
the requesting node or the distance to the destination a message needs to
be forwarded to. If a node overhears a response from another node to a
request it started a timer for, it decides whether it can stop its own timer
or needs to do anything else. Those kinds of timers are used to reduce the
number of answering nodes and at the same time find a node that satisfies
a certain condition, for example being nearest to the requesting node. Due
to their nature beaconless algorithms are almost always local. In the con-
text of this master thesis a reactive algorithm is considered to be beaconless
as well as local.

3.7. GABRIEL GRAPH 14

Figure 3.7: Proximity region of a Gabriel Graph

3.7 Gabriel Graph

Given a set of sensor nodes S in the plane and the corresponding graph
G consisting of those nodes and the edges between them, a Gabriel Graph
GG(S) is a subset of edges in G. An edge of G, and the corresponding
nodes, are in GG(S) if and only if no other node lies in the circle U(a, b)
(including the border) which is also called the proximity region. [11] The
diameter of the circle is ab. Figure 3.7 shows a Gabriel Graph proximity
region between the nodes v and a. Since node w lies in that region the edge
va is not a Gabriel Graph edge. The edge va is a Gabriel Graph edge. As
shown in [7] a Gabriel Graph is always planar and, if the original graph
was connected, connected as well.

3.8 Beaconless Forwarder Planarization

The Beaconless forwarder planarization (BFP) algorithm [19] is a beacon-
less and local algorithm with which subgraphs based on proximity regions
can be constructed from a source graph. One possible proximity region
to be used is the Gabriel Graph condition. The algorithm consists of two
phases. In the first phase, which is called the selection phase, the initiating
node collects possible Gabriel Graph neighbors. In the second phase, which
is called the protest phase, other nodes can protest against those possible
neighbors. At the start the initiating node v sends out an RTS including its

3.9. PLANARIZATION BASED UPON GABRIEL GRAPHS 15

own position. Every node that receives that message and therefore could
be a Gabriel Graph neighbor of v, starts a timer depending on its distance
to v. The shorter the distance the smaller the timer. When the timer expires
the node sends an CTS to v. All other nodes overhearing that CTS stop their
own timers, if the Gabriel Graph condition is not fulfilled for them. Those
nodes are called hidden nodes. It can happen in this phase, that a node be-
lieves itself to be still a possible Gabriel Graph neighbor because the only
node(s) lying in the proximity region already stopped its/their timer(s) due
to another node answering first. In this case the hidden nodes add the false
candidate to their protest list. After the timer of v for the execution of the
first phase expires, it sends another message indicating that its ready to re-
ceive protests against Gabriel Graph candidate nodes. All hidden nodes,
whose protest list is not empty, thereupon start a timer depending on their
distance to v again. When the timer expires they send their protest list to
v. Every node that receives such a protest list and whose timer did not
yet expire, cross checks its own list against it and removes possible double
entries from its own list. After the second phase is concluded v has a com-
plete view of all its outgoing edges in the Gabriel Graph. In Figure 3.8 an
example constellation of nodes is shown where a protest message is nec-
essary. Node v starts the algorithm. Since u is the nearest node it answers
first. Node w notices this and since v would lie in the proximity region
between w and v stops its own timer. It is now a hidden node. The next
node to answer is a, although w lies in the proximity region between v and
a. w consequently adds a to its protest list and sends a protest response to
v. The only Gabriel Graph edge of v in this scenario is .

3.9 Planarization based upon Gabriel Graphs

In [6] Frey describes an algorithm that can be used to construct a planar
and connected overlay graph. Since that algorithm already works locally,
it only has to be modified to work beaconless as well to fulfill the require-
ment of a reactive algorithm.

The algorithm is a variant of the geographic cluster routing (GCR) algo-
rithm, first mentioned in [9], and was developed to eliminate the problem
of possible disconnectivity when applying GCR. GCR is based on the as-
sumption that each node belongs to an unique geographical cluster, which
can be determined by a node using its location information. The resulting
overlay graph, in which an edge in the overlay graph exists if and only if an
edge between two nodes in different clusters exists, is called the aggregated
graph H(G). This concept is called node aggregation and discussed in de-
tail in [7]. To construct a planar overlay graph GCR uses a cluster based
form of Gabriel Graph construction. If at least one of the clusters C' or D is
connected to another cluster in the circle U(C, D) the edge C' D is removed.

3.9. PLANARIZATION BASED UPON GABRIEL GRAPHS 16

Figure 3.8: BFP algorithm - protest necessary

This method of constructing an overlay graph can lead to disconnectivity.
Frey’s variant of GCR does it the other way around. Instead of constructing
an overlay graph by node aggregation and then eliminating all edges that
do not fulfill the modified Gabriel Graph condition, the Gabriel Graph is
constructed first (with the normal Gabriel Graph condition) and used as a
basis for the overlay graph. The resulting overlay graph is called the aggre-
gated Gabriel Graph H(G(V')). Frey shows in [6] that the aggregated Gabriel
Graph of an UDG retains connectivity and is planar, except for irregular in-
tersections (see 3.4). Those are taken care of whilst every long edge forming
an irregular intersection is replaced by two short edges. The short edges re-
placing the long edge are called implicit edges, whereas all other short and
medium edges as well as long edges not forming an irregular intersection
are called explicit edges. Short edges may be implicit as well as explicit. If
they are only implicit they are called pure implicit edges. Long edges that
form an irregular intersection and are replaced by short edges are called
removed edges.

The overlay graph is constructed in two steps. First every node constructs
an unique view on its outgoing edges to other clusters. In a second step
the outgoing edges of all nodes in a cluster are brought together to form
an overall view. The algorithm for determining edges of a node v to nodes
in other clusters distinguishes four sets of edges. F(v) contains all explicit
edges, I5(v) and I,(v) contain the implicit edges in the same and in the re-
verse direction respectively, whereas R(v) contains all removed long edges.
In Figure 3.9 the different types of edges are shown. The edge uw results

3.9. PLANARIZATION BASED UPON GABRIEL GRAPHS 17

Figure 3.9: Types of edges

in the green overlay edge DE, which is explicit. The blue overlay edge C'D
between the clusters of v and w is an implicit edge. From v's point of view
it is an implicit edge in the same direction, i.e. to send a message to w it
tirst has to route it in the same direction over the long edge to u which then
routes it to w. From w's point of view it is an implicit edge in reverse direc-
tion. It has to route a message intended for v in the reverse direction over
the short edge to first. In a complete overlay graph implicit edges in the
same and reverse direction always come in pairs. The sets are computed in
the following way:

e For all neighbors u of v in the Gabriel Graph
— if a cluster D exists that can be reached by v or u and lies in
the middle of C (cluster of v) and E (cluster of u)
— then add the edge CE to R(v)

x if D can’t be reached from C
« then add C'D to I5(v)

- elseadd CE to E(v)

e For all neighbors u of v in the UDG

3.10. LLRAP 18

— for all removed long edges DE in R(u) of u where D is the
cluster of any node
* if C' lies between D and E
* then
- if D can’t be reached from C' by any node
- then add CD to I,.(v)

For all its neighbors w € V in G(V), for which E denotes the cluster of
w, it is checked whether a cluster D, that lies between C and E, exists and
can be reached by either v or w. If this is the case an irregular intersection
exists at this point and the long edge C'E is not a candidate for an edge in
the aggregated Gabriel Graph H(G(V')). An irregular intersection can only
be formed with long edges. To determine whether the edge C'D is a pure
implicit edge, it is checked whether the cluster D is reachable by any node
of cluster C. Should that be the case the edge C'D is added to the set I5(v).
All short and medium Gabriel Graph edges as well as long Gabriel Graph
edges which do not form an irregular intersection are added as explicit
edges to E(v). After this step E(v) contains all short and medium edges
as well as long edges which do not form an irregular intersection and I,(v)
contains all pure implicit edges with one hop in the same direction. In the
next step all pure implicit edges of a node v with one hop in the reverse
direction are computed. For every neighbor w € V in U(V), for which E
denotes the cluster of w, it is checked whether w has a removed long edge
DE, as computed in the step before, that crosses over C. If this is the case
and D can not be reached by any node of C then the edge C'D is a pure
implicit edge with one hop in the reverse direction of v and added to I,.(v).
After this step I.(v) contains all pure implicit edges with one hop in the
reverse direction of v. After every node in cluster C' calculated the sets
E(v), Is(v) and I,.(v) they are shared with all other nodes in the cluster and
merged locally. The result are the sets E(C'), I;(C) and I,,(C') which provide
an overall view on all outgoing edges of a cluster.

3.10 LLRAP

With the LLRAP algorithm [16] graphs more general than UDGs can be
planarized. It can be applied to every graph which satisfies the two prop-
erties redundancy and coexistence. These properties are defined in [16] the
following way:

Definition 1. A graph satisfying redundancy property has, for any two intersect-
ing edges, at least one node of the intersecting edges is directly connected to the

3.10. LLRAP 19

Figure 3.10: Redundancy property

remaining three nodes of the intersecting edges.

Definition 2. A graph satisfying coexistence property has, for any three existing
edges uv, vw and wu in the graph, if there is a node x lying inside the triangle
Auvw, then the edges ux, vr and wx also exist in the graph.

Figure 3.10 shows the meaning of the redundancy property. Of the four
nodes A, B, C'and D forming the two intersecting edges AB and CD, at
least one has to have connections to the remaining two nodes. Meaning
the edges AC and AD, BC and BD, C'B and C'A, or DA and DB have to
exist as well. The meaning of the coexistence property can be seen in Fig-
ure 3.11. If three nodes A, B, and C are all connected with each other the
edges form a triangle. Any node lying inside that triangle, for example D,
has to have connections to A, B and C' as well. The algorithm consists of
two phases. In the first phase some edges that form intersections are re-
moved. For this purpose each node checks if it can detect an intersection in
its one-hop neighborhood and if an alternate path exists to connect the end-
points of a removed edge. This always leads to all intersecting edges being
removed, since redundancy property guarantees that at least one node of
two intersecting edges can detect that intersection and a possible alternate
path. After the first phase the resulting overlay graph may be disconnected
although the underlying original graph was connected. To remedy that
problem, in the second phase of the algorithm some of the removed edges
may be added again. To decide which edges can be added without loosing
planarity of the overlay graph, each node considers whose of its removed
edges could be candidates for addition. If both nodes of a removed edge

3.11. BEACONLESS CLUSTERING ALGORITHM 20

Figure 3.11: Coexistence property

consider the addition of the edge unproblematic (no intersection follows
from adding the edge), it is added again.

The coexistence property guarantees that the overlay graph of an originally
connected graph remains connected.

3.11 Beaconless Clustering Algorithm

This section contains a brief description of the Beaconless clustering algo-
rithm (BCA) as well as an explanation of the alterations made to the algo-
rithm.

3.11.1 Description

To route a message in an overlay graph a node needs to know all of its
clusters outgoing edges. In [17] a beaconless clustering algorithm BCA is
described which accomplishes that.

The algorithm consists of two phases. In the first phase the initial node v
sends out a request, called first-request, to nodes in other clusters. Every
node that receives this request and lies in another cluster as v, starts a timer
depending on its distance to v. When the timer terminates, the node sends
a response to v called first-response. All nodes that receive this response
and lie in the same cluster as the answering node, stop their timer. This
ensures that always the shortest connection to a cluster is chosen (unique).
After a certain amount of time v starts the second phase of the algorithm,
in which the other nodes in the cluster search for outgoing edges. For this
purpose v first computes a list of all clusters to which no edge exists yet. As
long as that list is not empty, v sends out a request, called second-request,
to its internal cluster neighbors, to search for a connection to one of the
clusters on the list. All internal neighbors then start a timer depending
on their individual distance to the cluster. When the timer terminates, the

3.11. BEACONLESS CLUSTERING ALGORITHM 21

Figure 3.12: Result of the BCA

node sends a first-request of its own to that cluster and waits for a response.
The other nodes in the cluster receiving the first request, pause their own
timers. If no response is received the next node sends a first-request. If a
response is received, the node sends a second-response message to v and
the other nodes stop their timers. v removes the cluster from the list and
sends the next request if open clusters remain. After the second phase of
the algorithm v knows all outgoing edges of its cluster and whether or not
it has to route over an intermediate node to reach certain clusters. The
result of the algorithm can be seen in Figure 3.12. Red nodes indicate an
existing outgoing edge whereas blue nodes are not needed to form any
outgoing edge. After the algorithm is finished, the initiating node knows all
outgoing edges to clusters that can be reached by at most two hops (either
it can reach the cluster directly (one hop) or over an intermediate node in
the same cluster (two hops)).

3.11.2 Alterations

3.11.2.1 Adaptation to hexagon grids

The BCA is based on square grids. For the adaptation to hexagon grids
certain alterations had to be made:

e acluster has now the form of a hexagon with the accompanying prop-

3.11. BEACONLESS CLUSTERING ALGORITHM 22

erties

e a cluster is now addressed by a unique cluster address instead of an
ID

e all functions for geographical computations (for example whether a
cluster is reachable by a certain node) were altered to take the new
geometric conditions into account; to that purpose a library was in-
troduced

Since the the grid now consists of hexagon clusters, the types of outgo-
ing edges of a cluster have changed. Furthermore the euclidean distance
between two adjacent clusters is now always the same. The address of a
cluster is represented by three scalars. Each scalar stands for the number
of times a specific direction vector has to be added to get from the origin of
the plane (0/0) to the cluster. In null-positive-form, i.e. one scalar is zero
while the other two are positive, each cluster address is unique. The library
used for geometric computations is javaGeom-0.11.2. It includes models for
lines as well as circles and offers methods to compute intersections between
them. Whether a cluster is reachable from a certain node is determined by
computing all intersections of the circle formed by the sending radius of
the node and the edges of the destination hexagon. If at least one intersec-
tion exists, the node can reach the cluster. If no intersection exists, but the
middle of the destination cluster is included in the sending radius of the
node, the destination cluster lies completely inside the sending radius of
the node and is therefore reachable as well.

3.11.2.2 Overlay graph

To see why the computation of all outgoing edges of a cluster does not
suffice to construct an overlay graph that can be used for example for the
FACE algorithm, an extra function that computes the outgoing edges for
all clusters at once was implemented. The result can be seen in Figure 3.13.
As evidenced the resulting overlay graph is not planar, which leads to the
loss of guaranteed delivery message. The edges painted in orange indicate
irregular intersections. Developing an algorithm that beaconless planarizes
such an overlay is therefore necessary.

3.11. BEACONLESS CLUSTERING ALGORITHM 23

Figure 3.13: Overlay graph created when all clusters employ the algorithm used
to determine all outgoing edges

Chapter 4

Algorithms

The goal of this thesis is the development of a beaconless algorithm that
constructs a planar overlay graph in unit disk graphs in a reactive manner.
Such an overlay graph can than be used as basis for geographical cluster
based routing algorithms. In a first approach the LLRAP algorithm is ex-
amined for suitability, since its guarantees planarity and connectivity if a
graph has two distinctive properties. Since one of those properties cannot
be proven, another algorithm is developed. This algorithm is based upon
the planar graph construction method described in Section 3.9 and will be
called Beaconless Cluster Based Planarization algorithm (short: BCBP). The
first section of this chapter explains which communication model is used
for both algorithms. Following that a beaconless version of the LLRAP al-
gorithm (see Section 3.10) called Beaconless LLRAP is presented, including
all proofs that could or could not be made. The final section contains a
description of the BCBP algorithm, along with a proof of correctness and
suggestions for improvements.

4,1 Communication Model

One of the key factors of developing a distributed algorithm is the ques-
tion which communication model to use. In [18] Peleg describes the two
most often used models. These models lie on opposite ends of the syn-
chronicity spectrum. Either a fully synchronous communication model is
used or a totally asynchronous one. The fully synchronous model assumes
that every node has a local clock which is synchronized with the clock of
all other nodes, i.e. there is a global clock. The sending of a message takes
less than one unit. Thus it can be deduced when a message should arrive
at its destination and how long an answer might take. In contrast, the to-
tally asynchronous communication model is event-based. It is not known
how long a message might take from start to destination. Furthermore,
messages may arrive in random order so that no overall state of the com-

24

4.2. BEACONLESS LLRAP (BLLRAP) 25

putation can be deduced. None of the two models are very realistic, they
are however suitable to generalize certain findings.

Since one key component of beaconless algorithms are timer, which are
used for multiple purposes, like deciding whether to answer a query or
how long to wait for an answer, the algorithms developed in this thesis use
the fully synchronous communication model.

4.2 Beaconless LLRAP (BLLRAP)

The BLLRAP algorithm is based upon the LLRAP algorithm proposed by
Frey and Mathews as described in Section 3.10. For the LLRAP algorithm
to be applicable a graph has to have two properties: Redundancy property
and Coexistence property. If it can be proven that the constructed overlay
graph has those two properties, it will be inherently planar and connected.
The first subsections of this section contain a description of BLLRAP as
well as pseudo code descriptions of messages and timers used. The results
of the attempt to prove Redundancy and Coexistence properties follows in
the last subsection.

4.2.1 Description

The BLLRAP algorithm utilizes a number of messages and timers which
are explained in detail in subsection 4.2.2 and subsection 4.2.3 respectively.
The algorithm consists of the following five steps:

1. determine all outgoing edges of a cluster using the BCA described in
Section 3.11

2. check for intersections and remove edges as necessary (removal step)

3. check whether some edges can be added again on this side (addition
step)

4. check whether the additionable edges can be added from the other
side as well

5. handle all irregular intersections that are left

In the first step all outgoing edges of a cluster are computed using the algo-
rithm described in Section 3.11. In the following step it is checked whether
any intersection exists. To that purpose the initial cluster sends an Check-
ForIntersectionsRequest to all its original neighbors. If those haven’t com-
puted their outgoing edges yet, that will be done first. Afterwards they
check whether they can detect any intersections with the outgoing edges
of the initial cluster. If that is the case an IntersectionFoundResponse is send

4.2. BEACONLESS LLRAP (BLLRAP) 26

back to the initial cluster. The third step starts with a CheckAdditionPos-
sibleRequest from the initial cluster. All removed edges are being investi-
gated in regard to the question whether they could be added again. If a
cluster that receives the request did not yet execute the removal step that
will be done first. As soon as the removal step is finished the cluster checks
for every edge whether an addition would lead to new (old) intersections.
If an edge can’t be added again an AdditionNotPossibleResponse is send to
the initial cluster. In the fourth step the initial cluster checks for all re-
moved edges which could potentially be added again, if they can be added
from the other side as well. To that purpose a CheckAdditionPossibleOther-
SideRequest is send to all endpoints of potentially additionable edges. There
the addition step is executed and in case the edge can’t be added again a
corresponding AdditionNotPossibleResponse send back to the initial cluster.
Finally the initial cluster computes all irregular intersections that are left.

4.2.2 Messages

This subsection contains a list of all messages used in the beaconless llrap
algorithm. For each message a brief pseudo code description on how to
process it is given.

FirstRequest

if message for me then
start FirstResponseTimer;
/1 dependent on distance to cluster mddle
nd
Ise if message from this cluster then
if ComputeOutgoingEdgesSecondStepTimer running then
‘ suspend timer for ¢,,4, + 2;
end
else if FirstRequestTimer running then
‘ suspend timer for t,,4, + 2 + timele ft;
end
end

o o

4.2. BEACONLESS LLRAP (BLLRAP)

27

FirstResponse

if message for me then
if message needs to be forwarded then
send SecondResponse (broadcast);
remove answering cluster from list of open clusters;
else
| add edge to list of outgoing edges;
end
nd
Ise if message from this cluster then
if FirstResponseTimer running then
‘ stop timer;
end

o o

end
else if open clusters contains answering cluster then

| remove answering cluster from list of open clusters;
end

SecondRequest

if message from this cluster then
start FirstRequestTimer;
/1 dependent on distance to nearest cluster
m ddl e

end

SecondResponse

if message for me then
‘ add edge to list of outgoing edges;
end
else if message from this cluster then
if list of open clusters contains edge then
| remove edge from list of open clusters;
end
end

4.2. BEACONLESS LLRAP (BLLRAP)

28

CheckForIntersectionsRequest

if message for me then
if message from this cluster then
‘ forward request (broadcast);
else
if not this node computed outgoing edges then
‘ forward request (no broadcast);
end
else if not compute outgoing edges step started then
send FirstRequest (broadcast);
start ComputeOutgoingEdgesFirstStepTimer;
end
else
compute intersections;
send IntersectionsFoundResponse (no broadcast);
end
end

end

IntersectionsFoundResponse

if message needs to be forwarded then
‘ forward message;
else
remove source from wait for answer list;
remove intersections from list of outgoing edges;
add intersections to list of removed edges;
if not waiting on any more answers then
if CheckAdditionPossibleRequest exists then
compute intersections in case of addition;
send AdditionNotPossibleResponse (no broadcast);
else
if any edges were removed then
‘ send CheckAdditionPossibleRequest (broadcast);
else
‘ handlelrregularIntersections();
end
end

end
end

4.2. BEACONLESS LLRAP (BLLRAP)

29

CheckAdditionPossibleRequest

if message for me then
if message from this cluster then
‘ forward request (broadcast);
else
if not this node computed outgoing edges then
‘ forward request (no broadcast);
end
else if not removal step started then
add destinations to list of clusters to wait for;
send CheckForIntersectionsRequest (broadcast);
end
else
compute intersections in case of addition;
send AdditionNotPossibleResponse (no broadcast);
end
end

end

4.2. BEACONLESS LLRAP (BLLRAP)

AdditionNotPossibleResponse

if message needs to be forwarded then
| forward message;
else
remove source from wait for answer list;
add non additionable edges to list of non additionable edges;
if not waiting on any more answers then
if general computation then

if any additionable edges then
send CheckAdditionPossibleOtherSideRequest

(broadcast);
else
‘ handlelrregularIntersections();
end
nd
Ise if other side computation then
if any edges additionable then
‘ add additionable edges to list of outgoing edges;
else
‘ handlelrregularIntersections();
end

o o

end
else if general computation other side then

‘ send AdditionNotPossibleResponse (no broadcast);
end

end
end

CheckAdditionPossibleOtherSideRequest

if message for me then
if message from this cluster then
‘ forward request (broadcast);
else
if not this computed outgoing edges then
| forward request (no broadcast);
else
add destinations to list of clusters to wait for;
send CheckAdditionPossibleRequest (broadcast);
end

end
end

4.2. BEACONLESS LLRAP (BLLRAP)

31

CheckForlIrregularIntersectionRequest

if message from this cluster then
forward request;
/1 nmessage is not broadcasted
else
if not this node computed outgoing edges then
| forward request (no broadcast);
else
compute intersections;
send IntersectionsFoundResponse (no broadcast);
end
end

IrregularIntersectionFoundResponse

if message needs to be forwarded then
‘ forward message;
else
remove long edge from list of open long edges;
add edge to list of implicit edges in the same direction or remove
from list of outgoing edges;

if no open long edges exist then
determine clusters to check for implicit edges in the reverse

direction;

if clusters to check then
send ExistsLongEdgeOverMeRequest to each cluster on
the list (no broadcast);
/'l no broadcast so forwarding is possible

else

‘ finished,;
end

end
end

4.2. BEACONLESS LLRAP (BLLRAP) 32

ExistsLongEdgeOverMeRequest

if message from this cluster then
forward request;
/1l message was not broadcasted
else
if not this node computed outgoing edges then
| forward request (no broadcast);
else
| send LongEdgeExistsResponse (no broadcast);
end
end

LongEdgeExistsResponse

if message needs to be forwarded then
| forward message;
else
remove cluster from list of clusters to check for implicit edges in
the reverse direction;
add edge to list of implicit edges in the reverse direction if
necessary;
if no clusters to check then
‘ finished;
end
end

handlelrregularIntersections()

add all long edges to list of open long edges;
compute own irregular intersections;
if any open long edges then
send CheckForlrregularIntersectionsRequest to each open long
edge;
else
determine clusters to check for implicit edges in the reverse
direction;
if clusters to check then
send ExistsLongEdgeOverMeRequest to each cluster on the
list (no broadcast);
/'l no broadcast so forwarding is possible
else
‘ finished;
end
end

4.2. BEACONLESS LLRAP (BLLRAP) 33

4.2.3 Timers

This subsection contains a list of all timers used in the BLLRAP algorithm.
For each timer a brief pseudo code description of what happens when the
timer fires is given as well as information about how their duration, and if
necessary suspension, is determined. All timers are dependent on a vari-
able called t,,,,, which is the maximum amount of time a timer can be
initially set to, when contending for the right to answer a request.

e ComputeOutgoingEdgesFirstStepTimer

This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when the first step of the BCA (finding out-
going edges directly) is started. Since the timer used to determine
the node to answer the request (FirstResponseTimer) has a maximum
duration of t,,,, and the time messages travel has to be considered
as well (one unit for each request and response), the duration of the
ComputeOutgoingEdgesFirstStepTimer is computed as follows:

duration = tyee + 2

ComputeOutgoingEdgesFirstStepTimer

send SecondRequest;
start computeOutgoingEdgesSeconsStepTimer;

e ComputeOutgoingEdgesSecondStepTimer
This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when the second step of the BCA (finding out-
going edges over intermediate nodes) is started. Since the timer used
to determine the node to forward the request (FirstRequestTimer) has
a maximum duration of ¢,,,, and the time messages travel has to be
considered as well (one unit for each request and response), the du-
ration of the ComputeOutgoingEdgesSecondStepTimer is computed as
follows:
duration = tyee + 2

If a cluster internal neighbor forwards the request in this time, the
initiating node has to suspend the timer:

duration = tymer + 2 + timeLeft

tmaz + 2 1s the amount of time it can take for a node to answer the re-
quest and for the forwarding node to receive the response. timeLeft

4.2. BEACONLESS LLRAP (BLLRAP) 34

is the time left for other nodes to forward the request if necessary.

ComputeOutgoingEdgesSecondStepTimer

if this started algorithm then

add destinations to list of clusters to wait for;
send CheckForIntersectionsRequest (broadcast);
end

else if CheckForIntersectionsRequest exists then
compute intersections;

send IntersectionsFoundResponse (no broadcast);
end

e FirstRequestTimer
This timer is a contending timer, i.e. the node competes with other
cluster internal neighbors for the right to forward the FirstRequest. It
is started dependent on the node’s distance to the destination clus-
ter’s middle:

distanceT oDestinationCluster Middle

duration = * tmaz
1.5xr

1.5 * 7 is the maximum distance of a node to the destination cluster’s
middle. The maximum range of a node is . The maximum distance
of a node to its cluster’s middle is 0.5, i.e. when a node just reaches
a destination cluster the maximum distance is 1.5 * r. This computa-
tion ensures that the node nearest to the destination cluster’s middle
answers first. If a cluster internal neighbor forwards the request in
this time, the node has to suspend the timer:

duration = tya: + 2 + timeLeft

tmaz + 2 1s the amount of time it can take for a node to answer the re-
quest and for the forwarding node to receive the response. timeLe ft
is the time left for this node to forward the request if necessary.

FirstRequestTimer

send FirstRequest (broadcast);

e FirstResponseTimer
This timer is a contending timer, i.e. the node competes with other
nodes in the cluster for the right to answer the FirstRequest. This timer
is started dependent on the node’s distance to its own cluster’s mid-

dle:
. distanceT oOwnCluster Middle
duration = * tmax

0.5*r

4.2. BEACONLESS LLRAP (BLLRAP) 35

0.5 * r is the maximum distance of a node to the cluster middle. This
computation ensures that the node nearest to the cluster middle, of
all reachable nodes, answers first.

FirstResponseTimer

send FirstResponse (broadcast);

424 Proofs

This subsection contains some proofs necessary for the algorithm to be ap-
plicable. Unfortunately the coexistence property is not satisfiable for over-
lay graphs constructed with BLLRAP. Neither could an alternative proof
for the connectivity of the overlay graph be found. The general idea was to
proof that redundancy and coexistence could be inherited from the physi-
cal graph. Both properties are valid in UDGs.

4.2.4.1 Redundancy Property

To proof the redundancy property after Frey for overlay graphs of UDGs
constructed with BLLRAP algorithm, another version of the redundancy
property is used. This version was introduced by Sumesh [21] and is de-
fined as follows:

Definition 3. If two edges in the overlay graph intersect, one of the following
must occur: (a) two radio edges intersect in the UDG (b) the two radio edges in
the UDG do not intersect, but the location of the four mobile nodes is such that
the overlay edge intersection occurs. In either case, there must be at least one node
which is directly connected to the remaining three nodes in the UDG.

Since the redundancy property after Sumesh was only proven for square
grids, a proof for hexagon grids follows:

Lemma 1. The redundancy property defined by Sumesh in [21] is applicable to
heaxagon grids as well.

Proof. To show:

Every intersection in an overlay graph of an UDG constructed by node
aggregation, is caused by three nodes where at least one is connected
to the other three.

Analogous to the proof for square grids in [21] only edges that do not
intersect in the original graph need to be considered. Figure 4.1 shows all
possible intersections. Hatched areas indicate that a node has to lie in this
area for an edge to be able to form. In case a) node u (endpoint of short

4.2. BEACONLESS LLRAP (BLLRAP) 36

(a) A short and a medium edge

(c) A medium and a long edge (d) Two long edges

Figure 4.1: Intersections between edges in an UDG overlay graph

4.2. BEACONLESS LLRAP (BLLRAP) 37

edge) has to lie right/left from the edge xy. This leads to u always lying
between z and y and therefore |zy| < r A |uz| < 7 A |uy| < r. Node w is
always connected to all three other nodes that form the intersection and the
property holds for short and medium edges. The cases b), c) and d) can be
treated accordingly. O

Theorem 1. When constructing an overlay graph from an UDG by using BLL-
RAP, the overlay graph satisfies the redundancy property after Frey.

Proof. From the redundancy property as defined by Sumesh in [21] it fol-
lows, that at least one node of the four nodes involved in creating an inter-
section in the overlay graph of an UDG has edges to all three other nodes.
Since the edges between the four nodes lead to an intersection in the over-
lay graph all four nodes have to be in different clusters. If an edge between
two nodes in different clusters exists, then an edge in the overlay graph
connecting the two clusters the nodes belong to exists as well. Therefore if
there is an intersection in the overlay graph one of the clusters has to have
edges to all three other clusters involved and the redundancy property de-
fined by Frey (see Section 3.10) is satisfied by the overlay graph O

4.2.4.2 Coexistence Property

The coexistence property is not satisfied by the overlay graph constructed
when applying BLLRAP. The constellation in Figure 4.2 shows a contradic-
tion. Although a node lies in cluster D, which therefore exists, it has no
edge to cluster C, since node w is not reachable by node v.

4.2.4.3 Connectivity

Since the algorithm does not satisfy the coexistence property which is nec-
essary in the original algorithm to proof the continued connectivity, an al-
ternate proof for connectivity was sought. For that purpose a case study
of all possible constellations of edges in a hexagon raster that form a trian-
gle (possible alternate paths messages can take) were considered. Figures
4.3(a) (case 1), 4.3(b) (case 2), 4.3(e) (case 3), 4.4 (case 4), and 4.3(c), 4.3(d)
(case 5 a + b) show those constellations.

The proofs are conducted by contradiction (analogously to the origi-
nal proof in [16]). It is assumed that the graph is disconnected after the
execution of the algorithm. The goal is to show that this could not have
happened. The edge uw is always the edge that still exists after the execu-
tion of the algorithm, whereas wv and uv are the removed edges that led
to the disconnection. In case 1 (4.3(a)) the edges vw or uw cannot be added
again only if the edges wa or ub were kept. If that were the case however
wa/ub would have been removed due to intersections so that at least one
of the edges wv and uv would still have to exist. The cases 3 and 4c can be

4.2. BEACONLESS LLRAP (BLLRAP) 38

Figure 4.2: A contra-dictionary example for the coexistence property in overlay
graphs of UDG

4.2. BEACONLESS LLRAP (BLLRAP) 39

.,

\Z

(a) Three short edges (b) Three medium edges

\
.
)

e

(c) Two short edges and one medium edge (d) Two short edges and one medium edge

() (b)

(e) Three long edges

Figure 4.3: Constellations of of possible detours (part 1)

4.2. BEACONLESS LLRAP (BLLRAP) 40

b)i)

(a) One edge each (a) (b) One edge each b) i)

b) ii)

AEEELY)
~ V2
[]

(c) One edge each b) ii) (d) One edge each c) i)

o) ii)

Us

(e) One edge each c) ii)

Figure 4.4: Constellations of of possible detours (part 2)

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 41

Figure 4.5: A contradiction to the assumption that an overlay graph always re-
mains connected after LLRAP

argued in the same way. Cases 5 i) and 4a do not have any possible inter-
sections that could lead to the removal of the edges uv and uw. The only
possible intersection in case 5 ii) leads to the same constellation as in case
1) and terminates there. Cases 4b and 2 are the problematic cases which
in the end lead to the conclusion that connectivity can not be proven this
way. There are cases in which no edge exists that might prevent the edges
uwv and wv from being removed or more precisely the effort to proof that
such an edge exists ends in an endless loop of detours. Figure 4.5 shows a
contradiction to the assumption that an overlay graph remains connected
after the algorithm. All edges from cluster V' to the surrounding clusters
have been removed due to intersections so that V' lies now disconnected
from the rest of the graph.

4.3 Beaconless Cluster Based Planarization (BCBP)

The BCBP algorithm is based upon the algorithm proposed by Frey as de-
scribed in Section 3.9 and uses the same denomination for the result sets.
In contrast to the original algorithm, this algorithm directly computes the
result sets on cluster basis. This section contains a description of the de-

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 42

veloped BCBP algorithm as well as lists of all used messages and timers.
Furthermore a proof for the correctness of the algorithm is given and opti-
mization opportunities are described.

4.3.1 Description

The BCBP algorithm utilizes a number of messages which are explained in
detail in Subsection 4.3.3 as well as several different kinds of timers (Section
4.3.4). When a node needs to know all outgoing edges of the planar overlay
graph it kicks off computing of those edges through sending an determine-
OutgoingEdgesRequest to its own cluster. All nodes in this cluster then start
a DetermineClusterHeadTimer. The node whose timer first terminates is the
clusterhead of this cluster and responsible for the further execution of the
algorithm. The algorithm consists of five main steps:

1. compute all outgoing Gabriel Graph edges of the cluster
2. add all short and medium edges to E(C)

3. check for all long edges whether a cluster in the middle of a long edge
can be reached by v and add the edge if need be to R(C)

4. ask all endpoints of long edges (in cluster E) that are not already re-
moved if they can reach the cluster in the middle (D) and either add
CD to Is(v) and CE to R(C), or add CE to E(C)

5. ask all reachable directly neighboring clusters, when C can’t reach the
cluster opposite of it (D), if a long edge over C exists to that cluster
and add the edge C'D to I, (v) if need be

In the first step the clusterhead initiates the determination of all Gabriel
Graph edges of the cluster. For this the BFP algorithm, described in Sec-
tion 3.8, is used. In the second step all short and medium edges are di-
rectly added to E(C). If there are long edges, after that the clusterhead
sends an ExistsAnyEdgeRequest to all directly adjacent clusters. All nodes in
those clusters which receive the request start an EdgeExistTimer. When the
timer terminates the node sends an EdgeExistsResponse to the clusterhead
and all other nodes stop their timers. In case there are open directly neigh-
boring clusters, the clusterhead then forwards the ExistsAnyEdgeRequest to
its cluster internal neighbors. The cluster internal neighbors then start a
DetermineNearestNeighborTimer for the right to forward the request. When
one of the timers terminates, the node sends an ExistsAnyEdgeRequest to
the specific cluster. If other nodes started a timer as well, it is suspended.
The information about existing edges is send back to the clusterhead via a
ReachableClustersResponse. When no node can reach any of the open clus-
ters anymore, the clusterhead checks which of the long edges have to be re-
moved because they cause irregular intersections and adds them to R(C).

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 43

In the fourth step the clusterhead sends an CheckForlrregularIntersectionsRe-
quest to the endpoints of all open long edges, routing over intermediate
nodes if necessary. This causes a stripped version of the third step to be
executed in the destination clusters. Instead of searching for edges to all di-
rectly adjacent clusters only the cluster in the middle is checked. After the
step is executed feedback in form of an IntersectionFoundResponse is send
to the clusterhead. If an intersection was found the long edge is added to
R(C) and the edge from the cluster to the middle cluster is added to I,(v),
otherwise the long edge is added to E(C). In the fifth step the clusterhead
computes which directly adjacent clusters can’t be reached. If the cluster
opposite of them can be reached, it sends an ExistsLongEdgeOverMeRequest
to those clusters (if necessary over an intermediate node). Those clusters
then use a modified version of the BFP algorithm (see Subsection 4.3.2 to
determine whether they have a Gabriel Graph edge to the opposite clus-
ter. After that is finished they send an LongEdgeExistsResponse back to the
clusterhead. If such a long edge exists, the edge from the cluster to the
reachable cluster is added to I,(v). Finally the clusterhead sends an Out-
goingEdgesResponse containing all four edge result sets to the initial node.

4.3.2 Modified Beaconless Forwarder Planarization

The modified version of the BFP algorithm works on cluster basis. Only
nodes that lie in a specified destination cluster start the GGCandidateTimer.
However, every node that lies in the proximity region of an answering node
and the requesting node, still adds the answering node to its protest list
and sends a ProtestResponse if necessary. Regardless of the cluster it lies
in. Thus, it is ensured that no false candidate is mistaken for a Gabriel
Graph neighbor. Since all nodes in the destination cluster that overhear
the SearchForGGCandidatesRequest start a GGCandidateTimer, no true Gabriel
Graph neighbor in that cluster is missed.

4.3.3 Messages

This subsection contains a list of all messages used in the BCBP algorithm.
For each message a brief pseudo code description on how to process it is
given. A detailed diagram of the message flow can be found in appendix A.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 44

DetermineOutgoingEdgesRequest

if message from this cluster then

end

if do not forward message then

start DetermineClusterHead Timer;
/!l dependent on the distance to the m ddle of
the cluster

Ise

start DetermineNearestNeighborTimer;
/1 dependent on the distance to the nearest
open cluster

end

SearchForGGCandidatesRequest

if message for this cluster then

else

end

start GGCandidateTimer;
/1 dependent on the distance to the requesting

node

else if message from this cluster then

if this is clusterhead then
if DetermineOutgoingEdgesTimer running then
‘ suspend timer for 3 * 4, + 10;
end
else if LongEdgeExistsTimer running then
‘ suspend timer for 3 4, + 10;
end
/'l another node answered at the same tine
else if requesting nodes ID < this ID then
‘ this is not clusterhead,;
end
else
if DetermineClusterHead Timer running then
‘ stop timer;
end
if DetermineNearestNeighborTimer running then
‘ suspend timer for 2 * t,,q, + 6 + timeleft;
end

end

end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP)

45

GGCandidateResponse

if message for me then
‘ add responding node to list of potential edges;

else
if GGCandidateTimer running && responding node is in proximity

region then
| stop timer;
end
else if this node is in proximity region then
‘ add responding node to protest list;
end

end

ReadyForProtestRequest

if protest list is not empty then
start ProtestTimer;
/1 dependent on the distance to the requesting
node
end

ProtestResponse

if message for me then
‘ remove nodes from potential edges list;

else
cross check with own protest list and remove if possible;
if own protest list empty then

‘ stop timer;

end

end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 46

FoundEdgesResponse

if message for me then
if not outgoing edge computation then
‘ add found edges to list of potential edges;
else
| send OutgoingEdgeExistsResponse (no broadcast);
end
end
else if message from this cluster && DetermineNearestNeighbor Timer
running then
remove found edges from list of open clusters;
if no open clusters left then
‘ stop timer;
end
end

CheckForlIrregularIntersectionRequest

if message from this cluster then
forward request;
/1l nmessage is not broadcasted
else
send ExistsAnyEdgeRequest (broadcast);
start ExistsAnyEdgeTimer;
end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 47

IrregularIntersectionFoundResponse

if message needs to be forwarded then
| forward message;
else
remove long edge from list of open long edges;
add edge to list of outgoing edges or to list of implicit edges in
the same direction;
if no open long edges then
determine clusters to check for implicit edges in the reverse
direction;
if clusters to check then
send ExistsLongEdgeOverMeRequest to each cluster on
the list (no broadcast);
/1l no broadcast so forwarding is possible
else
‘ finish();
end
end
end

ExistsAnyEdgeRequest

if message needs to be forwarded && message form this cluster then
start DetermineNearestNeighborTimer;
/1l dependent on the distance to the nearest open
cluster
else
if message is for me then
start EdgeExistsTimer;
/'l dependent on distance to requesting node
end
else if ExistsAnyEdgeTimer running then
| suspend timer for tpqq + 10;
end
else if message from this cluster then
if DetermineNearestNeighborTimer running then
‘ suspend timer for ¢,,,4, + 5 + timeleft;
end
end
end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 48

EdgeExistsResponse

if message is for me then
| add edge to list of reachable adjacent clusters;

end

else if message from this cluster && EdgeExistsTimer running then
‘ stop timer;

end

ReachableClustersResponse

if message is for me then
‘ add edge to list of reachable adjacent clusters;

end
else if message from this cluster && DetermineNearestNeighbor Timer
running then

remove found edges from list of open clusters;

if no open clusters left then

‘ stop timer;

end

end

ExistsLongEdgeOverMeRequest

if message from this cluster then

forward request;

/1l message is not broadcasted

else

send ExistsOutgoingEdgeRequest (broadcast);

start DetermineClusterHead Timer;

/1 dependent on distance to cluster mddle
end

ExistsOutgoingEdgeRequest

if message from this cluster then

if message needs to be forwarded then

start DetermineNearestNeighborTimer;

/| dependent on distance to destination
cluster

else

start DetermineClusterHead Timer;

/| dependent on distance to cluster mddle

end

end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP)

49

OutgoingEdgeExistsResponse

if message from this cluster then
‘ send LongEdgeExistsResponse;
end
else if message needs to be forwarded then
‘ forward message;
end
else

the reverse direction;
add edge to list of implicit edges in the reverse direction if
necessary;
if no clusters to check then
‘ finish();
end
end

remove cluster from list of clusters to check for implicit edges in

LongEdgeExistsResponse

if message needs to be forwarded then
‘ forward message;
else

the reverse direction;
add edge to list of implicit edges in the reverse direction if
necessary;
if no clusters to check then
‘ finish();
end

end

remove cluster from list of clusters to check for implicit edges in

OutgoingEdgesResponse

extract outgoing edges from message;

4.3.4 Timers

This subsection contains a list of all timers used in the BCBP algorithm. For
each timer a brief pseudo code description of what happens when the timer
tires is given as well as information about how their duration, and if nec-
essary suspension, is determined. All timers are dependent on a variable
called ¢,,,42, which is the maximum amount of time a timer can be initially

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 50

set to when contending for the right to answer a request.

e DetermineClusterHeadTimer
This timer is a contending timer, i.e. the node competes with other
nodes in the cluster for the right to send the SearchForGGCandiates-
Request. This timer is started dependent on the node’s distance to its
own cluster’s middle:
distanceT oOwnCluster Middle

duration = * tmaz

0.5 *7r

0.5 x r is the maximum distance of a node to the cluster middle. This
computation ensures that the node nearest to the cluster middle, of
all reachable nodes, answers first.

DetermineClusterHead Timer

send SearchForGGCandidatesRequest (broadcast);

e DetermineNearestNeighborTimer
This timer is a contending timer, i.e. the node competes with other
cluster internal neighbors for the right to forward a request. It is
started dependent on the node’s distance to the (nearest) destination
cluster’s middle:
distanceT oDestinationCluster Middle

duration = * tmax
1.5%xr

1.5 * 7 is the maximum distance of a node to the destination cluster’s
middle. The maximum range of a node is 7. The maximum distance
of a node to its cluster’s middle is 0.5, i.e. when a node just reaches
a destination cluster the maximum distance is 1.5 * r. This computa-
tion ensures that the node nearest to the (for its nearest) destination
cluster’s middle answers first. If a cluster internal neighbor forwards
the request in this time, the node has to suspend the timer depending
on the request to be forwarded:

duration = 2 x tyee + 5 + timeLe ft
for a SearchForGGCandidatesRequest and
duration = tymer + 3 + timeLeft

for an ExistsAnyEdgeRequest. 2 * t,,q, + 5 is the amount of time it can
take for the forwarding node to determine all its Gabriel Graph neigh-
bors (2 requests, 3 responses and 2 timers with a duration of at most
tmaz)- tmaz + 3 is the amount of time it can take for the forwarding

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 51

node to determine all its directly neighboring clusters (1 requests, 2
responses and 1 timer with a duration of at most ¢,,,4,). timeLeft is
the time left for this node to forward the request if necessary.

DetermineNearestNeighborTimer

if part of GG computation then
send SearchForGGCandidatesRequest (broadcast);
start SearchForGGCandidatesTimer;
else
send ExistsAnyEdgeRequest (broadcast);
start ExistsAnyEdgeTimer;
end

e DetermineOutgoingEdgesTimer

This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when a node starts the computation of all out-
going cluster edges that can be reached over an intermediate node.
Since the timer used to determine the node to forward the request
(DetermineNearestNeighborTimer), has a maximum duration of ¢,,,4, and
the time messages travel has to be considered as well (one unit for
each request and response), the duration of the DetermineOutgoingEdges-
Timer is computed as follows:

duration = tyer + 2

If a cluster internal neighbor forwards the request in this time, the
initiating node has to suspend the timer:

duration = 3 * tyae + 6 + timeLeft

3 * ez + 6 is the amount of time it can take for a node to win the
contest to forward the request and to determine all its Gabriel Graph
neighbors (3 requests, 3 responses and 3 timers with a duration of at
most timaz). timeLeft is the time left for other nodes to forward the
request if necessary.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 52

DetermineOutgoingEdgesTimer

if any potential edges exist then
forall the potential edges do
switch edge type do
case short

case medium

| add edge to list of outgoing edges;
end
case long

| add edge to list of open long edges;
end

endsw
end
send ExistsAnyEdgeRequest (broadcast);
start ExistsAnyEdgeTimer;
else
‘ finish();
end

e SearchForGGCandidatesTimer

This timer is a structural timer, i.e. it is used to structure the course of
events. It is started when a node starts the computation of its Gabriel
Graph neighbors. Since the timer used to determine whether a node
is a Gariel Graph neighbor (GGCandidateTimer), has a maximum dura-
tion of ¢,,,4, and the time messages travel has to be considered as well
(one unit for each request and response), the duration of the GGCan-
didateTimer is computed as follows:

duration = tymaqr + 2

SearchForGGCandidatesTimer

if any potential edges then
send ReadyForProtestRequest (broadcast);
start GGCandidateProtestTimer;

end

¢ GGCandidateTimer
This timer is a contending timer, i.e. the node competes with other
nodes in the cluster for the right to answer the SearchForGGCandi-
datesRequest. This timer is started dependent on the node’s distance
to the requesting node:

distancel oRequestingN ode

duration = * tmax
T

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 53

r is the maximum distance between two nodes in an UDG. This com-
putation ensures that the node nearest to the requesting node, of all
reachable nodes, answers first.

GGCandidateTimer

send GGCandidateResponse (broadcast);

¢ GGCandidateProtestTimer

This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when a node starts the protest phase of the
computation of its Gabriel Graph neighbors. Since the timer used to
determine whether a node will send a ProtestResponse (ProtestTimer),
has a maximum duration of ¢,,,, and the time messages travel has to
be considered as well (one unit for each request and response), the
duration of the GGCandidateTimer is computed as follows:

duration = tyee + 2

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 54

GGCandidateProtestTimer

switch type of timer do
case general computation

if any open clusters then
send DetermineOutgoingEdgeRequest for forwarding

(broadcast);
start DetermineOutgoingEdgesTimer;
else
| computeEdges();
end
nd
ase forwarding computation
if edge found then
‘ send FoundEdgesResponse (broadcast);
end
end
case exists outgoing edge general computation
if edge found then
| send OutgoingEdgeExistsResponse (no broadcast);

else
send ExistsOutgoingEdgeRequest for forwarding

(broadcast);
start LongEdgeExistsTimer;
end
nd
ase exists outgoing edge forwarding computation
if edge found then
‘ send FoundEdgesResponse (no broadcast);
end
end
endsw

o o

o o

e ProtestTimer
This timer is a contending timer, i.e. the node competes with other
nodes in the cluster for the right to answer the ReadyForProtestRe-
quest. This timer is started dependent on the node’s distance to the
requesting node:

) distancel oRequestingN ode
duration = * Umax
r

r is the maximum distance between two nodes in an UDG. This com-
putation ensures that the node nearest to the requesting node, of all
reachable nodes, answers first.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 55

ProtestTimer

send ProtestResponse (broadcast);

e EdgeExistsTimer
This timer is a contending timer, i.e. the node competes with other
nodes in the cluster for the right to answer the ExistsAnyEdgeRequest.
This timer is started dependent on the node’s distance to the request-
ing node:
distanceT oRequesting N ode

duration = * tmaz
r

r is the maximum distance between two nodes in an UDG. This com-
putation ensures that the node nearest to the requesting node, of all
reachable nodes, answers first.

EdgeExistsTimer

send EdgeExistsResponse (broadcast);

e LongEdgeExistsTimer

This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when a node starts the forwarding computa-
tion of a long edge Gabriel Graph neighbor. Since the timer used to
determine the node to forward the request (DetermineNearestNeighbor-
Timer), has a maximum duration of ¢,,,, and the time messages travel
has to be considered as well (one unit for each request and response),
the duration of the LongEdgeExistsTimer is computed as follows:

duration = tymaz + 2

If a cluster internal neighbor forwards the request in this time, the
initiating node has to suspend the timer:

duration = 3 * tyae + 6 + timeLeft

3 * tjmae + 6 is the amount of time it can take for a node to win the
contest to forward the request and to determine if it has a Gabriel
Graph neighbor in the destination cluster (3 requests, 3 responses
and 3 timers with a duration of at most t,,4;). timeLeft is the time
left for other nodes to forward the request if necessary.

LongEdgeExistsTimer

send OutgoingEdgeExistsResponse (no broadcast);

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 56

e ExistsAnyEdgeTimer

This timer is a structural timer, i.e. it is used to structure the course
of events. It is started when a node starts the computation of all
reachable directly adjacent clusters. Since the timer used to determine
whether a node will send a EdgeExistsResponse (EdgeExistsTimer), has
a maximum duration of ¢, and the time messages travel has to be
considered as well (one unit for each request and response), the du-
ration of the ExistsAnyEdgeTimer is computed as follows:

duration = tyee + 2

When the node is waiting for the results of forwarding the request
and a cluster internal neighbor forwards the request in this time, the
initiating node has to suspend the timer:

duration = tyae + 2 + timeLeft

tmaz + 2 is the amount of time it can take for a node to determine
whether it can reach a node in the destination clusters (1 request, 1
response and 1 timer with a duration of at most ¢,,,4,). timeLeft is
the time left for other nodes to forward the request if necessary.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 57

ExistsAnyEdgeTimer

if general computation then
if any clusters open then
send ExistsAnyEdgeRequest for forwarding(broadcast);
start ExistsAnyEdgeTimer;
else
‘ computelrregularIntersections();
end
end
else if waiting on forwarding during general computation then
‘ computelrregularIntersections();
end
else if general computation during forwarding computation then
if any clusters open then
send ExistsAnyEdgeRequest for forwarding(broadcast);
start ExistsAnyEdgeTimer;
else
| send IrregularIntersectionFoundResponse (no broadcast);
end

end
else if waiting on forwarding during forwarding computation then
‘ send IrregularIntersectionFoundResponse (no broadcast);
end
else if forwarding computation then
‘ send ReachableClustersResponse (broadcast);
end

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP)

58

computeEdges()

if any potential edges exist then
forall the potential edges do
switch edge type do
case short

case medium

| add edge to list of outgoing edges;
end
case long

| add edge to list of open long edges;
end

endsw
end
send ExistsAnyEdgeRequest (broadcast);
start ExistsAnyEdgeTimer;
else
‘ finish();
end

computelrregularIntersections()

forall the open long edges do
if forms irregqular intersection then
‘ remove edge from list of open long edges;
end
end
if any open long edges then

(no broadcast);
/1 no broadcast so forwarding is possible
else
determine clusters to check for implicit edges in the reverse
direction;
if clusters to check then
send ExistsLongEdgeOverMeRequest to each cluster on the
list (no broadcast);
/1 no broadcast so forwarding is possible
else
‘ finish();
end

end

send CheckForlIrregularIntersectionsRequest to each open cluster

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 59

finish()
if this started algorithm then
‘ finished;
else
| send OutgoingEdgesResponse to initial node (no broadcast);
end

4.3.5 Proofs

This subsection contains the proof of correctness for the algorithm described
above. The algorithm will be considered correct if the result is the same as
the one of the original algorithm. Let V' be an arbitrary but finite set of
nodes in the plane. Let U(V) be the corresponding unit disk graph. Let C
be an arbitrary but fixed cluster in U(V'). Let several sets of edges in the
aggregated Gabriel Graph H(G(V)) be defined as follows:

Computed with the original algorithm after Frey:

e F, set of outgoing edges of C'
o I, set of implicit edges in the same direction of C
e I, set of implicit edges in the reverse direction of C'
e R, set of removed long edges of C
Computed with the BCBP algorithm described in this section:
e E) set of outgoing edges of C
o [, set of implicit edges in the same direction of C
o I, set of implicit edges in the reverse direction of C
e Ry set of removed long edges of C

Gabriel Graph edges are always unambiguous, i.e. every algorithm will
always extract the same Gabriel Graph edges from an original graph.

Lemma 2. To show:
Anedge CD € H(G(V)) is in the set Ey, if and only if it is in the set E,.
Anedge CD € H(G(V)) is in the set E, if and only if it is in the set Ey,.

Proof. Anedge CD € H(G(V)) is in the set E if and only if it is in the set
E,.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 60

Let C'D be an edge of the set E. C'D can be a short, medium or long
edge. If it is a short or medium edge the same edge is in £, since those
edges are in both algorithms always added to E(C) without needing to
tulfill any further conditions besides being a Gabriel Graph edge. If it is a
long edge it was only added to Ej, if no irregular intersections were found
in the steps three and four of the algorithm. Step three eliminates all long
edges that the cluster itself can confirm as being part of an irregular in-
tersection, whereas step four checks for the remaining long edges whether
an irregular intersection might exist from the other side. If it had been re-
moved either the initiating cluster or the cluster of the endpoint of the long
edge would have to have an edge to the middle cluster. In this case the
edge would have been removed from E, as well.

Now we show: An edge CD € H(G(V)) is in the set E, if and only if it
is in the set Ej,.

Let C'D be an edge of the set E,. C'D can be a short, medium or long
edge. If it is a short or medium edge the same edge is in Ej since those
edges are in both algorithms always added to E(C) without needing to
fulfill any further conditions besides being a Gabriel Graph edge. If it is a
long edge it was only added to E, if no irregular intersections were found
in the first step of the original algorithm. This step checks whether a cluster
D, that lies between C' and E (endpoints of long edge), exists and if it can
be reached by either of the endpoints. If this is the case an irregular inter-
section exists. If it had been removed either C or E had to have an edge to
D. In this case the edge would have been removed from Ej, as well. O

Lemma 3. To show:
Anedge CD € H(G(V)) is in the set I, if and only if it is in the set .
Anedge CD € H(G(V)) is in the set I, if and only if it is in the set Ig,.

Proof. Anedge CD € H(G(V)) is in the set I if and only if it is in the set
Iso.

Let C'D be an edge of the set Iy. For the edge to be added to this set,
there has to exist another cluster E to which C has the long edge C'E, and
which in turn has a short edge to D (ED), while C has no direct connec-
tion to D. Otherwise step 4 of the BCBP algorithm would not have been
executed and the edge therefore not been added. For this constellation of
clusters the original algorithm would have done the same. In the first step
it is checked whether a cluster D exists between C' and E that might be
reached by either of the clusters. If this is the case and C can’t reach D the
edge C'D is added to .

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 61

Now we show: An edge CD € H(G(V)) is in the set I, if and only if it
is in the set I,

Let C'D be an edge of the set I,,. For the edge to be added to this set,
there has to exist another cluster ' to which C has the long edge C'F, and
which in turn has a short edge to D (£ D), while C has no direct connection
to D. Otherwise the edge would not have been considered for addition to
this set, in the first step of the algorithm. For this constellation of clusters
the BCBP algorithm would have done the same. In step 4 it is checked for
all remaining long edges whether the end points of those edges can reach
the cluster in the middle (D). If this is the case the edge C'D is added to
L. 0

Lemma 4. To show:
Anedge CD € H(G(V)) is in the set Iy, if and only if it is in the set I,,.
Anedge CD € H(G(V)) is in the set I, if and only if it is in the set I,.

Proof. Anedge CD € H(G(V)) is in the set I,; if and only if it is in the set
Ipo.

Let C'D be an edge of the set I,,. For the edge to be added to this set,
there has to exist another cluster E to which C has the short edge C'E, and
which in turn has a long edge to D (£D), while C' has no direct connec-
tion to D. Otherwise step 5 of the BCBP algorithm would not have been
executed and the edge therefore not been added. For this constellation of
clusters the original algorithm would have done the same. In the second
step it is checked for all removed long edges C'E whether a cluster D exists
between C' and E that cannot be reached by C. If this is the case, the edge
CD is added to I,,.

Now we show: An edge CD € H(G(V)) is in the set I,, if and only if it
is in the set 1.

Let C'D be an edge of the set I,,. For the edge to be added to this set,
there has to exist another cluster £ to which C has the short edge C'E, and
which in turn has a long edge to D (E D), while C has no direct connection
to D. Otherwise the edge would not have been considered for addition to
this set, in the second step of the algorithm. For this constellation of clusters
the BCBP algorithm would have done the same. In step 5 it is checked for
all clusters D opposite of those C' can’t reach, whether they have a the long
edge ED. If this is the case the edge C'D is added to I,;. O

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 62

Lemma 5. To show:
Anedge CD € H(G(V)) is in the set Ry, if and only if it is in the set R,,.
Anedge CD € H(G(V)) is in the set R, if and only if it is in the set Ry,

Proof. Anedge CD € H(G(V)) is in the set Ry, if and only if it is in the set
R,.

Let CD be an edge of the set R;,. For the edge to be added to this set, it
had to have been removed either in step 3 or step 4 of the BCBP algorithm.
In step 3 it would have been removed because C has a short edge to cluster
E, which lies in the middle of C'D, as well. In step 4, D would have to have
had the edge DE, for the edge C'D to be removed. In summary: either C
or D had to have had another edge to E (or both). In this case the original
algorithm would have added the edge C'D to R, as well, in the first step.

Now we show: An edge CD € H(G(V)) is in the set R, if and only if it
is in the set Ry.

Let CD be an edge of the set R,. For the edge to be added to this set,
either C' or E had to have had another edge to a cluster £ that lies in the
middle of the edge CD. If C had another edge to cluster £ the edge CD
would have been removed in step 3 of the BCBP algorithm. If D had an-
other edge to cluster E the edge CD would have been removed in step 4 of
the BCBP algorithm. In both cases C'D would have been added to R,. [

Theorem 2. The results of the BCBP algorithm and the beaconless version of that
algorithm are the same.

Proof. From lemmas 2, 3, 4 and 5 it follows that all four result sets are the
same for both algorithms. Therefore the overall end result is the same as
well. =

Concerning termination it can be said, that the algorithm always ter-
minates. The initiating node either waits for a timer with a finite duration
to expire or for an answer from a specified number of clusters, to start the
next step of the computation. Since answers are sent when a timer with a
finite duration expires, every step of the algorithm terminates. Termination
of the whole algorithm follows from that.

4.3.6 Optimizations

This section contains optimizations for the BCBP algorithm.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 63

4.3.6.1 Combining of messages

For the computation of irregular intersections it is necessary to know, whe-
ther a cluster has any edge (not necessarily a Gabriel Graph edge) to neigh-
boring clusters. In the algorithm described in Section 4.3.1 the computation
of the Gabriel Graph edges and the computation whether any edge exists
is done in two different steps. Those steps can be combined. If a cluster
receives a GGCandidateResponse that automatically means it has an edge to
that cluster. Independent of the fact whether the Gariel graph candidate is
a true or a false candidate. Nodes who usually would not answer due to
another node answering first directly send an EdgeExistsResponse if no other
node of their cluster has already done so. In the worst case scenario (every
directly neighboring cluster can only be reached over a different internal
cluster neighbor) this saves up to 20 messages. In the best case scenario
(the clusterhead can reach all directly neighboring clusters itself) it saves 7
messages.

4.3.6.2 Gabriel Graph candidate

In the original BFP algorithm a node does not answer a SearchForGGCandi-
dateRequest if another node that lies in the proximity region answers first.
Since the BFP algorithm was adapted to cluster basis for the BCBP algo-
rithm, and nodes in the requesting cluster do not participate in the selec-
tion process, this can lead to a lot of protests from nodes of the requesting
cluster. To reduce the number of false candidates a Gabriel Graph candi-
date node could not only take the nodes into account that answered before
him, but also all other nodes it ever received a request from. This reduces
the message load with increasing numbers of nodes per cluster.

4.3.6.3 Protest prediction

With a rising number of nodes per cluster the probability that no node
protests against Gabriel Graph candidates in not directly neighboring clus-
ters, decreases. If a node can predict that there will be a protest against any
possible Gabriel Graph candidate from a specific cluster, it does not need
to send a request to that cluster. This saves the request message as well as a
candidate and a protest message. Furthermore it can enable some nodes to
not send any message at all during the computation of the outgoing edges.
In most cases every node of the requesting cluster would send a message
at least once, when no edge to a cluster can be found.

The following criterion can be used to utilize that optimization:

1. A node determines which three corners of the destination cluster are
nearest to it.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 64

destination cluster

Figure 4.6: A node and the three proximity regions necessary to detect an unavoid-
able protest

2. The node computes the proximity regions between itself and those
edges.

3. If at least one node lies in the overlapping section of all three proxim-
ity regions there is no Gabriel Graph edge to the destination cluster.

Figure 4.6 shows a node and all three proximity regions. If a node lies in
the hatched zone a protest will be unavoidable.

4.3.7 Adaptation for QUDG

For the BCBP algorithm to be applicable for QUDGs the following prob-
lems have to be addressed:

1. BFP algorithm has to be adapted for QUDGs
2. overlong edges have to be considered

In [1] is explained why Gabriel Graph construction is not inheritable appli-
cable to QUDGs. Even though all wrong edges can be removed with 2-hop

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 65

Figure 4.7: Proximity region between nodes u and v in an QUDG

information, it could lead to disconnected graphs. A proposed solution is
the inclusion of virtual edges. Summarized the problems of Gabriel Graph
construction for QUDGs are the following:

¢ a node w lying inside the proximity region between a node v and a
node v could be detectable by one but not the other (every node is

however always detectable by at least either v or v if %)

e removing the edge uv without replacement can lead to disconnection

Figure 4.7 shows the possible areas inside the proximity region between u
and v where another node w might be. Nodes lying in Z; (area that lies in
the range of 7, of both u and v) do not have to be considered separately
since they are reachable by v as well as u. For them the BFP algorithm
works as it is. For nodes lying in Z5 (area that lies in the range of 7, of u
but only in the range of 7,4, of v) and Z3 (area that lies in the range of 7,,;,,
of v but only in the range of 7,4, of u) the following three situations can
arise (assuming v wants to know its Gabriel Graph neighbors):

1. Anode w in Z, is not reachable by v. It does not answer v’s request.

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 66

Since v did not send a response u responds although it is not a Gabriel
Graph neighbor of v.

2. A node w in Z3 is not reachable by u. U does not hear w response
and responds as well. W doesn’t notice and therefore does not add u
to its protest list.

3. Anode w in Z; is not reachable by v. Node u does not answer because
another node k, answered first. W is not known to any of the nodes,
but could be a Gabriel Graph neighbor along a virtual edge through
u.

To resolve the first situation, every node that hears a response to a request it
did not hear, but lies in the proximity region, has to send a protest message
to the responding node (w sends protest message to u). The responding
node than protests against itself when asked, indicating the reason why (u
tells v that w exists). To resolve the second situation, node u has to send
a list of the candidates with the request for protests message. Every node
noticing that it lies in the proximity region of one of those candidates and
v, sends a protest message to v (w sends protest message to v). Both se-
quences of events can be optimized to avoid double responses. With those
alterations in place the algorithm does not classify a wrong edge as Gabriel
Graph edge. The resulting graph may however, still be disconnected. To
avoid that, a third step, in which possible Gabriel Graph neighbors along
virtual edges are investigated, has to be added to the BFP algorithm. Since
node v knows all possible Gabriel Graph neighbors along virtual edges
through protests from other nodes (or at least those in respect of which
other edges had to be removed therefore causing possible disconnection),
it can request of those candidates to check if they could be Gabriel Graph
neighbors. Every node overhearing the request sent from v checks whether
it would lie in the proximity region between v and one of those candidates
and protests if necessary. The candidate nodes, if they do not already know
different, send out a request as well, for every node lying in the proximity
region to protest. Those protest messages are then routed over u to v. After
that v knows all its Gabriel Graph neighbors. Situation three of the situ-
ations above does not need to be considered further, since in that case no
disconnection is caused (no edge got removed because of w).

To integrate overlong edges into the BCBP algorithm, the only change nec-
essary is to add them to the list of outgoing edges. Since they do not cause
other irregular intersections than those with long edges, which are already
covered through the existing algorithm, they do not cause any further prob-
lems. It has however, to be proven that an overlay graph based upon a
Gabriel Graph of an QUDG is always planar. Analogous to the proof for
UDGs the following would have to be proven:

For every possible intersection in an QUDG (as shown in Figure 3.5) it is

4.3. BEACONLESS CLUSTER BASED PLANARIZATION (BCBP) 67

not possible that it still exists after the Gabriel Graph construction.

Chapter 5

Evaluation

To evaluate the efficiency of the BCBP algorithm it was simulated with the
simulation framework Sinalgo !. This chapter contains an explanation of
the setup of the simulation and the results are presented. Since the beacon-
less version of the LLRAP algorithm could not be proven to work correctly,
this chapter will focus on the BCBP algorithm.

5.1 Simulation Setup

This section contains a basic description of the simulation set up as well as
a list of all metrics used to evaluate the algorithm.

51.1 Setup

In general the simulation consists of a number of rounds of simulations for
different node densities. The average node density is measured by

nodeDens * dimX x dimY
I * udr?

, which computes the number of nodes to randomly distribute onto the
plane. The execution of the simulation is controlled by a perl script, which
is based upon the perl script used in [17] and only differs in the number of
data lines and the used command line parameter from it. The script makes

!Sinalgo [12] is a framework developed to simulate networks of mobile sensor nodes.
Its written in JAVA and can be easily integrated into the eclispe IDE. The main purpose
of Sinalgo is the simulating/testing of newly developed algorithms without having to have
the otherwise required hardware at hand. A further advantage is the fact, that logical errors
in the algorithm can be detected without the effort a real life test environment would take.
Sinalgo offers models for all kinds of scenarios. For example the communication can be
synchronous or asynchronous, the nodes can be mobile or not and the connections between
nodes may be stable or not. Different algorithms are usually located in different projects.
Furthermore Sinalgo offers a batch mode for simulations.

68

5.1. SIMULATION SETUP 69

it possible to start a specific number of simulations for different node den-
sities. Since the spanning ratio, amongst other things, is being measured,
it proved to be useful to generate random connected graphs for each node
density in advance. Otherwise simulation time increased greatly. For each
node density a new file is generated. In each simulation round a random
node in one of the middle clusters is chosen to start the algorithm. For the
computation of the spanning ratio, in each non empty cluster one node is
chosen to start the algorithm, since for that an overall view of the overlay
graph is necessary. After the simulation finishes the results are added to
the specific file. When all simulations for one node density have been exe-
cuted the script computes average values and confidence intervals. Those
results are written to a summary file. The simulations were executed with
the following configuration parameters:

e conModel = UDG
The connectivity model is used to decided whether the graph is mod-
eled as an UDG or an QUDG.

e nodeDensMin = 4
The minimal node density to be simulated.

e nodeDensMax = 14
The maximal node density to be simulated.

e rounds = 500
The number of simulations to be started per node density.

o dimX =354
The width of the plane the nodes are randomly distributed on.

e dimY =354
The height of the plane the nodes are randomly distributed on.

e udr =50
The unit disk radius of a node.

® tmar = 100
The maximum amount of time a timer can be initially set to, when
contending for the right to answer a request.

Additionally simulations for node densities 20, 25, 30, 35 and 40 were exe-
cuted.

5.1.2 Metrics

The following data was collected from the simulations:

5.1. SIMULATION SETUP 70

e time [number of rounds]
Sinalgo simulates the time as a number of rounds. With the syn-
chronous communication model this means sending a message takes
one round and timers wait the specified number of rounds. In each
round each node is active exactly once (several actions can be exe-
cuted when a node is active). In the simulation the number of rounds
the algorithm needed to run to completion was measured.

e number of messages
Each message any node sent during the course of the simulation of
the algorithm was counted.

e number of one hop neighbors
The number of one hop neighbors of the initiating node, i.e. all nodes
the initiating node can reach directly, was determined.

e number of two hop neighbors
The number of two hop neighbors of the initiating node, i.e. all nodes
the initiating node can reach over a one hop neighbor, was deter-
mined.

e number of cluster internal neighbors
For the number of cluster internal neighbors each node in the same
cluster as the initiating node was counted. The initiating node is not
included in this number.

e number of non used cluster internal neighbors
Every cluster internal neighbor which did not send any message dur-
ing the course of the simulation of the algorithm was counted.

e number of edges
The number of outgoing cluster edges the initiating node computed.
This number includes all types of edges.

e number of implicit edges
The number of implicit edges in the same or reverse direction that
were computed during the course of the simulation of the algorithm.

e number of removed long edges
Alllong edges that have been removed due to them forming an irreg-
ular intersection with another edge. This number is used to infer the
number of irregular intersections.

e spanning ratio
The euclidean spanning ratio of the overlay graph computed by BCBP
algorithm.

5.2. RESULTS 71

¢ hop spanning ratio
The hop spanning ratio of the overlay graph computed by BCBP al-
gorithm.

As benchmark for the number of messages that need to be sent an es-
timated lower bound of sent messages of the algorithm with beaconing is
used. It is assumed that all nodes in the 2-hop-neighborhood have to send
at least two messages in the algorithm with beaconing. One to announce
their own position and one to announce the outgoing edges they found.
Since in reality more messages than that are sent due to the ongoing bea-
coning, it is a lower bound.

5.2 Results

This section contains the results from the simulation. The implemented
version of the algorithm includes the improvements mentioned in Section
4.3.6. In general all curves are plotted with an 95% confidence interval.
Since the main goal of using beaconless algorithms is the reduction of the
number of sent messages, Figure 5.1 shows the numbers of sent messages
of the beaconless algorithm in comparison to the estimated lower bound of
sent messages of the algorithm with beaconing. As can be seen in Figure
5.1, while both algorithms roughly have to use the same number of mes-
sages for node densities four and five (about 20), as of node density six the
beaconless algorithm is the more efficient one. For a node density of 14 the
beaconless algorithm only has to use about 30 messages whereas the algo-
rithm with beaconing needs about 80 messages. That is a relative difference
of 37,5%. The higher the node density the greater is the difference between
the two curves, i.e the higher is the relative difference of messages that
need to be sent. For a node density of 40 the relative difference amounts
to roughly 70%. In conclusion: the more nodes are on the plane the more
efficient the beaconless algorithm is in comparison to the algorithm with
beaconing.

Figure 5.2 shows the number of active nodes in comparison to all nodes
in the 2-hop-neighborhood. A node is considered active if it sent at least
one message during the course of the computation. For the algorithm with
beaconing all nodes in the 2-hop-neighborhood would have been active.
Right from the start the beaconless algorithm does not use all nodes in the
2-hop neighborhood (c.a. 6 of 10). With increasing node density the dif-
ference between the two curves grows. Both curves increase linear with
the node density. This means although the average absolute number of ac-
tive nodes increases with the node density from about 5 to about 35 (more
nodes have to protest), the relative number of active nodes actually de-
creases. This is represented through the third curve (green). Whereas for
node density 4 about 60% of the nodes in the two-hop neighborhood have

5.2. RESULTS 72

Comparison of all sent messages of the beaconless algorithm to the estimated lower bound number
of sent messages of the non beaconless algorithm. 500 Simulation runs per density.

300 T T T T T T T T T T T

T T T T T T
beaconless algorithm +——+—
algorithm with beacons +——<—

250

200

150

Avg. # messages

100

50

ot e

i

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Avg. node density

Figure 5.1: Comparison between the number of sent messages between the bea-
conless and the original algorithm

to send a message in the beaconless algorithm, this number decreases until
for node density 40 only about 28% of the nodes in the two hop neighbor-
hood are active. This is explained by the fact that with increasing node
density there are more nodes per cluster. Since in the best case scenario
only one node of each cluster has to answer, more nodes can be inactive.
The relative number of nodes that are inactive decreases more slowly with
increasing node density. For even higher node densities the relative num-
ber of inactive nodes may approach a constant value.

Inactive nodes in the cluster of the initiating node are not as frequent.
Figure 5.3 shows the number of inactive nodes in the cluster of the initiat-
ing node in comparison to all internal cluster neighbors. As can be seen,
not until node density 14 are there any noteworthy numbers of inactive in-
ternal cluster neighbors. Up to this point the number of inactive internal
cluster neighbors is about 0. Even then there is not even one inactive inter-
nal cluster neighbor per simulation on average. On the other hand it can
be noticed that the number of inactive internal cluster neighbors increases
with the node density (from about 0 with node density 4 to about 0,25 with
node density 40), so in even higher node densities the number of inactive
internal cluster neighbors might increase considerably. The reason behind
this phenomenon is the fact, that due to the nature of the algorithm every
node in a cluster might try to reach a more distant cluster although every

5.2. RESULTS 73

Active nodes in contrast to a 2-hop neighborhood. 500 Simulation runs per density.

140 T T T T T T T T T T T T T T T T T
\ 2-hop-neighborhood +——+—
\ active nodes
X % of active nodes
120 F \
100 | N
N P 1oy
. / 3
0 A NV) c
8 8o} ~__ s o
) / =
c T ©
* T ——] I
2 = 5
z 60f s X
/ g
>
<
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Avg. node density

Figure 5.2: Active nodes in comparison to all possible active nodes (1-hop and 2-
hop neighbors)

time the same node protests.

Figure 5.4 shows the average number of edges a cluster finds through
the algorithm. The higher the node density the more the curve approaches
the six edges mark. This can be explained by the fact that with higher node
densities clusters tend to have only short edges, but then all possible six
of them. In all simulations not even once an implicit edge in the same or
an implicit edge in the reverse direction was generated. Figure 5.5 displays
the number of irregular intersections (which would be responsible for those
edges) per node density. As can be seen irregular intersections occur very
seldom and with no kind of pattern. As of node density twenty they do not
occur at all. To show that the algorithm would have detected those edges
if they existed, Figure 5.6 shows an example output where an implicit edge
in the same direction as well as an implicit edge in the reverse direction
occurs. From node 1’s point of view the edge between its cluster and the
cluster of node 3 is an implicit edge in the same direction. From node 3's
point of view the same edge is an implicit edge in the reverse direction. As
the example shows, for an implicit edge to occur very specific conditions
have to be fulfilled. The probability that this is the case decreases with in-
creasing node density (the smaller the number of nodes on the plane the
higher the chance for an implicit edge to occur). The spanning ratio is one
of the key metrics used to measure the efficiency of a subgraph in compar-

5.2. RESULTS

74

number of nodes

Number of not used internal cluster neighbors in comparison to all internal cluster neighbors.
500 Simulation runs per density.

T T T T T T T T T T T T T T T T
all cluster internal neighbors ———
non used cluster internal neighbors +——<—

& N} ke L e ! Il Il Il Il

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

34 36 38 40
node density

Figure 5.3: Non used internal neighbors in comparison to all internal neighbors

Avg. # edges

Number of edges. 500 Simulation runs per density.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Avg. node density

Figure 5.4: Number of edges per node density

5.2. RESULTS

Avg. # irregular intersections

Number of irregular intersections. 500 Simulation runs per density.

0006 T ‘\‘ T T ‘V‘ T ‘\‘ T T T T T T T T T T T T T
[\ Il I\
I\ Nl
M AR
N
0.005 | ‘J \ || ‘J \ E
AU
[[-
[/I
REEER
0004 |+] 4 .
| | \
| ‘\ \‘ ‘\“ \\
| | | || \
| | | | \
(O
\
0003 | | | 8
\‘ “ | ‘H‘ \\
| | | \
| | | \l \
| | | i \\
o \
o002 {++ | [1 \ 4
| \
| \
| \\
| \
| \
\
0.001 - || i
|| \
|| \
\l \
\l \
| \
O 1 V 1 1 1 1 1 \ 1 1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Avg. node density

Figure 5.5: Irregular intersections per node density

Figure 5.6: Example of computed implicit edges

5.2. RESULTS 76

Spanning ratio. 500 Simulation runs per density.

30 T T T T T T T T T T T T T T T T T

Avg. spanning ratio
=
(6]
T
1

10 F A 4

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Avg. node density

Figure 5.7: Spanning ratio with confidence intervals

ison to the original graph. Figure 5.7 shows the Euclidean spanning ratio
of the beaconless algorithm for different node densities. As can be seen,
the Euclidean spanning ratio increases with the node density. Whereas the
Euclidean spanning ratio is about 4 for node density 4, it increases until
for node density 40 the Euclidean spanning ratio amounts to about 27. It
seems the algorithm is not any kind of k-spanner (with k being a constant
value), since for this the spanning ratio would have to be a constant value.
Although it could be that with even higher node densities the Euclidean
spanning ratio approaches a constant value, since the increase is not lin-
ear. The reason why the spanning ratio has such high values is displayed
in Figure 5.8. It can be the case, that two nodes lie very close together on
the plane (node 101 and node 37) but that they do not have a direct con-
nection in the overlay graph. In the example the clusterhead of node 37
already had a connection to the cluster of node 101 so that node 37 never
sought any connection to the other cluster. This results in node 37 having
to route a message first to its own clusterhead, which then sends it to its
connection in the other cluster (node 130), which in turn sends the mes-
sage to its destination (node 101). Obviously the euclidean distance of this
way is much greater than the direct distance in the original graph. Since
with increasing node density the probability of occurrence of such cases
increases as well, the spanning ratio increases with the node density. The
hop spanning ratio as displayed in Figure 5.9 increases as well with the

5.2. RESULTS

77

PARL

Figure 5.8: Example of a high spanning ratio

5.2. RESULTS 78

Hop spanning ratio. 500 Simulation runs per density.

Avg. hop spanning ratio
w
T
1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Avg. node density

Figure 5.9: Hop spanning ratio with confidence intervals

node density. In comparison to the euclidean spanning ratio it does not
increase as fast and seems to level off at six hops. The example in Figure
5.10 shows why six is the average hop spanning ratio. In the original graph
the nodes 116 and 67 could reach each other with one (direct) hop. Using
the overlay graph, node 116 has to send a message first to its own cluster-
head (node 361) which then sends it to the border of the neighboring cluster
(node 122). From there node 122 sends the message to node 512 which in
turn sends it to its clusterhead (node 40). The clusterhead has a direct con-
nection to the destination cluster (node 353). Within the destination cluster
the message has to be send one final time from node 353 to the destination
node 67.

5.2. RESULTS

79

P

Pk

230

pealt

Figure 5.10: Example of a high hop spanning ratio

Chapter 6

Conclusion

The goal of this master thesis was the development of an algorithm that
reactively constructs a planar overlay graph for UDGs. Since the first ap-
proach to developing such an algorithm, BLLRAP, was unsuccessful due to
unprovable continued connectivity, a second algorithm, BCBP, which could
be proven to work correctly, was developed. With the results of section 5.2
it can be said that the development of a reactive algorithm that reactively
constructs a planar overlay graph on UDGs was successful. The BCBP al-
gorithm is in simulations up to 70% more efficient concerning the number
of messages needed and the number of nodes involved, than the original
algorithm it is based upon. Furthermore the resulting overlay graph is pla-
nar (due to the nature of the algorithm), which was a key requirement. The
result of this thesis contributes to the effort to beaconlessly route messages
in a wireless sensor network. Although there are already many beaconless
algorithms for various aspects of routing messages in wireless sensor net-
works, none constructs reactively a planar overlay graph on UDGs. This
gap is now closed. The BCBP algorithm could for example be used in the
original routing algorithm after Frey, to determine the outgoing edges of
a cluster in a planar overlay graph, instead of the variant with beaconing.
The actual routing algorithm would not need to be altered, but would have
a more efficient basis than before. Other algorithms which use cluster based
planar overlay graphs on UDGs in any capacity might profit as well from
the BCBP algorithm.

The result of this master thesis offers various opportunities for improve-
ments. First of all the suggested extension of the algorithm for QUDGs
from section 4.3.7 could be proven and implemented for simulation. Since
the occurrence of long edges is already minimal, overlong edges may not
occur at all in reality. Furthermore the number of inactive internal clus-
ter neighbors could be increased by developing further predictions about
when a node is about to protest. Another approach could be to change the
computation of the various timers used, to see what kind of combination

80

81

of timers is the most efficient for this kind of algorithm. Most efficient in
the sense that the least number of messages have to be send and/or the
least number of nodes have to participate. To reduce the spanning ratio,
it could be computed various times with slightly shifted clusters so that
nearby nodes in different clusters won’t have such a huge impact on it.
This approach is called Grid shifting [15].

Appendix A

Message flow diagram of BCBP

82

inital node cluster head 1-hop neighbours

{other clusters)
determineDutgoingEdges i
going=ag SearchFurGGCandidate?
* - Saddae T
ReadyForProtest i _
- - - — - ————— | 1-hop neighbours
Protest (cluster internal)
- - i
determineputgoingEdges
B SearchForGGCandidates
_____ GGCandidate ~ = ™
- ReadyForProtest
""" brotast ~ = T ™
- - — = = = = = == - - - - - -
FoundEdges

add short and
medium edges

open long edges = BI_\} ExistsAnyEdge =

EdgeExists

ExidtsAnyEdge

ExistsAnyEdge

ReachableCluster

compute own
irregular
intersections

Figure A.1: Message flow of gg algorithm part 1

€8

cluster head

compute own
irregular
intersections

1-hep neighbours
{cluster internal)

1-hop neighbours
(open long edges)

cluster in the
middle

determine opposite
clusters of reachable
clusters

CheckForrregularint

IntersectionFou

-

ExistsAnyEdge

EdgeExists

1-hop neighbours
{cluster internal)

ExistsArlyEdge
oot

-

ReachableCluster

Figure A.2: Message flow of gg algorithm part 2

ExistsAnyEdge

¥8

initial node | | cluster head 1-hop neighbours

(cluster internal)

determine opposite
clusters of reachable
clusters

| opposite clusters |
| cluster head |
-
1-hop neighbours

- - L
ExistsOutgoingEdge (other clusters)

ExistsLongEdgeOverMe

—b_
SearchForGGCandidate

- - - - - - - - - 1-hop neighbours
GGCandidate (cluster internal)
ReadyForProtest
- - s

. . -
ExistsOutgoingEdge

T
SearchForGGCandidates

FoundEdges

OutgoingEdgeExists
e+ - - - ———-@---- - - _—— goingEdg
LongEdgeExists

OutgoingEdges

Figure A.3: Message flow of gg algorithm part 3

a8

Bibliography

(1]

[5]

[6]

Lali Barriére, Pierre Fraigniaud, Lata Narayanan, and Jaroslav Opa-
trny. Robust position-based routing in wireless ad hoc networks with
irregular transmission ranges. Wireless Communications and Mobile
Computing, 3(2):141-153, March 2003.

Prosenjit Bose, Pat Morin, Ivan Stojmenovi¢, and Jorge Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless networks. Wireless
networks, 7(6):609-616, 2001.

Nicolas Catusse, Victor Chepoi, and Yann Vaxes. Planar hop spanners
for unit disk graphs. In Algorithms for Sensor Systems, pages 16-30.
Springer, 2010.

Mohit Chawla, Nishith Goel, Kalai Kalaichelvan, Amiya Nayak, and
Ivan Stojmenovic. Beaconless position based routing with guaranteed
delivery for wireless ad-hoc and sensor networks. In Ad-Hoc Network-
ing, pages 61-70. Springer, 2006.

Jianer Chen, A. Jiang, Iyad A. Kanj, Ge Xia, and Fenghui Zhang. Sep-
arability and topology control of quasi unit disk graphs. Wireless Net-
works, 17(1):53-67, July 2010.

Hannes Frey. Geographical cluster based multihop ad hoc network
routing with guaranteed delivery. In Proceedings of the 2nd IEEE In-
ternational Conference on Mobile Adhoc and Sensor Systems Conference
(MASS), pages 510-519, Washington, D.C., US, 2005. IEEE.

Hannes Frey. Geographisches Routing: Grundlagen und Basisalgorithmen.
PhD thesis, University of Trier, 2006.

Hannes Frey and Daniel Gorgen. Geographical cluster based routing
in sensing-covered networks. In Distributed Computing Systems Work-
shops, 2005. 25th IEEE International Conference on, pages 885-891. IEEE,
2005.

Hannes Frey and Daniel Gorgen. Planar graph routing on geographi-
cal clusters. Ad Hoc Networks, 3(5):560-574, September 2005.

86

BIBLIOGRAPHY 87

[10] Holger Fiifiler, Jorg Widmer, Michael Kdsemann, Martin Mauve, and
Hannes Hartenstein. Beaconless position-based routing for mobile ad-
hoc networks. Ad Hoc Networks, 1:351-369, 2003.

[11] K Ruben Gabriel and Robert R Sokal. A new statistical approach to
geographic variation analysis. Systematic Biology, 18(3):259-278, 1969.

[12] Distributed Computing Group. Sinalgo, February 2015.
http://disco.ethz.ch/projects/sinalgo/index.html.

[13] Marc Heissenbiittel and Torsten Braun. A novel position-based and
beacon-less routing algorithm for mobile ad-hoc networks. In ASWN,
volume 3, pages 197-210. Citeseer, 2003.

[14] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass
routing on geometric networks. In in Proc. 11 th Canadian Conference on
Computational Geometry. Citeseer, 1999.

[15] Kevin M. Lillis, Sriram V. Pemmaraju, and Imran A. Pirwani. Topol-
ogy Control and Geographic Routing in Realistic Wireless Networks.
Ad Hoc & Sensor Wireless Networks, 6(3-4):265-297, 2008.

[16] Emi Mathews and Hannes Frey. A Localized Link Removal and Ad-
dition based Planarization Algorithm. In Proceedings of the 13th Inter-
national Conference on Distributed Computing and Networking (ICDCN),
pages 337-350, Berlin, Heidelberg, 2012. Springer-Verlag.

[17] Julian Mosen. Ein Reaktiver Algorithmus fiir Geografisches Cluster-
ing. Bachelor’s thesis, Universitdt Koblenz-Landau, 2014.

[18] David Peleg. Distributed Computing: A Locality-sensitive Approach. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

[19] Stefan Riithrup, H. Kalosha, Amiya Nayak, and Ivan Stojmenovi¢.
Message-Efficient Beaconless Georouting With Guaranteed Delivery
in Wireless Sensor, Ad Hoc, and Actuator Networks. IEEE/ACM Trans-
actions on Networking, 18(1):95-108, February 2010.

[20] S Son, B Blum, T He, and] Stankovic. Igf: A state-free robust com-
munication protocol for wireless sensor networks. Tec. Report Depart.
Comput. Sci. Univ. Virginia, 2003.

[21] Philip Sumesh. Scalable Location Management for Geographic Routing in
Mobile Ad hoc Networks by. PhD thesis, State University of New York
at Buffalo, 2005.

