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Abstract

Traditional Driver Assistance Systems (DAS) like for example Lane Departure Warning
Systems or the well known Electronic Stability Program have in common that their
system and software architecture is static. This means that neither the number and
topology of Electronic Control Units (ECUs) nor the presence and functionality of
software modules changes after the vehicles leave the factory. However, some future
DAS do face changes at runtime. This is true for example for truck and trailer DAS
as their hardware components and software entities are spread over both parts of the
combination. These new requirements can’t be faced by state-of-the-art approaches
of automotive software systems. Instead, a different technique of designing such Dis-
tributed Driver Assistance Systems (DDAS) needs to be developed.

The main contribution of this thesis is the development of a novel Software and Sys-
tem Architecture for dynamically changing DAS using the example of driving assistance
for truck and trailer. This architecture has to be able to autonomously detect and
handle changes within the topology. In order to do so, the system decides which degree
of assistance and which types of HMI can be offered every time a trailer is connected or
disconnected. Therefore an analysis of the available software and hardware components
as well as a determination of possible assistance functionality and a re-configuration of
the system take place. Such adaptation can be granted by the principles of Service-
oriented Architecture (SOA). In this architectural style all functionality is encapsulated
in self-contained units, so called Services. These Services offer the functionality through
well-defined interfaces whose behavior is described in contracts. Using these Services,
large scale applications can be build and adapted at runtime.

This thesis describes the research conducted in achieving the goals described by
introducing Service-oriented Architectures into the automotive domain. SOA deals with
the high degree of distribution, the demand for re-usability and the heterogeneity of
the needed components. It also applies automatic re-configuration in the event of a
system change. Instead of adapting one of the frameworks available to this scenario,
the main principles of Service-orientation are picked up and tailored. This leads to the
development of the Service-oriented Driver Assistance (SODA) framework, which imple-
ments the benefits of Service-orientation while ensuring compatibility and compliance
to automotive requirements, best-practices and standards.

Within this thesis several state-of-the-art Service-oriented frameworks are analyzed
and compared. Furthermore, the SODA framework as well as all its different aspects re-
garding the automotive software domain are described in detail. These aspects include a
well-defined Reference Model that introduces and relates terms and concepts and defines
an architectural blueprint. Furthermore, some of the modules of this blueprint such as
the re-configuration module and the Communication Model are presented in full detail.
In order to prove the compliance of the framework regarding state-of-the-art automotive
software systems, a development process respecting today’s best practices in automotive
design procedures as well as the integration of SODA into the AUTOSAR standard are
discussed. Finally, the SODA framework is used to build a full-scale demonstrator in
order to evaluate its performance and efficiency.



Kurzfassung

Klassische Fahrerassistenzsysteme (FAS) wie beispielsweise der Spurassistent oder das
weit verbreitete Elektronische Stabilitdtsprogramm basieren auf statischen System-
und Softwarearchitekturen. Dies bedeutet, dass weder die Anzahl oder Topologie der
Steuergerite noch das Vorhandensein oder die Funktionalitdt von Softwaremodulen
Anderungen zur Laufzeit unterliegen. Es existieren allerdings zukiinftige FAS, bei denen
solche Verénderungen eintreten kénnen. Hierzu gehoren beispielsweise Assistenzsysteme
fiir Fahrzeuge mit Anhénger da deren Steuergerdte und Softwaremodule iiber beide
Teile des Gespanns verteilt sind. Diese neue Herausforderung kann nicht durch Ansétze
die zum Stand der Technik gehoéren bewiltigt werden. Stattdessen muss ein neuar-
tiges Verfahren fiir das Design von solch verteilten Fahrerassistenzsystemen entwickelt
werden. Der zentrale wissenschaftliche Beitrag dieser Arbeit liegt in der Entwicklung
einer neuartigen Software- und Systemarchitektur fiir dynamisch verdnderliche FAS am
Beispiel der Assistenzsysteme fiir Fahrzeuge mit Anhénger. Diese Architektur muss in
der Lage sein, Verdnderungen in der Topologie eigenstindig zu erkennen und darauf
zu reagieren. Hierbei entscheidet das System welcher Grad der Assistenz und welche
Nutzerschnittstelle nach dem An- oder Abkoppeln eines Anhéngers angeboten werden
kann. Hierzu werden neben der verfiigharen Software und Hardware die ausfiihrbaren
Assistenzfunktionalitdten analysiert und eine entsprechende Re-Konfiguration durchge-
fiihrt. Eine solche Systemanpassung kann vorgenommen werden, indem man auf die
Prinzipien der Service-orientierten Architektur zuriickgreift. Hierbei wird alle vorhan-
dene Funktionalitdt in abgeschlossene Einheiten, so genannte Services gegossen. Diese
Services stellen ihre Funktionalitét iiber klar definierte Schnittstellen zur Verfiigung,
deren Verhalten durch so genannte Contracts beschrieben wird. Grofere Applikationen
werden zur Laufzeit durch den Zusammenschluss von mehreren solcher Services gebildet
und adaptiert.

Die Arbeit beschreibt die Forschung die geleistet wurde, um die oben genannten Ziele
durch den Einsatz von Service-orientierten Architekturen im automotiven Umfeld zu
erreichen. Hierbei wird dem hohen Grad an Verteilung, dem Wunsch nach Wiederver-
wendbarkeit sowie der Heterogenitét der einzelnen Komponenten durch den Einsatz der
Prinzipien einer SOA begegnet. Weiterhin fiihrt das Service-orientierte System eine
automatische Re-Konfiguration im Falle einer Systeménderung durch. Statt eines der
vorhandenen SOA Frameworks an die Verhéltnisse im automotiven Umfeld anzupassen
werden die einzelnen in SOA enthaltenen Prinzipien auf die Problemstellung angepasst.
Hierbei entsteht ein eigenstdndiges Framework namens "Service-oriented Driver Assis-
tance" (SODA) welches die Vorteile einer SOA mit den Anforderungen, bewéhrten Meth-
oden und Standards vereint. Im Rahmen dieser Arbeit werden verschiedene SOA Frame-
works analysiert und miteinander vergleichen. Auferdem wird das SODA Framework
sowie dessen Anpassungen beziiglich automotiver Systeme detailliert beschrieben. Hi-
erzu zahlt auch ein Referenzmodell, welches die Begrifflichkeiten und Konzepte einfiihrt
und zueinander in Beziehung setzt sowie eine Referenzarchitektur definiert. Einige der
Module dieser Referenzarchitektur wie beispielsweise das Re-Konfigurations- und das
Kommunikationsmodul werden sehr detailiert in eigenen Kapiteln beschrieben. Um
die Kompatibilitdt des Frameworks sicherzustellen wird die Integration in einen be-
wahrten Entwicklungsprozess sowie in den Architekturstandard AUTOSAR diskutiert.
Abschlieffend wird der Aufbau eines Demonstrators und dessen Evaluation beziiglich der
Leistungsfahigkeit und Effizienz des Frameworks beschrieben.
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1 Introduction

A magic dwells in each beginning’

Hermann Hessel!

1.1 Software and System Architectures in state-of-the-art
Driver Assistance Systems

Driver Assistance Systems, often abbreviated DAS, have become an important domain
within automotive technology in recent years. These systems assist the operator of a
vehicle in various situations. For example, systems like the Adaptive Cruise Control
(ACC) control the distance to the car ahead which brings some relieve to the driver es-
pecially in long distance traveling. Other DAS like a parking assistance system support
the driver in a situation that a lot of people are uncomfortable with.

The rise of DAS is one of many reasons for the increase in electronic devices within a
car. In 1990 the share of electronic elements of the added value of an automobile was at
about 16%. In 2011 this share was already at about 30% to 40%. Furthermore, experts
say that about 80% of the innovations made in premium cars are driven by electronics
and computer science (see [149]). The German Association for Electrical, Electronic and
Information Technologies (VDE) states that the number of Electronic Control Units
(ECU) increased to about 70 devices in a single car ([135]).

Subsystem
Drive Train

Chassis

Subsystem
Body

———— e

Subsysre
Mul, nmedta
Vehicle

Figure 1.1: The domains of the electronic system of a modern vehicle [117].

With the increasing complexity of the electronic system of a vehicle, developers
have started to divide the overall system into several subsystems. Figure |1.1/ shows a
typical division of the system into four subsystems. The drive train division includes
all electronics that are directly interacting with components like engine or gear box.
The chassis subsystem influences the driving characteristics by controlling the param-
eters of for example suspensions. However, this division also includes electronically
controlled steering systems and safety relevant assistance systems like the Electronic
Stability Program (ESP) or the Anti-lock Braking System (ABS). The body domain

'From the poem "Steps", see [68]
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1 Introduction

includes a lot of comfort functionality. This includes systems like the central locking
system, motorized mirror adjusters or the adaptive bend lighting system. Finally, all
infotainment and media applications are grouped into the multimedia subsystem. The
information exchange between these domains is usually done by using gateway ECUs.
These gateways do not only transfer information from one subsystem to another but
also between the different communication technologies used.

1.1.1 Today’s Software and System Architecture for Driver Assistance
Systems

Besides the technical realization of electronic systems as described in section 1.1 today’s
Driver Assistance Systems can be described using an abstract generic model. This
model is presented in Figure 1.2. The model is constituted by five components. The
first one is the sensors component. Behind this abstraction several potentially combined
sensor-systems determine the state of the vehicle. The quantities measured vary and
are tailored to the characteristics needed for the specific DAS. For example, a system
helping the driver to keep the vehicle on track (often called Lane Departure Warning
System, LDWS) needs to measure two quantities: the course of the road ahead and
the current position of the car relatively to this track. In order to do so, most cars use
camera systems that observe the road ahead. The pictures created by these cameras are
then analyzed by specialized computer vision algorithms that detect the two quantities
defined earlier. The generated information is then transferred to the logical core of the
assistance system. This part of a DAS is in charge of executing the actual functionality
requested by the driver. Coming back to the LDWS example, this piece of software
implements an algorithm that tracks the position of the car on the lane and creates
a warning signal whenever it is about to leave the track. The warning signal is then
transferred to the third part of the generic model, the human machine interface (HMI).
This part of an informing assistance system is building the connection between the DAS
and the driver. It may interact with the vehicle operator using any of the three major
modalities namely the vision, audition or tactition modality. In LDWS implementations
the HMI is often based on either the audition or the tactition modality. In the former
case acoustic alerts are generated and emitted. In the latter case vibration motors
attached to either the driver’s seat or the steering wheel inform the driver that he is
about to leave the track. Those three components of an informing DAS are influencing
two more external components. The first of them is the driver itself. He is stimulated by
the HMI of the DAS to conduct proper actions in order to react on the current state of
the car. In the LDWS example the acoustic alert may draw the attention of the driver
to the fact that he is about to leave the road which allows him to make appropriate
course corrections by turning the steering wheel. These actions undertaken by the car
operator are directly influencing the vehicle, which is the last component of the generic
model. And since the state of the vehicle is observed by the sensor component, this
element closes the generic loop of informing DAS.

1.1.2 Automotive network systems

As explained earlier, the numerous ECUs of a car’s electronic system are connected
using different networking technologies. All of them have been developed in recent
years by the automotive industry to fit specific purposes. The first one introduced is
the Controller Area Network (CAN). The development of this network is a response to
the increase of electronic systems in the 1980s. This increase led to wiring harnesses
with growing length, weight and complexity through to the fact that each of these
ECUs had to be connected through parallel interfaces. CAN simplified these wiring

12
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Driver Assistance System

Logic of the
assistance
system

N

Vehicle |« Driver

Figure 1.2: The generic loop of informing Driver Assistance Systems (bases on [29)])

harnesses by introducing a serial bus system based on simple twisted pair cables. It
is a low cost system which provides electric robustness by using a differential signal
on the physical layer. It is message-oriented and is restricted to broadcast messaging.
The network realizes a prioritized medium access arbitration mechanism based on the
identifier of each message. Furthermore, it features error- detection and containment
mechanisms. Consequently, although it was originally designed for cars, it soon became
widely popular in other domains of distributed embedded control systems, like factory
automation, robotics or medical equipment. The CAN specification is restricted to
the lower two layers of the ISO/OSI communication reference model. However, several
protocols extended this definitions to upper layers like CANopen, the time-triggered
network TTCAN or the diagnostics protocol UDS. Despite the fact that the Controller
Area Network is almost 30 years old, it is still the most used system in today’s cars.
It is used in many subsystems like the drive train, chassis and body. To handle the
bandwith limitation and to reduce the complexity of network planing, modern vehicles
often feature several independent CAN networks that are interconnected using gateways.

While CAN is a very flexible network system it needs specific controllers and
transceivers to be mounted on each participating ECU. During the 1990s the automo-
tive industry faced another problem. Besides the fact, that CAN is technically able to be
used also for low performance scenarios like the link between motorized mirror adjusters
and the switches controlling them, the costs are too high. To face this problem, the
Local Interconnect Network (LIN) was developed. It is a master-slave network that uses
a simple single-wire connection. Furthermore, it does not need a distinct controller as
it can be implemented using the Universal Asynchronous Receiver Transmitter (UART)
interface that is integrated in most of the microcomputers on the market. This cheap
and simple network system does only provide a bandwith of 20 KBit/s and is restricted
to only 16 slave nodes. However, it is the perfect fit for many comfort applications in
the body subsystem. Thus it is often used as a sub-network connected to a larger CAN
using a gateway approach.

At about the same time when LIN was developed, another automotive network system
was brought on its way to the market. While LIN was targeting on small, low-bandwith
networks, the Media Oriented Systems Transport (MOST) technology was build to
provide enough bandwith to allow audio and video streaming. Targeting the emerging
multimedia systems MOST serves a segment where neither CAN nor LIN could be used.
In most cases, it is build in a ring topology where it connects units like audio and video
players, CD changers or amplifiers. It makes use of a synchronous messaging pattern.

13
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One of the greatest disadvantages in early years was the fact that MOST used plastic
optical fibers (POF) to guarantee the bandwith and avoid electromagnetic interference.
This circumstance resulted in high prices for this system and in complications in the
design of the wiring harnesses through to the rather large bending radii of the POF.
This issue was partly eliminated in later versions of MOST which introduced electrical
physical layers as well.

Another automotive network communications protocol to be mentioned here is called
FlexRay. It supports data rates of up to 10 MBit/s and allows real-time communi-
cation. It was initially developed to interconnect time-dependable systems like ESP
or ABS. It is highly flexible since the developers can vary the ratio between time-
triggered and competition-based messaging as well as the level of fault-tolerance by
using the second channel provided either for redundancy or as an independent channel
to double the bandwith. Today, it is mostly used as a high-bandwith alternative to CAN.

Currently, another networking technology is on its way to hit the automotive market.
Ethernet, that has a long history in office communications, is being adapted to the
automotive environment. It is a promising candidate as experts predict cost reduction
through to the fact that many techniques and mechanisms can be adopted from other
domains of usage. Currently, it is planned to be used as a diagnosis network or to
connect video-based assistance systems. In the future it may be used as a central
backbone interconnecting the different network systems in the car. For all of these
scenarios protocols are being developed or adopted at the moment. For example, it
is planned to use Audio Video Bridging (AVB) for connecting video-based systems to
one another (see |116]). In order to face the harsh electromagnetic environments in
a vehicle, the physical layer used must be much more robust than the one used in
office communication. Therefore, BroadR-Reach has been chosen. It uses Quadrature
Amplitude Modulation to provide full duplex communications at up to 100MBit /s using
single-pair cabling. However, Ethernet is still a future system not yet disseminated
widely on the market. Furthermore it is quite questionable if it will completely replace
all other automotive network systems in future vehicles.

1.1.3 AUTOSAR

A very important development in the history of automotive software systems was
the establishment of the AUTomotive Open System ARchitecture (AUTOSAR). The
AUTOSAR consortium which is the organizational backbone of the standard has been
founded in 2002 by some major German car manufacturers and suppliers. Over the
years, this alliance has attracted many companies of the automotive domain from all
over the world leading to a total number of more than 150 members organized in four
different groups (see [130]). The latest release of the AUTOSAR specification is version
4.1 and dates from March 2013.

AUTOSAR aims at simplifying and shortening the development of automotive
software systems. Therefore, it introduced a layered architecture that supports the ex-
changeability and re-usability of software components as well as the usage of off-the-shelf
modules by specifying dedicated interfaces. It also describes a methodology in order
to harmonize the development processes between the manufacturer and its suppliers.
The ultimate goal of all AUTOSAR activities is to achieve "[...] a high reliability of the
overall system with significant cost and capacity benefits" [130].

Today, the AUTOSAR architecture as well as the associated development procedure
are a de-facto standard in the automotive domain. It undergoes continuous development

14



1 Introduction

to integrate upcoming technologies and approaches.

1.1.4 Coordination of development processes

Developing a modern car is a complex and very challenging mission. It is character-
ized by the high demands set up by a high tech industry and a high cost pressure.
Furthermore, cars have to provide a high level of dependability, availability, safety and
security (see [117]). These requirements are accompanied by various configurations. For
example, the second generation of the Renault Trafic van, built between 2001 and 2014,
features about 10?! variations (|10]). To face all these requirements the development
process is characterized by the divide and conquer principle: the overall vehicle is divided
into subsystems and components. This is usually done using the V-model. The divided
system is than developed in parallel by different divisions of the car manufacturer as
well as its suppliers and sub-suppliers. In the later steps of the development process,
the components are integrated into the subsystems which are then integrated into the
overall vehicle.

All of these processes are supervised by the car manufacturer (often called OEM). The
OEM is responsible for the functioning of the overall system and the seamless integration
of all subsystems. In other words, the OEM acts as a central integration instance, being
the only participant in the development process that has the full overview of the vehicle.

1.2 Attributes of Distributed Driver Assistance Systems
(DDAS)

Most of the Driver Assistance Systems installed onto today’s cars can be determined as
static in their system and software architecture. This means, that neither the system
configuration, by means of the number or topology of the ECUs, nor the appearance
or functionality of software modules does change at runtime. As an example, the Lane
Departure Warning System described in the former sections of this chapter may consist
of a couple of different hardware and software entities. However, all of them are installed
and configured at the factory. There is no extra ECU coupled into the system at runtime.
Neither is any of the installed hardware units removed while the system runs. The only
possible change on the software side is a software update. These updates are typically
installed by completely re-flashing an ECU during workshop service. The changes done
can be characterized as following;:

e The changes to the system are carried out by an especially trained workshop em-
ployee.

e The changes to the system are planned, implemented and verified by the manu-
facturing company.

e The changes to the system are executed in a controlled environment which allows
to check and if required to fix the changed system.

e The changes to the system are rather rare.
e The changes to the system are done while the vehicle is parked.

However, some future Driver Assistance Systems may undergo dynamic changes of the
system and software architecture at runtime. Examples of such systems are:

e Systems incorporating nomadic devices.
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e Systems using specialized equipment that can be added and removed to the vehicle,
especially in the domain of commercial vehicles (agricultural, forestry ,etc.).

e Driver Assistance Systems using Car-2-X technology.
e Driver Assistance Systems for truck and trailer combinations.

All of the systems named above have two things in common. First, the functional
units are distributed over more than one entity. In the case of Car-2-X systems, this
means that the sensors, processing units and HMI components are distributed over
several cars or infrastructural units. The second thing these entities have in common
is that they are coupled and de-coupled frequently without the support of a specialist
supervising these activities. In Car-2-X scenarios this is given through to the movement
of the different cars which leads to ever changing ad hoc networks. In order to label
this class of systems, Dieter Zoébel, Ansgar Meroth and myself introduced the term
Distributed Driver Assistance Systems (DDAS) to refer to them (see for example [140],
[144]).

This thesis focuses on the last scenario for DDAS named above: DDAS for truck
and trailer systems. While truck and trailer combinations have been on our streets
for many many years, the introduction of assistance systems that break the barriers
between truck and trailer is still in its infancy. One reason therefore might be, that
many of these combinations belong to the domain of commercial vehicles and are driven
by professional drivers. These drivers compensate the absence of assistance systems
with a high familiarity of the system and years of experience. On the other hand there
are many non-commercial usage scenarios like small car trailers or caravans. These
scenarios are especially interesting as the drivers of such combinations might use them
only once a year or sometimes even less often. Another reason for the absence of
DAS distributed over the whole combination is technically in nature. While in the
car domain the OEM acts as a central integrator, there is no counterpart within the
domain of truck and trailer combinations. Instead, there might be several independent
manufacturers engineering different parts of the combination. Besides the OEM of the
towing vehicle and the trailer manufacturer, there might be several other companies
responsible, for example the superstructure manufacturer for the trailer. The absence of
a central integrator that sets mandatory standards and defines the functional attributes
of the overall combination is another obstacle in introducing such overlapping assistance
systems.

At the same time, DAS for truck and trailer combinations fit well in the definition
of DDAS. The different functional blocks might be located on either the truck or the
trailer. In future application scenarios this may even be extended by the usage of
nomadic devices such as smartphones or handhelds or by integrating web-based services
located on a remote server cluster. Furthermore, the system is subject to changes at
runtime as it is very likely that different trailers are attached to a towing vehicle over
time. Chapter |6 of this thesis will introduce the events of system changes in more detail.

1.3 Service-oriented Computing

The attributes of Distributed Driver Assistance Systems call for new thinking models in
the automotive industry. The traditional approach on how a system is built and how
the development procedure is organized can’t be adapted to this new class of systems
that easily. Instead, new approaches should be considered. However, this may be new
to the automotive domain, but other domains have already faced such challenges some
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time ago. These domains came up with different approaches that solve these issues. One
of the most interesting and popular ones is Service-oriented Computing (SOC), often
called Service-oriented Architecture (SOA).

The term of Service-oriented Architecture is not clearly defined. One of the most
popular definitions has been published by the World Wide Web Consortium (W3C) in
2004: For this institution SOA is "a set of components which can be invoked, and whose
interface descriptions can be published and discovered" (see [64]). For this thesis the
definition is extended:

"Service-oriented Architecture (SOA) is a set of loosely coupled, distributed com-
ponents which can be invoked, and whose descriptions of the well-defined interfaces
encapsulating its functionality can be published and discovered."

This definition covers the main aspects of Service-oriented Computing:

e A SOA-based application is not a monolithic block, but a set of loosely coupled
components, so called Services.

e These Services are distributed over a network or a network of networks and have
the ability to invoke each other using their interfaces.

e These interfaces are encapsulating the functionality of each Service and allow a
standardized access. It also ensures accessibility by providing public information
on how to access the Service and by ensuring discoverability of the Service within
the network.

The characteristics of the Service-oriented paradigm, especially the fact that it is
based on functionality that is encapsulated in loosely coupled and discoverable Services,
is a promising approach to handle distributed applications that change at runtime. This
is because the elements of an application are self-contained. The overall application
is a combination of the elements currently available. In the case of a system change,
this combination can be altered by re-composing the application using the currently
available entities.

1.3.1 Areas of application

As explained earlier, Service-oriented Architecture is not a new paradigm. It has been
used in several areas of application. One of them, which became rather popular in recent
years, is the Android OS. In this Linux-based smart phone operating system the so
called contents are an implementation of the Service-oriented principles (see |39]). Be-
sides such popular but rather narrow fields of use SOA has been initially developed and
mainly used for two distinct areas of application: Enterprise software and Web Services.
The former one is a collective term for software systems that are used in the business
domain. Within this area, the growing complexity and degree of distribution requested
a new paradigm of software development. Furthermore, such enterprise software faces
frequent changes in its structure to react to software modifications, platform updates
or hardware replacements. As in many enterprises these systems are the backbone of
their business activities, traditional monolithic software blocks were replaced by more
flexible, and easy-to-service Service-oriented applications. Many big software companies
like Oracle or IBM have developed Service-oriented frameworks that support developers
in designing such enterprise systems.

Another very popular field of usage of the Service-oriented paradigm are Web Services.
Web Services are Services that run on servers connected to the internet. These Services
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can be discovered and invoked by human users as well as software applications. One
example for such a Web Service is Google’s Elevation Service. This Service provides
elevation data for numerous locations on the surface of the earth (refer to [60] for more
details). The main principle is, that the user sends his request including the location of
interest to the Web Service running on a Google server. The Web Service processes this
request and answers it with a response containing the respective elevation above sea
level. It is a public, in its basic feature set, free Service. However, many Web Services
are either restricted to a specific group of users or do charge the requester a specific
amount of money.

The main difference between SOA-based enterprise software and Web Services regards
the standardization. While most enterprise solutions are either not complying to any
standard or are based on the solution of a software company, the openness of Web
Services requests the definition of a common standard. This standard is called Web
Services Architecture and has been published by the W3C (see [26]). It is actually
a set of standards defining different aspects like messaging and Service Interfaces or
Discovery. Furthermore, this specification contains many popular protocols and de-
scription languages like the Extensible Markup Language (XML), the Simple Object
Access Protocol (SOAP) or the Web Services Description Language (WSDL). Due to
its popularity many commercial but also open source frameworks implementing it (or
at least parts of it) are available.

However, Web Services are not the silver bullet when building Service-oriented sys-
tems. Especially when looking at the embedded domain, Web Services and SOA in
general are not having significant market shares. This is mainly due to the large over-
head produced by this technology. Besides the fact that many of the implementations
of Web Services base on additional middlewares like Java, the messaging and memory
footprint are often not compatible to really small embedded devices. In the automotive
domain, one of the most challenging domains were embedded systems are used, there
is only one SOA-like technology available right now (SOME/IP, please refer to chapter
2 for more details). This thesis will fill this gap by introducing a framework capable of
offering the benefits of Service-oriented Computing in an implementation respecting the
resources of small embedded devices.

1.4 Objectives and contributions of this work

As described earlier, this thesis will present the research done in the field of Service-
oriented Computing for Distributed Driver Assistance Systems on the example of
assistance system for truck and trailer combinations. In the following, the main objec-
tives will be presented and the contributions of this thesis will be outlined.

1.4.1 Main objectives

There are three main objectives for this thesis:
e Manage Distributed Driver Assistance Systems on the architectural level.
e Introduce a Service-oriented framework for automotive embedded systems.

e Introduce a suitable development process.

The first objective targets at using the beneficial characteristics of Service-oriented
Computing onto DDAS. Hereby, the functionality is to be encapsulated into small,
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loosely coupled, self-contained and distributed Services. The heterogeneity of func-
tionality involved in a typical Driver Assistance System and the absence of a central
integrator is to be faced by the introduction of well-defined interfaces accompanying
the Services. The requirement to be able to react to runtime changes of the system
is to be fulfilled by the Service-oriented principles of Discovery and Re-Composition.
Furthermore, the demand for the protection of the know how of the implementer of a
software functionality is to be faced by the principle of information hiding behind the
standardized Service Interfaces.

The second objective targets on introducing Service-oriented Computing into auto-
motive embedded systems. This includes the implementation of Service entities that
respect the resource constraints especially regarding the memory footprint and the
available computing power. It also requests the implementation of a Communication
Model capable of carrying out Service communication using the specific automotive net-
work systems introduced earlier. Additionally, this objective calls for the development
and implementation of a re-configuration algorithm capable of reacting to changes of
the system at runtime, again while respecting the special conditions of the automotive
domain.

As a last objective, a development procedure is to be instantiated that allows to
create Service-oriented applications and can be easily integrated into automotive design
processes at the same time. In combination, the latter two objectives call for the
integration of Service-oriented Computing into widely used automotive standards.

1.4.2 Contributions to fulfill the objectives

All the objectives introduced in the last section are fulfilled by the development and
implementation of a Service-oriented framework for automotive applications. This
framework is called SODA - Service-oriented driving assistance. It builds the architec-
tural basis by offering a layered software architecture that can be used to implement
automotive Services. This architectural blueprint is described in section 4.2.4. SODA
also includes a Communication Model that allows to carry out all needed communica-
tion between the Services on networks currently used within the automotive domain.
Chapter 7 introduces this module of SODA in full detail. The re-configuration algorithm
developed for the SODA framework is described in chapter [6. It makes also use of the
Quality Model described in section 4.3 of this thesis. Another important contribution
of my research within this area is the definition and implementation of a development
procedure designed to create applications on the basis of SODA. Chapter 5 of this thesis
will show that this development procedure is a powerful tool to guide developers that
might have no experience in Service-orientation at all through the design process and
can be integrated easily into today’s most used development scheme in the automotive
domain. The integratability of the SODA framework into automotive standards is
proved on the example of the popular AUTOSAR architecture. Chapter 8 of this work
explains three different ways of integrating SODA into AUTOSAR. Finally, the SODA
framework is evaluated regarding its usability for developing DDAS for truck and trailer
combinations. Chapter 9 examines a prototypical implementation of a backing up
assistance for a car towing a two-axle trailer.

1.5 Research Methodology: Design Research

The research described within this work has been carried out following the research
methodology Design Research. This is an approach that carries out a well-defined
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design process aiming on gaining knowledge about the field of study. The approach
dates back to a proposal made by March and Smith in 1995 in their publication [89].
Here, they tried to meld research activities like creating and evaluating theories with
steps in a design process like modeling or constructing into a combined research frame-
work. The idea has been picked up and developed further by Vaishnavi and Kuechler.
In 2004 the authors published a book describing this research methodology in more
detail [136]. The descriptions on the Design Research methodology within this section
are all extracted from this source. In this book the general cycle of Design Research
as it is presented in Figure [1.3| is defined. This cycle consists of five process steps
that are executed throughout the procedure. The first one of these steps is called
"Awareness of Problem". It is the initiating step that unveils the need for research in
a specific area. Often this discovery is caused by conducting market research or by
detecting a gap within state-of-the-art technology. Within the Design Research method-
ology this problem is written down and transformed into a research question or objective.

Knowledge Process Logical
Flows Steps Farmalism

) Awareness of

Problem

{ |

Suggestion ~  Abduction

irsumsecription ﬂ

(— Development

ﬂ > Deduction

b

\
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Operation and
Goal Knowledge
Conclusion

Figure 1.3: The general cycle of the Design Research methodology |136].

Within the second process step called "Suggestion" potential problem solutions are
drawn from the existing knowledge. In other words, a technology, principle or theory is
suggested that is capable of filling the gap detected in the first step of the cycle. This
step can be equated with the logical formalism of abduction which transfers an observa-
tion into a hypothesis. The idea created here is refined in the "Development" step were
it is implemented at least in a prototypical way. In the case that an idea created in the
"Suggestion" phase can’t be implemented, the cycle is started again, indicated by the
arrow named "Circumscription". Circumscription is a very important process within
the methodology as it alters the initial problem definition based on information that
has not been available before the Development step has been started. In this sense, it
gains scientific knowledge that has not been detected before. In case the Development
was successfully completed, the methodology moves on to the "Evaluation" process.
It analyses the implementation and tests whether the initial problem has been solved.
Again, if this is not the case, the cycle turns back to the initial step altering the problem
definition by the findings made through the evaluation. This step again may create
new knowledge even in the case the tested implementation has failed. The two steps
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of "Development" and "Evaluation" correspond to the logical formalism of deduction
as it creates a conclusion by reasoning. In case the Evaluation was at least partially
successful the cycle is completed by the "Conclusion" step. This step may terminate
the specific design project by writing down the knowledge gained. However, it may
also make use of the newly created operation and goal knowledge to jump back to the
initial step and alter the problem definition according to the experiences made. For
example, the analysis of an implementation of a suggestion made to solve a specific
problem may have shown that it does not fulfill the demands of the initial problem
scenario but may be successful if the research question would be slightly changed into
another direction. In this case the suggested idea is not a solution for the problem but
the research conducted has gained knowledge that may help to close related gaps.

The research methodology Design Research has been used throughout this whole

thesis to gain scientific knowledge. It fulfills the demand for creating scientific progress
while being close to the technological character of this field of research.
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2 State-of-the-art in Service-oriented
Architectures for embedded systems

"People will not look forward to
posterity, who never look backward to
their ancestors.’

Edmund Burke!

2.1 Requirements on Service-oriented Architectures for DDAS

This chapter discusses several Service-oriented approaches for embedded and automotive
systems that have been published in recent years. As described earlier, Service-oriented
Architecture is a promising design principle when developing distributed systems. It is
capable of handling changes of the software and system architecture of an application
at runtime. Through to the clear separation of different modules in the form of Services
and the structured description of their relationships by introducing Services Interfaces,
it also supports maintainability and software re-use and simplifies the development
procedure within big development groups.

However, most of the SOA frameworks proposed in recent years are targeting at
domains like enterprise software or Web Services. These domains feature specific
characteristics that are quite different from distributed embedded systems as they
are common in the automotive domain. These differences regard for example to the
computing platforms used to deploy them. In the enterprise software and Web Services
domain full scale personal computers and servers are used that provide Gigabytes or
sometimes Terabytes of memory, several Gigabytes of RAM and CPUs that often feature
several cores which run with speeds of several Gigahertz. Even when smaller units like
tablet computers or smartphones are involved the computational power exceeds the
performance of automotive ECUs by orders of magnitude. Such automotive computing
platforms are often restricted to only a few Kilobytes of ROM and RAM as well as
single core CPUs running at a speed within the low Megahertz range in order to reduce
costs and electromagnetic influences. These restrictions lead to the fact that well-known
technologies like for example Java did never hit this market section. Besides the gap
in available resources the networks used in both domains vary, too. While within the
internet and in office networking IP-based protocols dominate the market, the automo-
tive sector developed several specialized communication technologies to meet different
requirements in different domains of application. For example, small sub-networks
containing solely functionality that is not safety relevant, are often based on the simple
and cheap Local Interconnect Network (LIN). When ECUs that compute time-relevant
and safety critical data are connected, FlexRay is often the network of choice. Within
the infotainment domain, where bandwith and packet sizes are relevant parameters,
a specialized network named Media Oriented Systems Transport (MOST) is used to
connect video players, audio amplifiers and other equipment. The oldest, but still most
used automotive bus system, is the Controller Area Network (CAN). It has become quite
popular since it first hit the market in 1987, and is now used in many other technological

1“Reflections on the Revolution in France, see [30]
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fields like medical equipment, factory automation or elevators, too. In comparison to
IP-based networks, the automotive communication technologies with the exception of
MOST, lack of several fundamental properties such as plug-and-play characteristics.
Furthermore, they differ in basic concepts like the the usage of message-based instead
of node-based addressing.

All these circumstances lead to the fact that Service-oriented Computing in embedded
systems and especially in automotive embedded systems, has to be revised and tailored
to the characteristics of this domain. This fact has been realized by several researchers
and practitioners and led to the publication of a number of embedded SOA frameworks
in recent years. In order to be able to evaluate these approaches, the specific needs
and requirements for the problem scenario of Distributed Driver Assistance Systems are
defined:

1. Allow automatic re-configuration of internal components at runtime.

2. Respect the resource limitations of the embedded systems and the specific charac-
teristics of the networks used.

3. Organize the re-configuration in a distributed fashion to avoid a single point of
failure.

The first requirement states that the framework should be able to re-configure an
application at runtime. This re-configuration should be done automatically. Both needs
are aiming at reacting on system changes while the system is running. Furthermore
this requirement states that the re-configuration should imply all entities no matter if
they are external ones that are brought into the system by the user or a third party
or internal ones that are an integral part of the vehicle or its attachments. This is
especially important as the discussion in section 2.2 will show that some of the proposed
frameworks are following a gateway approach where Service-orientation is only used to
manage external components while internal components are developed in the traditional
way and accessed through a gateway unit.

The second requirement requests the frameworks to respect the specific characteristics
of automotive embedded systems. As discussed earlier, these include resource limitation
as well as the usage of specialized broadcast networks. The approaches analyzed in
section 2.2/ will be evaluated on the basis of the fundamental communication schemes
and underlying technologies. For example, approaches that make use of Java-based
technologies won’t be able to be deployed on some of the small ECUs used within the
car. By using such a virtualization method the approach would restrict itself to areas
such as the infotainment sector where the computational platforms tend to be more
powerful.

The third and last requirement calls for a distributed approach to manage the re-
configuration procedure. This is due to the nature of Distributed Driver Assistance
Systems. As this specific kind of DAS does not have a single integrator during the
development process, nor a clear hierarchy in ad hoc scenarios, introducing a central
entity would cause numerous problems. Furthermore, this would be contradictory to
the fact that most of the automotive networks are organized decentralized.

The remainder of this chapter is organized as follows. Section 2.2 will discus a number
of Service-oriented approaches targeting on embedded systems using the three require-
ments introduced. The results of this discussion will be summarized and analyzed within
section 2.3l
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2.2 Discussion of Service-oriented approaches in embedded
systems

Using the requirements set up in the former section, 23 different approaches that target
on bringing Service-oriented Architecture into embedded systems have been analyzed.
Table 2.1/ summarizes these proposals. The discussion will show that none of these is
capable of meeting all requirements requested by Distributed Driver Assistance Systems.

The first group of approaches lacks of the ability to do runtime re-configuration. One
representative of this group has been presented by Ermagan and her colleagues from
the University of California and the Technical University of Munich in [47]. It targets
to the automotive domain as it focuses on a use case that describes the development of
a central locking system. However, the used technologies like for example the Common
Object Request Broker Architecture (CORBA) cause a huge overhead that makes it
difficult to bring this approach to small automotive ECUs. Another approach that tries
to introduce Service-orientation into the automotive domain is presented by Shokry et
al. in [122]. It focuses on the re-use benefit of SOA and suggests to implement all vehicle
functionality as Services to simplify product line management. However, this proposal
does not consider changes at runtime and again makes use of CORBA technologies
which create a significant overhead. A third approach in this group not capable of
reacting to runtime changes has been presented by Eichhorn et al. in [45]. It targets
in the infotainment system within a vehicle and describes how several components
could be connected using the Devices Profile for Web Services (DPWS) a subset of the
popular Web Services specification. Besides the fact of not being capable of runtime
re-configuration, the DPWS approach requires the engineer to use IP-based networks to
connect the entities. Since these networks are still in their infancy within the automotive
domain, this approach is not very promising. The same dependence from networks that
are not common in cars can also be discovered in two other approaches listed in Table
2.1. The first one has been described by Lopez and his colleagues in [86]. It describes
the integration of Service-oriented principles into unmanned aerial vehicles (UAV). It
makes use of a specially developed communication model while based on the TCP /IP
protocol family. The other proposal to be named here is the eSOA project (see [121]).
It makes use of technologies from the enterprise software and Web Services domain like
the Business Process Execution Language (BPEL) and the Web Services Description
Language (WSDL). Besides, it uses ZigBee communication to allow interaction between
different Services. Since targeting on the building automation sector where systems are
installed and configured by professionals it does not consider automatic configuration.
While some of the proposals of this group provide some excellent solutions for particular
problems of the problem scenario, none of them is close to being a potential approach

for DDAS.

The second group of proposals to be discussed introduces a gateway to connect
embedded devices to the SOA world. One of these approaches is called DOMINION
and has been described by Gacnik and Haeger in [53]. It follows the idea of integrating
external software functionality into a vehicle. The case study used describes a travel
assistance system that makes use of Web Services to request train information and
other Services to improve the travel experience of the driver. The system architecture
features a gateway device that collects data from the CAN bus of the car as well as
external information using Web Services. However, there is no attempt to introduce
Service-orientation in the in-vehicle domain. In another proposal named CODAR Réckl
et al. use the DOMINION framework to built cooperative sensor networks for future
driver assistance systems. In using DOMINION, the CODAR approach suffers from
the same disadvantage as the internal components are not implemented as Services.
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A similar approach has been presented by Foster and his colleagues in [51]. Within
the DINO project self-x-properties for Service-oriented applications were examined.
One of the case studies focused on a coordinated route planning application that
uses Service-oriented communication to exchange traffic information between vehicles.
Again, Service-orientation was only used between the gateways of two or more cars, not
within the vehicles. Other approaches try to brake the technological barriers between
different domains by introducing Service-orientation. Ragavan et al. for example use
a Service-oriented framework based on well-known technologies like OSGi, Java and
TCP/IP (see [108]). They are aiming at connecting embedded devices from domains like
factory automation or automotive by introducing Service gateways. Tsai and colleagues
present an approach in [134] which tries to include embedded entities like robots into
the Web Services domain. Therefore, technologies like SOAP or WSDL are used to
establish a connection between web servers and the embedded device using a gateway in
between. Again both proposals analyzed do not implement Service-oriented principles
on an embedded device. Another interesting scenario where SOA can help to connect
embedded systems to other domains is when nomadic devices are to be integrated into
a vehicle. This scenario is the basis of considerations in the proposals of Sonnenberg
and Bohn et al. In [123] Sonnenberg describes a technique to couple nomadic devices to
vehicles using Web Services. Thereby, technologies like OSGi and DPWS are used on
a so called Vehicle Software Platform that connects the external entities to the ECUs
of the vehicle. Within the SIRENA project, described by Bohn et al. in |25], a similar
approach is described. Using DPWS on a gateway dividing the inside and the outside
of a car, smartphones and other equipment are connected and the exchange of data
between both worlds is enabled. Finally, a last scenario that inspired people to facilitate
Service-oriented frameworks on gateways is the connection of a vehicle to the cloud.
One approach targeting on this is presented by Iwai and Aoyama in [72]. Within a
project called ACSS the authors developed a gateway that was attached to a vehicle
and was able to request Web Services from the cloud. Thereby, common Web Services
technologies like for example SOAP were used to receive data that is then forwarded to
ECUs within the car. The same idea follow Xu and Yan in [151]. The gateway used
in these approaches transfers the information from the cloud in form of xml files into
serialized data streams in order to transport them to the ECUs in the vehicles. All the
approaches within this second group that make use of gateways between the embedded
devices and the Service-oriented domain lack of mechanisms or ideas on how the benefits
for SOA could be transferred to those small ECUs. However, since the problem scenario
of Distributed Driver Assistance Systems requires this transformation, none of them can
be used to build the desired systems.

A third group of proposals from industry and academia fulfills the requirements of
allowing online re-configuration of internal applications. Their authors have claimed
that they are respecting the low resources provided by embedded systems. However, the
following discussion will show that none of them is capable to be used within today’s
cars either since they make use of frameworks causing a high overhead or are not
deployable on standard automotive network systems. One of these proposals has been
made by Baresi et al. in [14]. It is targeting on automotive entertainment systems. By
using two different Java-based, Service-oriented frameworks components like the radio
or a display are implemented as Services to communicate with in-vehicle and external
entities. Besides the enormous overhead caused by creating a system based on Java,
the approach makes use of standards like SOAP, HTTP and TCP/IP. Since all of these
technologies are IP-based they can’t be applied to broadcasting automotive networks like
CAN or LIN that easily. Some other proposals published in recent years are Java-based
as well. One of them is part of the RT-Llama project published by Panahi et al. in
[103]. Besides the disadvantage of creating a lot of overhead by using Java, it makes
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DOMINION - Gacnik and Haeger [53] X X X
DINO - Foster et al. [51] X X X
CODAR - Rockl et al. [112] X X X
Xu and Yan [151] X X v
Ragavan et al. [108] X X X
Ermagan et al. [47] X X n.a.
Shokry et al. |122] X v n.a.
Baresi et al. |14] v X X
Static HMI - Eichhorn et al. [45] X X n.a.
Flexible HMI - Eichhorn et al. [44] v X X
SIRENA - Bohn et al. |25| X X v
iLAND - Garcia-Valls et al. [57] v X X
RT-Llama - Panahi et al. [103] v X X
ACSS - Iwai and Aoyama [72] X X X
DysCAS - Jahnich et al. |73] v (V) X
SOME/IP - Volker [138] v X v
eSOA - Scholz et al. [121] X X X
Lopez et al. |86] X X n.a.
OASIS - Koutsoukos et al. |78| v X X
Tsai et al. |134] X X n.a.
SMEPP - Brogi et al. |2§] v X v
Bridges and Mostashfi [27] v X X
Sonnenberg [123| X X X

Table 2.1: Service-oriented Computing for embedded systems
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use of a central composition entity called "global resource manager" and IP networks to
communicate. Another approach very similar to the two of Baresi et al. and Panahi et
al. has been published by Koutsoukos et al. in |78|. The publication is part of the OASiS
project which tries to create a Service-oriented middleware for wireless sensor networks.
Within the project, each of the sensor hardware entities runs TinyOS and a Java virtual
machine that hosts the middleware as well as the implementations of the Service logic.
While trying to reduce the network load by introducing tailored message objects to be
exchanged it still relies on the Internet Protocol and does not consider any other com-
munication stacks. Other proposals do also use well-established technologies as a basis
for their frameworks. One example therefore is the approach published by Bridges and
Mostashfi in [27]. The authors implement their Service Instances using the Microsoft
Sharepoint technology. This technology is Microsoft’s platform to create distributed
web applications. However, besides the fact that the Sharepoint installation causes an
enormous overhead, the technology only runs on the Microsoft Windows Server OS.
This leads to the fact that the computing platforms participating have to own at least
a 64-bit CPU running at a speed of 1.3 GHz, 2 GB RAM and 160 GB hard disk space
as these are the minimal system requirements for the operating system (see [96]). Even
for the target domain of sensor networks these requirements are truly restricting the
possible deployment scenarios. Other approaches try to deploy Web Service technologies
within embedded systems. One example therefore is the SMEPP project funded by the
European Union (see |28]). The developed Service-oriented middleware for peer-to-peer
systems targets on devices like PDAs, handhelds or smartphones. Besides the fact that
using Web Services standards like WSDL makes it necessary to use IP-based networks
the overhead created by these technologies is too high for really small embedded ECUs
like those that are used for simple sensors within the automotive domain. A solution
for this problem could be the usage of the DPWS profile which uses only a subset of the
Web Services specification to limit the amount of resources needed. This idea has been
followed by Eichhorn et al. in [44] were the static approach of [45] has been enhanced
to allow online re-configuration. However, this approach is still bound to IP-based
communication. One last approach within this group is the iLAND project. Within
this project, runtime changes of distributed embedded systems were examined and a
Service-oriented middleware was developed (see [57]). However, the domains focused on
were wireless applications for public transport, video surveillance and health care. For
this reason none of the automotive networks is integrated into the middleware which
makes it hard to use it in today’s vehicles.

Finally, the last group of approaches to be discussed in this chapter actually focuses
on automotive systems. Within this group, two approaches have been identified. The
first one is called DysCAS (see |73]). It is the result of a European project with the
same name that targeted at self-configuration properties for automotive systems. While
focusing on telematics and infotainment it is able to be used in other scenarios, too. It
integrated several network stacks including the Controller Area Network. However, the
DysCAS middleware can’t be used for the DDAS scenario for several reasons. The first
one is that the organization of re-configuration is done by a single central entity. This
includes the device integration on the CAN network (see [137]). This central organiza-
tion approach causes the problems described in section 2.1 like the need for a central
integrator or the inclusion of a single point of failure into the system. Furthermore, the
scenario of truck and trailer applications is explicitly excluded from the project (see [52])
which causes a gap which can’t be accepted within the scope of this thesis. In the last
few years another Service-oriented approach has been created that targets especially on
the automotive domain. It is called SOME/IP and has been developed and published
by BMW (see [138]). Since version 4.1 it is part of the AUTOSAR specification. It
organizes itself in a distributed manner and hence does not create a single point of
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failure. However, SOME/IP is restricted to use IP-based communication to connect
the Services to one another. Therefore, it can be rather seen as a future technology
that might become more interesting as soon as the first vehicles are equipped with
automotive Ethernet. This fact is particularly important since the automotive industry
plans to use Ethernet only for video-based systems and as a central backbone in the
near future. Therefore, small devices will not be IP-enabled for quite some time. As
the truck and trailer scenario used within this thesis relies on the information of small
ECUs and does not want to depend on some future but current technology, SOME /TP
is not considered to be used within this thesis.

2.3 Summary

This chapter analyzed and discussed the Service-oriented approaches targeting on em-
bedded systems that have been published in recent years. The analysis has been carried
out by using three important requirements for a middleware solution in the scope of
Distributed Driver Assistance Systems. The requirements were the possibility of runtime
re-configuration of internal components, the limitation of size and computing power
needed to be executable on small embedded devices, the possibility to use automotive
networks as well as the absence of a central management unit that would create a single
point of failure.

Using these demands, 23 different approaches were discussed. The first group of
them lacked in offering online re-configuration capabilities. This is a important feature
since it is the nature of DDAS to change their constitution at runtime. A second group
was more promising since it implements this feature. However, the proposals gathered
in this group are making use of a gateway approach. In other words, they suggest a
additional entity that connects the embedded devices to external entities. However, the
use of Service-orientation is restricted to the gateway and the integration of the external
components. This circumstance does not allow to carry out a re-configuration proce-
dure of the embedded devices. Group three fulfilled the demands of allowing dynamic
re-configuration of the embedded devices. However, none of the devices discussed here
completely matched the requirement to be applicable to automotive embedded systems.
Some of them are using heavy-weight technologies like Java, Web Services or Microsoft
Sharepoint. Others that are more frugal are only usable on IP-based networks which
are not yet standard in the automotive domain. Two last proposals were analyzed in
more detail since they are targeting directly to embedded automotive systems. The
DysCAS middleware is a promising approach to handle self-configuration in vehicles.
However, its centrally organized management system and the explicit exclusion of truck
and trailer systems make it impossible to be used for assistance systems for truck and
trailer combinations. The last framework to be looked at was SOME/IP, an IP-based,
Service-oriented technology that even made its way into the AUTOSAR specification.
However, since it excludes small ECUs that do not have a Ethernet connection, it cannot
be applied to the problem domain within the scope of this thesis.

As a summary one can say that the 23 approaches, although none of them is directly
applicable to truck and trailer assistance systems, are peppered with fantastic ideas,
mechanisms and technological adaptations. Some of these have been integrated or
at least adopted to the SODA framework. To the best of my knowledge, the SODA
framework is the only one that fulfills all the demands requested by truck and trailer
DDAS and thereby fills an important gap to achieve the benefits that Service-oriented
Architecture can add to future automotive systems.
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3 State-of-the-art in Model-driven
development of SOA-based Systems’

"Perfection in design is achieved not
when there is nothing more to add,
but rather when there is nothing
more to take away.’

Antoine de Saint-Exupéry?

3.1 Introduction

Model-driven Software Development (MDSD) has its roots in the software crisis of the
late 60s and early 70s of the past century. The increasing size and complexity of the
software projects in those days led to the failure of numerous of these. These circum-
stances stimulated research on a discipline which we now call Software Engineering:
goal-oriented and well structured processes that support the development procedure
of software systems. One approach within Software Engineering is MDSD. Based on
the Computer-Added Software Engineering (CASE) tools of the 1980 it has proven its
worth in different fields of computer science (see [87]).

This chapter will present and discuss the state-of-the-art in model-driven development
of SOA-based systems. It will discuss the benefits of model-driven approaches in general,
for embedded automotive systems and for the target domain of DDAS in the section
3.2. Section [3.3|illustrates best practices currently used in the automotive domain while
section 3.4 discusses approaches for the model-based design of Service-oriented systems.
In section [3.5| SoaML, a widely used, UML-based modeling language, is introduced.
Finally, section 3.6| describes IBM’s SOMA approach to develop Service-oriented soft-
ware systems. The results and conclusions of this chapter, which are summarized in
section 3.7, build the basis for the SODAdev development process described in chapter 5.

3.2 Model-driven software development

Model-driven Software Development can be described as an approach that focusses on
the design of artifacts and on techniques to raise the level of abstraction of systems
(see [120]). The basic idea is to use a modeling language to develop the specification
of a software product. The resulting model can then be used for further steps such
as formal verification or automatic code generation. The modeling languages used are
often divided into two groups. The first group are general- purpose languages. These
languages do not aim on a specific domain. Instead, they are supposed to be used in
many different domains of application. This feature makes them very interesting for
developers since they can be used in different projects belonging to diverse fields of
application. It also makes them attractive for the developers of CASE tools since it

!This chapter is based on my publications [139] and [142]. Parts of it are extracted from these sources.
ZTerre des Hommes, 1939, see |115]
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widens the potential market. On the other hand, the wide focus of general- purpose
modeling languages leads to a high level of abstraction which often causes problems
when building precise models. Domain- specific languages (DSL) on the other hand
allow this precision through being explicitly designed for the target domain. Through
being tailored, appropriate notation and abstractions are offered (see [95|). Furthermore,
only the properties actually needed are defined in their Metamodel which simplifies the
development procedure.

One popular example for an implementation of MDSD is OMG’s Model-driven Archi-
tecture [125]. It picks up the ideas of MDSD while making use of many of the standards
defined by OMG itself.

3.2.1 Benefits of model-driven software development

Besides the structuring effect already mentioned MDSD comes with other benefits, too.
These benefits have already been discussed in literature quite often (see e.g. [125], [62],

141)-

One advantage of MDSD is that functionality is developed independently from the
platform executing them in the final product. Besides the obvious fact that this supports
re-use it also lowers the complexity of the development in each step. This is because
the software engineer does not have to take hardware restrictions into account while
designing functional aspects and vice versa.

MDSD also makes development more convenient. This is mainly for three reasons.
First, it creates some abstraction of the target functionality. This abstraction helps the
software engineer by simplifying the potentially complex structures to be developed.
Second, the modeling language used acts as a common language between the different
stakeholders within a development project. This is important since software systems
are usually designed by a heterogeneous team. This team often consists of software
engineers as well as specialists from the target domain. These specialists may have no
computer science background at all but use their own terminologies instead. Modeling
languages can also help to build a bridge between the development team and external
stakeholders such as management staff, marketing people or an investor. Lastly, MDSD
assists by creating a distinct, human and machine readable description of the system
under development.

Another benefit of using MDSD is the improvement in software quality. One reason
therefore is the fact that model-driven development takes over some of the routine
works from the developers. Human beings tend to treat tasks that have to be carried
out over and over again more and more carelessly. This carelessness leads to mistakes
within the development process which may eventually cause serious bugs in the final
system. Another reason why MDSD helps in creating better software are the automatic
verification routines that can be integrated into the development procedure. These
routines inspect the artifacts under development for any violations of properties given
in the Metamodel of the modeling language. Through pointing out problems at the very
moment of their appearance this verification functionality helps to detect failures very
early in the design process.

One last advantage of MDSD to be mentioned here is the increase of efficiency within
the development phase. This is based mainly on three different factors. First, separation
of concerns automatically arises when models are used for development processes. This
is because the properties of a model are defined one after another rather than all at
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the same time. This procedure automatically separates the different requirements and
thereby reduces complexity. Second, the introduction of automated steps speeds up
the development process and hereby saves valuable engineering time. It enables fast
and error free addition of specification details to the system model. The last fact
that increases the efficiency is the high potential for re-use. In MDSD functionality is
specified using models. These models feature a clear and encapsulated description that
can be easily extracted from the overall model to be re-used in another context.
Summarizing these benefits, one can say that using model-driven software development
brings clear benefits. It enables the software engineers to design systems offering high
quality and platform independence in a convenient and efficient way.

3.2.2 Benefits of model-driven software development for DDAS

Section 3.2.1 has clearly illustrated the advantages of using MDSD to design software
systems in general. This thesis targets on a special subdomain: distributed, embedded
systems that are used in the automotive domain for building runtime changeable driver
assistance systems. Pohl et al. describe in [106] the current situation in developing
embedded systems for the automotive domain using five problem field. I strongly believe
that these problem fields can be faced using MDSD:

e Growing complexity: The desire for more and more features within cars in-
creased the complexity of automotive systems significantly. The major share of
these innovations is build in software. This boosts the size of software projects.
MDSD is a great way to face this issue through reducing complexity by abstraction.

e Physical context: Embedded systems used in the automotive domain are usually
connected to sensors and actuators that either observe or influence their physical
environment. This requires a very heterogeneous development team with specialists
from numerous technical fields. The usage of a modeling language supports the
interdisciplinary corporation between the different team members.

e High quality requirements: Embedded systems integrated into a vehicle are
generally bound to it throughout its whole lifecycle. Unlike other high-tech do-
mains like consumer electronics e.g. a vehicle is used up to 30 years or more with
an average lifecycle of about twelve years (see |66]). Furthermore, bug fixes can
be only carried out by product recalls which is always accompanied by high costs
and a loss of prestige for the car producer. As mentioned earlier, MDSD can help
to improve the quality of the software system and thereby reduce these recalls.

e High cost pressure: There are only a few domains were high-tech products
are developed under such a high cost pressure as it is the case in the automotive
industry. Model-driven development can help to make the design process more
efficient and hereby reduce development costs.

¢ Extensive demand for variability: A modern car can be ordered by the cus-
tomer in many different variants. Furthermore car producers try to define common
platforms and derive a whole series of different cars from this platforms. Both facts
lead to a high demand of variability and a complex configuration management.
MDSD can help to manage this issue through encapsulating functionality into sep-
arate models which can be easily combined to create new variants of the product.
Furthermore, automated verification helps to detect problems of a configuration
at an early stage.

Besides these advantages which are applicable to all automotive software systems
MDSD is also beneficial looking at two very specific characteristics of DDAS in truck
and trailer systems:
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e No central integrator: The subdomain of commercial vehicles lacks of a central
integrating instance. Often, there are different manufacturers of the truck, the
trailer and the bodywork of both parts of the vehicle. Model-driven development
approaches can help to improve the design procedure for systems in this subdomain
since component specifications of the system can be extracted as single models.
This high level of encapsulation simplifies the coordination of the development
process when distributed over several different manufacturers.

e Unified model of DAS: As mentioned earlier in this work, the components and
structure of driver assistance systems can be abstracted quite easily. This fact is
very helpful when creating Metamodels for specific modeling languages.

Taking into account the general benefits of MDSD as well as its advantages relating
to the specific characteristics of DDAS, I am convinced that creating a model-driven
development process for the SODA framework is worth the effort. Such a tailored process
model will simplify the development process especially in interdisciplinary teams and
under high cost pressure. Furthermore, it is expected that such a procedure will increase
the software quality significantly and will thereby contribute to increase the acceptance
of using SODA for DDAS.

3.3 Best practices in the development of Automotive Software
Systems

With the increasing size of software systems in the automotive domain the need for a
structured development process rose as well. One of the most popular approaches used
in this domain is the V-model. This model has initially been published by the German
Federal Defense Ministry in 1991 (see [41]). Its original idea was to set a standard
on how software suppliers should organize their development process when designing
software for the authorities. In the following years the approach has been picked up
by more and more companies to eventually become popular in many domains in the
private sector. Compared to similar development models like for example the waterfall
model, introduced by Royce |114] or the spiral model, published by Boehm in [24] the
main difference of the V-model is the extension of the integration and testing phase.
This addition leads to a better link between the specification and the test proceedings.

One software development process model that can be regarded as exemplary for the
automotive sector is the so called core process for system and software development
(CPSSD) (see [117]). It is based on the V-model while being tailored to the specific
needs of the automotive domain.

The CPSSD development lifecycle is the result of many years of experience of it’s
authors Jorg Schauffele and Thomas Zurawka. It reflects the processes actually used in
the automotive industry in recent years. As pictured in Figure 3.1, the V-model is split
up into two main parts. The first one that builds the left arm of the "V" consists of the
specification and implementation phase. The second one that builds the right arm holds
the integration and testing phases. The V-model is also divided into two levels. The
upper level of the model is called the application level and consists of activities that refer
to the overall application. The lower part of the model is called the component level.
Here, all activities are related to some components of the application to be developed.
The design workflow passes through the activities starting on the top left of the "V". By
going down the left arm first the application and then the components of this application
are specified in increasing detail. At the very bottom of the left side the software
components are implemented. The development lifecycle then moves on to the right side
of the "V". The level of detail decreases with every activity that leads the development
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Figure 3.1: The V-model of CPSSD|117|

team up again. After testing the particular components, these are more and more
integrated into subsystems. These subsystems are tested again and then integrated into
the application. The V-model ends with a test of the overall system. Figure 3.1 presents
the V-model in the automotive-specific variant CPSSD.

As this thesis focuses on the specification of self-adaptive automotive systems, the
SODAdev development cycle is restricted to the left arm of the "V". According to [117]
the first activity of CPSSD is to specify the so called Logical System Architecture (LSA).
The LSA is an abstract architecture that does not provide any technical details. It is
an intermediate step building a bridge between the requirements of the application and
the Technical System Architecture (TSA). In this working product logical components
are determined. Furthermore the functionality as well as the interfaces of these logical
components are defined. In a next step, the TSA is specified. In contrast to the LSA
this description of the application already contains some decisions on how functionalities
of the application will be realized. In order to convert the logical system architecture
into the technical one, a team of specialists is making technical decisions and proposes
suitable solutions. After the TSA is defined, the component level is reached. This
means that the specification of the overall application is done and from now on the
identified components are specified with increasing detail. It also includes, that the
development process splits up into a separate development process for each component
to be designed. The authors Schiuffele and Zurawka propose a two-stage process. In
the first part of this process, the software architecture of each component is developed.
This step defines several software components including their interfaces to each other
that build the overall software architecture. These individual software components are
then specified in more detail. The last activity of the left arm of the "V" is to implement
the specified components.

One important characteristic of the CPSSD development lifecycle is the transition
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from system level to component level. At this point not only the overall architecture is
defined but the development process is now split up into several smaller processes for
the component design. In the automotive industry these processes are often delegated
to specialized teams of developers or they are outsourced to suppliers. In some cases
the specification of these components is extracted from the process to select already
available commercial of the shelf solutions.

The fact that CPSSD is a development procedure describing the way automotive
systems have been actually developed in recent years rather than being a purely academic
model predestines it to be used within SODA. In this sense the design process within
the framework is developed to fit in the course of activities given by CPSSD to prove its
practicability in the automotive industry.

3.4 Model-driven process models for Service-oriented
Architectures

Through to the popularity of Service-orientation in recent years a huge number of process
models to develop such systems has been published. In 2009 Thomas, Leyking and Scheid
identified 21 different approaches in |131]. Most of the currently available models are
tailored for a special purpose, require a particular tool chain or concentrate on one
field of application only. Instead of starting from scratch in designing a development
procedure for the SODA framework the available approaches are analyzed. Based on
this analysis one of these available approaches is selected to be customized to the unique
requirements of the SODA framework. Furthermore, the customized process model is
integrated into the CPSSD development procedure. In the following subsections the
criteria of the analysis are described and applied to eleven different approaches.

3.4.1 Requirements in the domain of DDAS

The following criteria in order to identify a customizable process model to develop
Service-based systems with SODA have been defined:

1. Completeness of the specification phase

2. Independence from a specific field of application
3. Variability in the scenario of development

4. Tool support

5. Acceptance of the modeling language

6. Easy integration into CPSSD

The first criterion states that the modeling approach has to allow a complete system
specification which includes the specification of the Services as well as the Service Ar-
chitectures. This also implies that a detailed technical point of view should be assured
rather than focusing on the business domain which is very common using SOA. Finally,
concrete methods or techniques on how to carry out the steps within the process model
should be proposed.

Due to the lack of specialized approaches for the automotive domain the second
criterion states that the field of application should not be restricted. Specialized models,
used for Web Services for example, are not very promising since their focus is too
narrow. Converting these to suit embedded automotive systems would change too many
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of their essential ideas if possible at all.

Another criterion refers to the starting position at the very beginning of the process.
In order to be able to use a design procedure this starting point should be variable.
This is important because the process model should allow new developments as well
as migrating existing systems. Especially the latter point is expected to increase the
interest in SODA as it allows to transfer legacy systems into Service-based applications.

The fourth criterion states that tool support should be given. Using a tool that for
example allows modeling the system graphically simplifies the development process. In
addition, implemented validation functionality decreases the probability of semantic
errors as stated earlier in this chapter. Last but not least the existence of a tool that
supports the process model simplifies the development of the SODA design procedure
as no extra software has to be developed.

Furthermore, the modeling language deployed should be widely-used and hereby
accepted. This demand is set up because of the nature of development teams in the au-
tomotive industry. As stated earlier, these teams are normally constituted by members
with different backgrounds such as software engineers, electrical engineers or mechanical
engineers. A widely-used modeling language simplifies the communication within the
group and reduces the risk of misunderstandings.

Finally, the last criterion expresses that the development process has to be capable
of being integrated into CPSSD. By enforcing this capability the compatibility of the
development cycle with best practices of the automotive industry is ensured. This fact
may increase the interest of automotive manufacturers to use the SODA framework
within their products.

3.4.2 State-of-the-art in model-driven development of SOA-based systems

Using the criteria presented in section 3.4.1) eleven process models are analyzed. These
models are representing academic research as well as industrial practices. Table 3.1
gives an overview of these approaches alongside with their characteristics regarding the
six criteria.

The first one to be analyzed is a model proposed by Stein and Ivanov in [126|. Both
authors are associates of a consulting company. For this reason their approach belongs
to the group of industrial practices. The model is based on ten phases starting with
a business process model ending with the deployment of the developed system. It
focuses on business processes and the modeling languages suggested are very common
ones which belong to the domain of Web Services. Through using these widely used
languages acceptance and tool support is granted. Furthermore, the composition of the
development steps covers all major fields and is quite similar to the specification phase of
CPSSD. The latter point ensures an easy integration of the procedure into CPSSD. On
the other hand, the development scenario is restricted to new developments. Besides,
the development model has a clear focus on business processes which creates a strong
barrier when using it for the design of embedded systems.

A similar model, the Enterprise SOA Roadmap method is presented by Hack and
Lindemann in |65]. It has a very narrow focus in which a four phase model is presented
to introduce and continuously improve SOA-based enterprise software within a com-
pany. This model emphasizes the business factors since only one of the four steps to
be executed is technical. The authors do not use a common modeling language but a
proprietary software product of their company SAP. All these factors restrict the field
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Papazoglou & Heuvel [104] v X v X v X
Barry [15] v X v X v X
Nadhan [08] v v X X X X
Gebhart et al. |58] X X v v v v
Elvesacter & Carrez [46) v v v v v X
Arsanjani [9] v v v v v v

Table 3.1: Comparison of model-driven development approaches for SOA-based systems

of usage in a way that it would not be possible to use the approach without major
modifications.

Other approaches lack of concrete modeling techniques. Pingel [105] for example,
introduces a technology independent five phase model extending well-known approaches.
Within these phases Services are developed that are build by a four layer architecture
each. The steps are shaped in a way that they are capable of being integrated into
CPSSD. Through staying on an abstract level the procedure is not focusing on any
specific domain. However, besides a hint that UML could be used for modeling, the
approach lacks of detailed descriptions on concrete work steps. Furthermore it is not
offering any tool support or variability in the development scenario.

Another approach quite similar to the one of Pingel is a proposal of Mathas presented
in [91]. It extends the software life-cycle model by adding some SOA-specific tasks and
roles. The life-cycle model consists of three phases. In this context only the design
phase is of interest. During this phase five development steps are defined while staying
very coarse-grained. The cycle style of the model allows to be quite variable in the
development scenario. Furthermore, popular languages of the Web Services domain like
for example WSDL are used to specify the functionality which ensures acceptance in
the community. On the other hand it restricts the usage of the approach to the Web
Service domain. Besides, it is difficult to integrate Mathas’ process model into CPSSD
through to its cycle style. In addition, the approach lacks of the definition of concrete
development as well as of tool support.

The Service-oriented Modeling Framework published by Bell is quite generic, too (see
[17]). The idea of the author is to design a concrete process model for every case of
application derived from his abstract methodology. Bell’s approach is variable in the
development scenario but clearly targeting on the enterprise software domain. Besides
the author proposes a special design notation which violates the criterion of using a
widely-used modeling language. In addition there is no tool available to support the
development team. The generic and very abstract nature of the model is also hard
to combine with the concrete development steps given in CPSSD. Just like the other
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procedures discussed so far, Bell’s model is rather to be seen as suggestions on how a
process model may be set up than being a concrete model itself.

Unlike the previously named ones the model "Service-oriented design and develop-
ment" published in [104] by Papazoglou and van den Heuvel is quite technical and
concrete. The procedure is organized in a cycle style and grouped into five phases
plus an additional planing step. This arrangement ensures that new developments as
well as the re-design of legacy software can be executed using this model. On the
other hand it makes it difficult to use in a V-model arrangement like in CPSSD. The
usage of the widespread modeling language "Business Process Modeling Language"
(BPML) increases the acceptance in the community but also reduces the application
domain to enterprise software systems. Furthermore, the authors do not present any
tool supporting the developers.

The approach "Creating Service-oriented Architectures (CSOA)" developed by Barry
and presented in [15] is also offering a very concrete procedure. It is organized in five
consecutive phases. The main idea of Barry is the introduction of Service-orientation
into an enterprise software system by using experiments. This approach is quite different
from other development procedures which is a problem when trying to integrate it into
CPSSD. The usage of the "Business Process Execution Language for Web Services"
(WS-BPEL) to specify the system ensures acceptance while narrowing the focus of
the process model. In fact, it would be quite complicated to transfer this approach to
other fields of application without major changes. Furthermore, just like the approach
of Papazoglou and van den Heuvel no software to be used during the design steps is
presented or suggested.

Another approach is presented by Nadhan in [98]. The author describes a seven step
procedure to migrate an existing solution into a SOA-based system focusing on technical
issues. Targeting only on the migration scenario this model cannot be used for new
developments. It is independent from the domain of usage but brings up other issues,
too. Although being quite concrete in the different development steps it does not suggest
any modeling language to be used. Furthermore, no tool support is given. Lastly the
bottom up approach chosen by the author can’t be integrated into a V-model that easily.

Some highly interesting approaches are using the Service-oriented modeling language
(SoaML), a notation created to model and design SOA-based systems. This is a promis-
ing approach because the language itself satisfies the criteria set up in being not restricted
to one field of application and being widely used since it is a profile of the popular Unified
Modeling Language (UML). One of these process models is presented by the researchers
Gebhart et al. in [58|. The authors describe the development of a Service-based mon-
itoring system by identifying and specifying the needed services. Although this is very
promising, it does not allow to specify the architecture of the overall system which vi-
olates the criterion of enabling the user to carry out a complete system specification.
Furthermore it has a very narrow focus on surveillance systems which complicates the
usage in any other domain.

Another methodology using SoaML introduced by Elvesaeter and Carrez in 46| closely
follows the processes defined in the Model-driven architecture (MDA) approach published
by the Object Management Group. This process model defines several specification steps
within the computational independent model and the platform independent model of
MDA. Tool support is granted by the modeling tool "Modelio". Further, the approach
allows new developments as well as the transformation of legacy systems. However, the
development steps defined within the three main models are organized in a cyclic style.
This characteristic would make an integration of the process model into CPSSD quite
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complex.

One last approach using SoaML is called "Service-oriented Modeling and Architecture"
(SOMA) and is presented by Arsanjani in [9]. This phase-oriented lifecycle model makes
use of IBM’s "Rational Software Architect" but is in principal executable using any UML
modedling software. Besides the fact of using the "Business Process Modeling Notation"
(BPMN) to describe a first coarse-grained model of the system under development it is
free of any restrictions regarding the area of application. It is able to specify a complete
system including a detailed description of the Services used within, using concrete and
practical steps. Furthermore, it is variable in the starting point of a development process
and easily integrateable due to it’s well structured top-down approach. Just like CPSSD
it can be also divided into an application and a component level which simplifies the
integration even more.

The analysis of available model-driven development processes for Service-based systems
under the spotlight of the demands set up by the target domain has shown that SOMA
is the only approach to fulfill all requirements. For this reason SOMA is chosen to be
adapted to the SODA framework and then integrated into CPSSD.

3.5 OMG'’s Service-oriented Architecture Modeling Language
(SoaML)

The Service-oriented Architecture Modeling Language (SoaML) is a specification of
the Object Management Group (OMG) dedicated to allow a model-based specifica-
tion of Service-oriented applications. It is a profile of UML 2 which means that it
defines its own stereotypes that represent elements of SOA by deriving them from UML
metaclasses. The project to create this profile started in 2006. The first specification
published dates from December 2009 and was adopted from OMG in March 2010. The
current version SoaML 1.0.1 has been released in May 2012. This last version names
a total number of 19 different stereotypes. In this section only seven of them are in-
troduced since only this subset is used in SOMA and the SODA development procedures.

The first stereotype to be looked at is named Capability. A SoaML Capability is used
to identify Services needed within an application (see |[102]). In this sense they represent
some functionality. Another important characteristic of this stereotype is, that it does
not provide any hint or definition on how the functionality offered by this prospective
Service is realized and implemented. In doing so, SoaML establishes the principle of
separation of concerns. From an UML perspective a SoaML Capability extends the
metaclass Class as illustrated in Figure 3.2a.

Another important stereotype of SoaML is the Servicelnterface. It is meant to be
used as the definition of a Service (see |102]). Referring to the stereotype description
given in Figure 3.2b| the SoaML Servicelnterface extends two metaclasses. It receives
its internal structure from the UML 2 Class and its connectivity from the UML 2
Interface. SoaML allows both methodologies currently popular in Service-oriented
Computing: the contract-based and the interface-based approach. In the latter one all
information on what the Service offers and how it can be invoked is modeled within
the Servicelnterface. In the contract-based methodology this information is partly
moved to an additional artifact, namely a contract. SOMA and the derived SODA
development process model are using such contracts. Hereby the Servicelnterface is
only supplemented by standard UML 2 Interfaces. Using these Interfaces to represent
functionalities provided and requested by the Service helps to structure the specification.

Irrespective from the methodology used a Servicelnterface has to be logically con-
nected to the Capability and thereby to the functionality it offers. SoaML therefore
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provides a special stereotype called Expose. As pictured in Figure|3.3a it is an extension
of the Dependency metaclass. Its only purpose is to indicate that a Capability is rep-
resented by a specific Servicelnterface by connecting these two in the Servicelnterface
model.

When using the contract-based SOA methodology the SoaML stereotype ServiceCon-
tract is indispensable. It is "[...] the formalization of a binding exchange of information
[...] between parties [...|" ([102]). In this sense it specifies how a Service is accessed
and invoked. This is done through introducing two main specifications: the entities
participating in a Service call and the protocol of messages used. The former one is
done by introducing roles. Each role represents a participating party. In many cases
these roles are a provider and a consumer of a Service. Nevertheless the number of
roles could generally be much higher as additional roles, like for example brokers or
gateways, may be added. In SoaML roles can be presented by any of the stereotypes
Servicelnterface, Interface or Class. The roles determined are picked up in the second
part of the ServiceContract specification. In this step any adequate UML diagram
capable of defining a message exchange is used to specify the behavior of the Service at
its network interface. From an UML perspective a ServiceContract is an extension of a
Collaboration which allows to illustrate the interaction and cooperation between two or
more entities (see Figure 3.3b).

Another SoaML stereotype used in the SOMA process model is called Participant.

It is again an extension of UML’s metaclass Class as illustrated in Figure 3.4a. This
type is used to model a provider or a consumer of a Service. Thereby a Participant
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represents some involved party within a Service-oriented application (see |102]). SoaML
does not describe the characteristics of this stereotype in detail. Instead it leaves it open
to the developer whether this type describes for example a person, organization, system,
application or component. This is due to the fact that the SoaML profile is meant to
be used within a wide spectrum of domains. Any limitation of the character of such a
Participant would potentially lead to a reduction of the domains of usage. Irrespective
from this coarse-grained definition the semantics of introducing a Participant are quite
clear: It is used to establish an assignment of the Service specified to some entity. In
other words the functionality within an application is allocated to the different entities
available. Therefore Participants, which represent these entities, are equipped with
interaction points were Services are offered or consumed. The main type used to realize
such an interaction point is the SoaML stereotype Port. As Figure 3.4b|shows, a SoaML
Port is an extension of the UML stereotype Port. At the same time two specialized
types namely Request and Service are introduced. In doing so the direction of Service
provision can be modeled. However, it is still up to the developer to introduce this
additional information using Request and Service or to leave it open using the more
general Port stereotype when specifying an interaction point of a Participant.

One last SoaML stereotype to be mentioned here is the ServiceArchitecture. As shown
in Figure |3.3b|it is an extension of Collaboration. Unlike the other types presented here
this one does not focus on a single Service or entity but on the overall application. It
brings together the participating parties and models how they interact with one another
in a formal high-level view. Hereby the parties are represented by Participants. Each
Participant may offer or request a number of Services modeled by its Ports and the
Servicelnterfaces assigned to them. The interaction of the Participants is specified by
introducing the ServiceContracts. Within these ServiceContracts each role is assigned
to a Servicelnterface of a Participant. By creating such a ServiceArchitecture using the
previously defined Participants and ServiceContracts a functional specification of the
Service-oriented application is created.

The SoaML stereotypes introduced in this section build the basis for the SOMA
methodology as well as the SODA development process derived from it. The remaining
sections of this chapter will introduce how these types are interpreted and used within
a development procedure.

3.6 IBM’s Service-oriented Modeling and Architecture

Service-oriented Modeling and Architecture has been published by IBM employee Ar-
sanjani in [9] in 2008. It is based on the UML profile SoaML introduced earlier in this
chapter. To support the developers in creating SoaML models Arsanjani recommends
the usage of IBM’s modeling solution Rational Software Architect (RSA). However, any
other SoaML or UML tool can also be used.
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The process model consists of seven phases. Besides the first two of these, which are
carried out simultaneously, all phases are executed consecutively. Figure 3.5 illustrates
these development steps. Within the first step called Business modeling and transforma-
tion a first coarse-grained and semi-formal description of the system under development
is created. The goal of this phase is to get a first idea of the functionalities of the system
and how they interact. As IBM mostly used the SOMA approach to develop enter-
prise software systems it is suggested to use the Business Process Modeling Notation
(BPMN). BPMN is a graphical notation to model business procedures and transactions
within an organization. In SOMA these procedures are transferred into Services. Figure
3.6 shows a BPMN model of a very simple business process. In this example a bill is
prepared and printed. The overall transaction is enveloped by a so called pool. This
pool is subdivided into lanes which represent for example different parties within this
transaction. In the example given the pool is called "Print a bill". The two lanes are
named "Content Generation" and "Printing" respectively. The functionality needed to
carry the overall transaction is symbolized using activities. These activities are attached
to the parties that execute them by arranging them on the corresponding lanes. A
sequence flow connects the activities and thereby defines the order in which they are
carried out. The flow is started by a start event and completed by an end event. In the
example given in Figure 3.6 two activities are defined. The first one creates the content
of the bill while the second one handles the printing.

In the parallel phase Solution Management a project management process is defined
and established. Furthermore first technical decisions are made like for example the
selection of the platform to host the new system. After finishing both of the first steps
the third phase called Identification is started. In this phase potential candidates for
Services are identified. In order to do so, SOMA names a number of different approaches.
Most of them are focusing on business processes. One very practical technique makes
use of the BPMN model created earlier in the development process. Thereby each
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lane is extracted and converted into a SoaML Capability. Furthermore, each activity
attached to the lane is transferred into a method within the newly created Capability.
The sequence flow given in the BPMN description is also transferred into SoaML. This is
done by connecting the Capabilities through use dependencies. Figure 3.7 shows such a
Capability model for the printing example. In the picture, the lanes and activities of the
BPMN model have been converted into SoaML Capabilities and methods respectively.
The sequence flow of the BPMN model which led from the content generation activity to
the print activity has been transferred into the use dependency connecting the printBill
and the generateContent Capabilities. The approach used by SOMA to transfer the
lanes which represent acting parties into Capabilities leads to a quite coarse-grained
model containing a low number of rich and complex Services.

Having identified the potential future Services and modeled them as SoaML Capa-
bilities the SOMA process model passes on to the Specification phase. As it is very
extensive it is split up into four consecutive sub phases namely the specification of the
Servicelnterfaces, ServiceContracts, Participants and ServiceArchitectures.

The Servicelnterface is the gateway of the Service to the outside world. They encap-
sulate the complexity of the Service logic while allowing standardized access to it. In
SOMA the Servicelnterfaces are directly derived from the Capabilities. This is done by
using SoaML’s Expose dependency which indicates that the inherent functionality of
the Capability is offered through the associated Servicelnterface. As Servicelnterfaces
can be extended by standard UML Interfaces SOMA uses this ability to structure the
different functionalities of the Service. Therefore SOMA proposes to create additional
Interfaces and transfer the methods executing some functionality into these entities.
It also suggests to add Interfaces for those functionalities that are not implemented
within the Service but need to be called externally. As a summary SOMA tends to
be quite vague at this point which gives the developer a high degree of freedom when
modeling the Servicelnterfaces. In this sense, the model pictured in Figure |3.8| repre-
sents only one possible way of modeling the Servicelnterface of the exemplary printBill
Capability. It uses the Expose dependency to create a logical connection between
the Capability and its Servicelnterface. Furthermore two Interfaces are attached with
the use dependency. The Interface on the left hand side symbolizes the functionality
of the Service while the one on the right hand side describes the need for another Service.

In a next step the ServiceContracts are defined. This is needed since SOMA uses a
contract-based specification approach rather than an interface-based one which would
be also possible using SoaML. In this contract-based specification details of the protocol
to access the Service are described in the ServiceContract rather than being directly
attached to the Servicelnterface. The contract specification starts with the definition of
the roles within a Service call. The number of parties involved is theoretically unlimited
as described in section 3.5. However, in a standard case there are at least a provider
which is the Service itself and a consumer which is the calling instance. In broker-based
approaches a third role may mediate between these two parties. The stereotypes used for
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Figure 3.8: A possible model of the Servicelnterface of the Service to print a bill

these roles are not narrowed down by the SOMA methodology. Thereby SOMA allows
all possibilities defined by SoaML which names Servicelnterface, Interface and Class.
Taking these circumstances into account the decision to introduce only two roles and to
use Interfaces to represent them as pictured in the upper part of Figure 3.9/ can again be
seen as only one option among many others. In a second step the protocol to access the
Service is defined into the ServiceContract. Again, SOMA does not provide any details
on the type of diagram to be used. Instead it refers to the SoaML specification and
hereby allows any adequate UML diagram that is able to specify a network protocol.
Hereby the style and the level of detail of the protocol specification remains completely
open. The lower part of Figure [3.9] shows a very simple description using an UML
sequence chart.

The next step within the specification is used by SOMA to assign the Services to par-
ticular hardware units. Therefore one SoaML Participant is introduced for each future
hardware entity of the system. These Participants are equipped with interaction points
which bind a Servicelnterface. By attaching these interaction points, including their
bindings to Servicelnterfaces to a Participant, the functionality offered by the Services
is assigned to the hardware entities available. Figure 3.10| illustrates the assignment
within the simple example introduced earlier. It shows two SoaML Participants namely
"BillPrinter" and "BillContentProducer". Each of them holds one SoaML Port which
themselves encapsulate a Sevicelnterface each.

In a last specification step the overall architecture of the application is modeled. In
SOMA this is done by creating a SoaML ServiceArchitecture. This stereotype brings
together the Participants with the Servicelnterfaces attached and defines their relation-
ships through the ServiceContracts. In the model given in Figure [3.11] both Partici-
pants specified in the last step are included. They are connected to each other using
the GenerateBillContent contract created in the last step of SOMA. Thereby the Bill-
ContentProducer Participant takes the role of the provider while the BillPrinter is the
consumer in this relationship. In addition, a third party is introduced into the archi-
tecture. The UML Actor named ServiceRequester is used to illustrate that the overall
application is triggered by an external party. The specification of the ServiceArchitec-
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ture finishes SOMA’s Specification phase. In doing so it also completes the specification
of the functional requirements. The remaining three phases shall be introduced here
only very shortly since they are not used in SODA’s development procedure. In the
Realization phase the focus swaps towards the non-functional requirements of the appli-
cation. This includes for example the definition of communication layers. As soon as the
non-functional specification is done the developers start to write or generate code and
thereby move on to the Implementation phase of SOMA. Finally, in the Deployment,
Monitoring and Management phase the developed application is launched and observed
to ensure it is working correctly.

3.7 Summary

This chapter summarized the state-of-the-art in model-driven development of Service-
oriented systems. Such a model-based approach brings clear benefits to the development
of DDAS: First, it introduces abstraction which reduces the complexity in each devel-
opment step. Second, a common language is defined that simplifies the work within
multi-disciplinary development teams. The quality requirements of this domain are met
by decreasing the amount of error-prone routine work and introducing online verifica-
tion. By making the development process faster and more efficient the design costs can
be reduced especially when creating families of systems with a high variance.

After introducing the widely used V-model and its automotive derivation CPSSD
several existing development frameworks for Service-based systems have been analyzed
using six domain specific requirements. Thereby IBM’s SOMA methodology was identi-
fied to build the basis of the SODAdev development procedure. Finally, SOMA as well
as its underlying modeling language SoaML have been introduced.

The considerations done in this chapter are picked up in chapter 5/ and taken into
account when introducing SODA’s development process SODAdev.
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4 A Reference Model for SOA in the
automotive domain

’Any sufficiently advanced technology
is indistinguishable from magic.’

Arthur C. Clarke!

4.1 Introduction

The term of a reference model does not feature a clear separation within the research
community. In this sense, there is a need to specify what a reference model in this
context and why it is needed here. According to David Hollingsworth (|69]) a reference
model is a model describing "characteristics, terminology and components, enabling the
individual specifications to be developed". In this sense a reference model introduces
the important ideas and principles of a class of systems. Furthermore, a terminology
is defined that simplifies the exchange of information. Besides, it acts as a blueprint
for this class of systems that can be applied to a concrete problem to create a specific
implementation as it describes the potential components of such a system and how they
relate to each other. August-Wilhelm Scheer agrees with this in describing a reference
model as a "starting point for the development regarding a concrete problem" (see [118]).
The reference model defined in this thesis bases on the definitions of Hollingsworth and
Scheer.

The scientific community as well as companies working within the SOA published
numerous models for Service-oriented systems in recent years. Some of them, such as
the zapthink Service-oriented Architecture Roadmap (see [119]), make use of a phase-
oriented approach to introduce Service-oriented concepts. Other models are system
models that describe the SOA-components within the overall system architecture of a
software solution. Examples of these system models for SOA can be found in the ESOA
project published in [128] or in Enterprise SOA Maturity Model published by Durvasula
et al. in [42]. A huge number of models regarding Service-oriented Computing matches
the category of meta models. Some of them try to structure the terms and concepts
of Service-oriented Architecture for a specific domain. One example therefor is the
so called Cloud-SOA Meta Model presented by David Sprott (see [124]). Other work
targets on a consistent concept definition in order to combine SOA with platform-based
computing (see e.g. [18]). But most of the meta models published are serving as
the basis for a Service-oriented modeling language. Examples therefore are the meta
model for SoaML (see [101]) or the one for the language UML4SOA which is also a
Service-oriented modeling language based on UML (see [92]). Another group of mod-
els can be described by the term component model. These models introduce several
components of a Service-oriented Architecture and specify the relations between them.
Examples for this class of models are the OASIS reference architecture (see [48|) and
the W3C Web Services Architecture (see [26]). All the types of models named above
focus on a single characteristic of a Service-orient system. On the contrary, reference
models combine much of these models as they integrate terms and concepts as done in

YProfiles of the future, see [37]
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meta-modeling and architectural elements as described in system and component models.

The number of complete reference models in the SOA world is quite small. Within
this work, four of these models have been identified and analyzed. The first one has
been developed by Mark Wilkins and his colleagues at the Oracle Corporation (see
[148]). The so called Oracle Reference Architecture defines all used terms and principles
and suggests a so called logical architecture. This architectural blueprint defines several
layers and specifies the relationships between them. A similar model has been presented
by Heather Kreger. She is an associate of the IBM Software Group and describes
the Web Services Conceptual Architecture in |79]. As it has been done in the Oracle
Reference Architecture, this approach defines used terms and principles as well as a
reference architecture in form of the IBM Conceptual Web Services Stack. Furthermore,
it also demonstrates how this reference model can be integrated into the e-business
domain. Another reference model has been described by Farcas et al. in their approach
called Rich Services (see |49]). The focus of this model lays on the conversion of legacy
systems that are build using a component-based approach into Service-oriented appli-
cations. Additionally to the definitions done in the two approaches explained earlier,
a detailed development process has been designed that supports the conversion. The
last model to be mentioned here is the OASIS Reference Model for Service-oriented
Architecture (see [88]). This joint work of many big players within the software industry
complements the OASIS reference architecture described earlier by the definition of
clear terms and the introduction of many concepts used within SOA-based systems.
It also tries to reference itself to given industrial norms like the W3C Web Services
Architecture. Furthermore, it includes an information model containing structures and
semantics of the data packets exchanged between Services. While all of these reference
models describe their specific ideas on what Service-oriented Architecture is and what
terms, concepts and components should be used within it, none of them considers the
specific needs and goals of the automotive domain. If one would try to adapt one of
these models to DDAS this would rather confuse the scientific community. Instead, a
unique reference model for the SODA framework has been developed. It will constrain
itself to those concepts, terms and components that are actually needed to achieve the
goals set. Thereby it will be clearly structured and well tailored to the special needs of
Distributed Driver Assistance Systems.

The reference model for SOA in the automotive domain follows the definitions of
Hollingsworth and Scheer. Within this chapter, a terminology for the usage of Service-
orientation in this domain will be defined. This terminology will help to describe the
concepts and components used for the SODA framework. Furthermore, the reference
model for the automotive domain will propose an architectural blueprint that can be
used as a starting point within a development process for a concrete implementation in
the form of a reference architecture.

4.2 The SODA reference model

This section will introduce the SODA reference model. The first part of this model
describes the terms and concepts used within the framework. This important basis is
introduced in section [4.2.1. In the second part the architectural blueprint of SODA
is described. As the SODA framework has been developed for the specific purpose
of supporting DDAS, the concepts used are derived from the characteristic needs of
such systems. These needs are expressed by a number of goals which are presented in
subsection [4.2.2. The goals introduced there are matched with Service-oriented concepts
in order to fulfill them. Subsection [4.2.3 illustrates this relationship between the goals
and the concepts. In a next step, the concepts introduced are realized by software
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components. These components as well as the architectural blueprint for the SODA
Services which they build are described in subsection 4.2.4.

4.2.1 Terms and concepts of Service-oriented Computing

The central entity of every Service-oriented system is the Service. Within this work
the definition of the term Service is derived from the SOA definition given in section
1.3| of this thesis: a Service is a self-contained entity that encapsulates functionality
behind a well-defined interface. This interface ensures that the entity can be invoked
in a standardized way and discovered within the network by other participants of a
communication system.

Besides this basic definition, Services can be characterized by several properties. First
of all one can distinguish between an Abstract Service and a Service Instance (see [150]).
An Abstract Service describes a specific functionality as well as the interface to access
it. However, it is a conceptual entity which is not actually implemented. In contrast, a
Service Instance is a concrete implementation of an Abstract Service. It is executable
and available within the system.

Another classification that can be made is the type of a Service. Derived from the generic
loop of informing DAS as presented in section [1.1.1] there are three distinct types:

e Source Services
e Sink Services

e Data Processing Services

A Source Service encapsulates a functionality that creates some kind of data. This

can be for example a Service reading information from a database or a sensor measuring
a physical value. The complement entity is called Sink Service. This kind of Service
makes use of some data to realize a specific functionality. In a system containing a
human machine interface this functionality can be for example to output a notification
to the user. Data Processing Services are encapsulating functionality that makes use of
some data to create a specific benefit or enhance the data with additional information.
Such a Data Processing Service could for example host a functionality that checks a
customer address retrieved from a Source Service for inconsistencies before handing it
over to further processing or a Sink Service.
Another distinction that can be made concerning where the functionality is actually
located. As mentioned earlier, a Service encapsulates some functionality and in a stan-
dard case this functionality is directly located within the implementation of the Service
Instance in form of a Service Logic. However, there are other possibilities, too. One of
them is called a Service Broker (sometimes referred to as Technology Gateway Services
([50]). This kind of Service does not actually contain a Service Logic but accesses an
external functionality whenever it is invoked. Introducing this Service type allows to
integrate non-Service-based functionality into a Service-based application. Hereby, the
Service Instance acts as a broker that offers and delivers the functionality. This allows
for example to integrate legacy components into the system. Another possibility of using
external functionality instead of a Service Logic is realized by Service Gateways. Just as
the Service Brokers, these entities do not contain an actual Service Logic. The difference
between these two types is that the functionality used by a Service Gateway is located
in a different network not accessible by other Services of the system. In this sense, a
Service Gateway does not only provide access to a non-Service-based functionality but
also to entities not attached to the network.
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Figure 4.1: Relationship between the terms and definitions of SOA used in this work
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As illustrated in Figure 4.1], each Service owns a Service Contract. This Service Con-
tract describes how the functionality contained in the Service can be accessed by another
unit. It describes the interfaces as well as the behavior of a Service in different scenarios
of interaction. One of these scenarios is when a participant within a system searches for a
functionality. In a Service-oriented approach this is carried out by the concept of Service
Discovery. The main idea behind this principle is, that each functionality is search-able
and detectable by sending out specific messages called Discovery Requests. If a Service
Instance receives a message that contains a request to a functionality implemented in
its Service Logic, it answers by sending a Discovery Response. This response is received
by the original initiator which then can decide whether to use this Service Instance
or not. Another Service-oriented concept described within the Service Contract is the
Service Interface. It offers access to the actual functionality of a Service and thereby
encapsulates its implementation called Service Logic. This Service Logic is responsible
for generating a real world effect. This real world effect is also described in the Service
Contract in form of the identification of the functionality encapsulated by the Service.
A last Service-oriented concept used is the so called Quality of Service (QoS) Interface.
The way of interacting with it is also described in the Service Contract. This QoS
Interface offers access to the non-functional characteristics of a Service Instance that
are decisive for the quality that can be offered.

As illustrated in Figure 4.1, a Service can be part of a Service-oriented application.
Such an application can be described as a workflow combining several Services to create
the overall functionality. Therefor, the concept of (re-)composition is used which discov-
ers and selects a number of Service Instances to build the actual application. According
to Wu et al. in [150|, a Service-oriented application can be described by three different
graphs:

e Service Function Graph
e Service Selection Graph
e Service Execution Graph

The Service Function Graph contains the abstract workflow of an application by
describing what kind of functionality is needed and how the different functional compo-
nents work together. Therefore, this graph contains a workflow consisting of Abstract
Services. In the event of a (re-)composition, the system executes a Discovery for each
of these Abstract Services. The result of this procedure is a list of available Service
Instances. This list builds the so called Service Selection Graph a graph containing all
possible configurations of the system regarding the currently available Service Instances.
Within the process of Service selection this graph is analyzed and the optimal combi-
nation of Service Instances is determined. This selection procedure creates the Service
Execution Graph which only contains those Service Instances that have been selected.

Regarding the (re-)composition procedure itself, Josuttis distinguishes between two
different approaches (see [74]): orchestration and choreography. The former method is
named after the way a orchestra is lead by its conductor. In this approach the conductor
is able to overlook the whole scenario and guide the members of the orchestra. Applied
to a Service-oriented composition procedure, this means that there is a central unit that
has control over the whole process of Discovery and selection. Its counterpart is the so
called choreography. Derived from the idea that trained dancers are able to carry out
the movements within a choreography without being guided by a central instance, this
approach bases on the autonomy of the individual Service Instances which compose the
overall application in a collaborative manner. Hence, no central instance is needed to
carry out this approach.
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4.2.2 Goals of introducing Service-orientation into DDAS

The step from classic, static DAS towards Distributed Driver Assistance Systems raises
several problems as described in section 1.2. The detection of these complications
refers to the first process step of the Design Research methodology named Awareness of
Problem (see Figure 1.3). In order to overcome these issues the principles of Service-
orientation are to be used. This sets up distinct goals that have to be fulfilled by a
framework tailored to DDAS. These goals are:

e Automatic re-configuration

Visibility of the functionality

Accessibility of the functionality

Measurability
e Real world effect

e Location transparency

The goal to achieve an automatic online re-configuration is a central issue within a
DDAS. Tt expresses the need of a mechanism that reacts to changes of the software and
system architecture of the assistance system. This mechanism has to carry out its task
self-contained and without the intervention of the assistance user or a developer. This
demand sets up the need of a degree of autonomy, provided by the SODA framework,
that realizes online re-configuration automatically.

The second goal defined called visibility indicates the need for each functionality
to be detectable by other entities within the system. This is important, since the
determination of what kind of sensors, actuators or data processing units are available
is a basic precondition in order to be able to carry out automatic re-configuration. The
visibility of a functionality within the system allows to detect the currently available
entities. This information can then be used by the system to determine what kind of
assistance system can be offered to the user.

Another goal to be fulfilled is the accessibility of each functionality. After detecting
its presence it must be assured that it can be invoked and used by other units. This can
be done for example by defining a strict interaction protocol or by making the behavior
of the interface retrievable online.

Whenever a system needs to be re-configured at runtime several decisions have to be
made. One of these decisions is the selection of a functionality whenever there is more
than one entity available capable of offering the requested output. This sets up the goal,
that each functionality should be measurable. In other words, another entity should
be able to request information from a functionality that reflects its performance. By
providing this information a functionality can be compared to other units which allows
to improve the selection process within a re-configuration scenario.

Another goal that has been set up for the introduction of a framework capable of han-
dling a DDAS is the demand for a real world effect. This means, that each entity on the
system should actually produce some output that changes the way the overall assistance
system behaves. In the case of a sensor this would be the determination of the current
value for the dimension under observation. An actuator may physically change the state
of the system during the execution of the functionality. A data processing unit may
enhance the data collected with additional information or may use it to detect specific
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states of the overall system by analyzing a potentially high number of data streams.
While the kind of effect may vary in a wide range the framework must ensure that
there is an actual effect of the functionality regarding the assistance system. However,
since such a middleware is agnostic regarding the functionality entities attached to it,
correctness is not within its scope.

The last goal presented here considers the reachability of a functionality. Despite
the fact that an actual functionality is physically bound to the hardware unit hosting
it, it should be reachable from anywhere within the system in the same way. This
is ensured by defining the goal of location transparency. In other words, the way a
functionality is invoked shall be independent of the physical location of the caller or
the requested component. This demand is crucial when defining a system with a high
degree of distribution as common in DDAS.

4.2.3 Concepts of Service-orientation used within SODA

In order to achieve the goals set up in subsection 4.2.2 the Service-oriented design
paradigm has been adopted to the DDAS domain. However, the idea was not to simply
adopt an existing framework to this new domain. This approach would not have re-
spected the specific characteristics of automotive applications such as the usage of non
IP-based network systems or the high cost pressure that calls for a minimized demand
for resources. Instead, the SODA framework was created by analyzing the goals of the
domain of DDAS. These goals were matched by Service-oriented concepts. While the
following chapters within this work present the customization and implementation of
these general concepts to this domain, Figure 4.2 illustrates the relationship between
between goals, concepts and components within the SODA framework.

The first goal described in subsection 4.2.2|is to automatically re-configure the DDAS
at runtime. The Service-oriented concept that is able to handle this issue is composition.
Thereby, the system selects a group of Service Instances available at the very moment
to build the assistance system. While in some implementations of Service-oriented
Architecture, this composition is done at design time by a group of software engineers,
in the domain of DDAS this has to be carried out automatically and online. The details
of how this concept is applied within SODA is presented in chapter 6. One impor-
tant requirement to be able to do automatic runtime re-composition is the existence
of a mechanism that detects all currently available functionality. In Service-oriented
Computing this mechanism is called Service Discovery. It supports the re-composition
mechanism in providing all necessary information about what functionality in form of
Service Instances is available at the very moment. At the same time, Service Discovery
matches the goal of visibility. By being detectable through Service Discovery, all func-
tional entities encapsulated in Service Instances are visible for the other participants
within an application.

Another goal defined in subsection 4.2.2 is to make a functionality easily accessible.
In Service-oriented Computing this is achieved by introducing two concepts: the Service
Interface and the Service Contract. The former one is a well defined interface that
encapsulates the Service Logic and offers standardized access to the outside world. The
interaction between such a Service Interface is usually based on messages, so called
Service calls. The interaction is hereby initiated by some entity that sends a Service
request to a Service Instance. This Service request describes what functionality has to be
executed. Furthermore, it may contain additional information such as parameters that
influence the execution of the Service Logic or data that needs to be processed by the
Service Instance. After the execution of the Service Logic the Service Instance answers
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the Service request by sending a Service response to the calling instance. This Service
response may contain a simple acknowledgment confirming that the Service Logic has
been executed. In another possible case this message contains the result of the execution
in form of a data section. One additional Service-oriented concept needed to achieve
accessibility is the Service Contract. It describes the interaction protocol between the
requesting entity and the Service Instance which ensures compatibility between both
instances. Chapter 5| explains in detail how these two concepts are integrated into the
SODA framework.

The fourth goal within the list calls for measurability. This is achieved by introducing
a Quality Model that defines a Quality of Service (QoS) parameter to describe the
performance of the entity in a standardized way. It is important since it allows to make
decisions during the selection phase of a re-composition procedure which leads to gen-
erating the best solution currently available. The principles, structure and propagation
mechanisms developed for the QoS implementation within the SODA framework are
described in section 4.3. The goal of achieving a real world effect is realized by intro-
ducing the concept of the Service Logic. This entity contains the complete functionality
of the Service Instance. It encapsulates it from the rest of the Service implementation
and thereby achieves the separation of concerns. The Service Logic makes use of stan-
dardized interfaces to interact with other parts of the Service Instance which allows to
easily re-locate it and simplifies collaborative development.

Finally, the last concept introduced in Figure |4.2|is Service-based addressing. Service-
based addressing introduces a labeling system which allows to directly approach a
Service Instance without any additional information about the hosting hardware. Such
hardware independent addressing realizes the goal of location transparency as it is
independent from the physical location of the functionality. The details on how this
concept is implemented in the SODA framework are described in chapter |7.

4.2.4 A Reference Architecture for automotive SOA

After correlating Service-oriented concepts to the goals to be achieved by the SODA
framework, the reference architecture of a SODA Service Instance can be defined.
This is done by deriving software modules from the concepts introduced. Figure 4.2
illustrates the relationship between the goals defined, the concepts achieving them and
the components implementing the concepts.

As illustrated in Figure [4.3, most of the implementations of the used concepts are
assigned to the so called SOA Middleware layer. Hence, this part of the architecture
is handling all Service-based mechanisms. However, there are some exceptions, too.
One concept implementation that is not assigned to this layer is the Service Logic
implementation. As this component contains the functional software it is assigned to
the application layer. Below the SOA Middleware the Communication Model takes
place. This entity implements the Service-based addressing. Besides the central ad-
dressing scheme module, it also hosts executable code for handling the adaptation
of the Service Instance to the network system as well as a transport protocol that
implements the segmentation and re-assembly of large packets and the transmission
arbitration mechanisms. This Communication Model is explained in detail in chapter
7. Underneath this entity the Hardware Abstraction Layer (HAL) offers interfaces to
access the hardware. This includes an interaction point to the communication hardware
such for example CAN or LIN. It also contains access to the timing hardware and the
input and output pins of the ECU. The HAL is also used by the components arranged
besides the SOA Middleware and the Communication Model. One entity that belongs
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Figure 4.3: Overview of the SODA reference architecture.

to theses components is the Scheduler that controls the execution of the different
software modules. A second one offers a handle to the input and output pins directly
to the Service Logic implementation which allows to actually trigger hardware units
by the software functionality encapsulated by the Service implementation. The third
component assigned to this block is the operation system (OS).

As stated before, the SOA Middleware layer holds most of the components that imple-
ment the introduced Service-oriented concepts. One of these components is the so called
re-composition manager. This software module is attached to each Service Instance
and handles the re-configuration events that affect this instance. Hence, it implements
the concept of automatic re-composition. As described in more detail in chapter 6, the
re-composition manager is executed in every event of re-configuration. It makes use of
specifically developed algorithms to compose an overall DDAS that provides the best
possible quality. Another component assigned to this layer is the Discovery Interface. It
contains the implementation of the concept of Service Discovery and generates as well
as answers Discovery request messages. The component called Contract implements
the mechanisms behind the Service-oriented concept of a Service Contract. Another
component located here is the Service Interface. This entity contains all necessary
code to access the functionality contained in the Service Logic implementation. In
combination, the Contract and the Service Interface, are realizing the accessibility of
the Service Instance from the outside world. Finally, the Quality of Service Interface
implements the Quality Model used to satisfy the call for measurability. It provides an
interface to retrieve the quality metrics of the Service Instance. Furthermore, it contains
mechanisms to compute these metrics and to request it from other entities within the
system. Section |4.3| explains this component as well as the mechanism it implements in
more detail.

4.3 Quality Model

The Quality Model developed for the SODA framework describes the characteristics
as well as the propagation and computing mechanisms used. In Service-oriented Ar-
chitectures Quality of Service parameters are used to illustrate the performance of a
Service Instance. While the functional aspects of two Service Instances of the same
Abstract Service are identical, the quality they are able to provide may differ signifi-

95



4 A Reference Model for SOA in the automotive domain

cantly. However, as the system seeks to offer the best end-to-end performance possible
it needs to be able to identify these quality differences of the Service Instances at
runtime. This circumstances have brought up the usage of Quality of Service Interfaces.
These interfaces provide mechanisms that allow an external entity to request the QoS
parameters of a Service Instance.

4.3.1 The SODA Quality vector

When defining such QoS parameters the developer has to concern about several aspects.
One of these is which metrics should be used to characterize the instance. These met-
rics may include timing issues, availability, accuracy besides many other possibilities.
Another important decision is how many different aspects are to be incorporated when
making a selection decision. Using several independent QoS parameters to decide on
which Service Instance is the best one sets up a NP-hard problem (see e.g. [84],]8]). On
the other hand, restricting it to only one characteristic may lead to Service Execution
Graphs that suffer from quality issues within those metrics that have not been consid-
ered during the selection procedure.

In the SODA framework a combined approach is used. Here, a single quality vector
Q(s) is defined. This quality vector holds three components. The first one of these,
named Qg(s), represents the safety and security characteristics of the Service Instance.
These may include confidentiality, integrity, compliance to standards, safeguarding
against failure and many more. The exact composition of the component is not defined
by the SODA framework. Instead, it has to be defined whenever a new Abstract Service
is modeled. All Service Instances implemented to match this Abstract Service have to
ensure compliance to the composition defined here. This approach of leaving the exact
definition open to the developer of the Abstract Service introduces a functionality-based
scheme. For each functionality this component may look different while it has to be
equal within every Service Instance implemented.

. Qs(s)
Q(s) = | Qr(s) (4.1)
Qr(s)

As illustrated in Equation (4.1) the second component of Q(s) is named Qr(s). This
parameter represents the timing characteristics of the Service Instance. The metrics
used to assemble it may include response times, maximum or average age of data, cycle
periods or other issues. Likewise to Qg(s), this component is also functionality-based
as its exact composition is defined during the development of a new Abstract Service.
This ensures flexibility which is important since for some Abstract Services such as
sensors the age of the data requested is important while for other entities, such as
data processing Services, it is more important how long the Service Instance needs to
compute the desired effect.

The third component of the quality vector, named Qp(s), describes the functional
performance of a Service Instance. This is again a parameter that strongly depends on
the type of functionality that is encapsulated in the Service. As an example, for a sensor
entity this component may particularly represent the accuracy or repeatability. As a
sink Service such as a display may be characterized by completely different metrics such
as resolution or refresh rate. In order to allow this high diversity, the Qr(s) component
is also defined at design time of the Abstract Service rather than being fixed within
the framework. All three Components of the quality vector have in common that lower
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numbers mean higher quality.

4.3.2 Propagation and calculation of the QoS parameter

As stated earlier it is problematic to base a Service selection decision on a multitude of
quality metrics. Besides the fact that there is no longer a clear decision to be made, the
computing power needed to execute the selection algorithm may be quite exhausting.
This leads to the conclusion, that the SODA quality vector, as it has been presented in
Equation (4.1), needs to be simplified to a single number before it is handed over to the
selection procedure. In the SODA framework this number is called the QoS parameter.

The QoS parameter is calculated by using the Simple Additive Weighting (SAW) pro-
cedure. This method multiplies each parameter that is input with a specific weighting
factor before adding all results of this multiplication up. The sum computed hereby is
then divided by the number of parameters used, resulting in an average value. Equation
(4.2) illustrates the principle behind the SAW technique with weighting factors w and
values v.

Vi = m [67] (4.2)
i

This principle is adopted to the SODA framework. It is used to calculate the single
quality parameter named QoS. By using SAW, the three components of the quality
vector are combined and averaged to ensure simple calculations when during Service
selection. Each of the three components is multiplied to a specific weighting factor.
This weighting factor is decisive for the effect of each component on the resulting QoS
parameter. Equation (4.3) illustrates the SAW procedure used within SODA.

_wg * Qg(s) +wr x Qr(s) +wp x Qp(s)
B 3

The definition of the three weighting factors wg, wr and wg are again not defined
within the SODA framework. Just as in the case of the composition of the components
of the quality vector, this would be quite restrictive. Instead, the definition of these
weighting factors is delegated to the developer of the DDAS that is built using the
SODA framework. This application-based approach ensures, that the selection process
can be adjusted to meet the specific requirements of the driver assistance application
developed. In the case of a DDAS directly interfering with safety critical parts of the
car, the weighting factor wg would be significantly high compared to wp and wpg. In
another example the system under development might be purely informing but requires
a high responsiveness to meet the drivers needs. In this case wp would be dominating
to ensure composing a DDAS having a high user acceptance.

Since the weighting factors are not fixed within the SODA framework they have to
be propagated at runtime. This is done by adding the values selected for wg, wp and
wr to the data section of the Discovery request message. Thereby each requesting
entity can focus on specific aspects when searching for suitable Service Instances. The
transmitted weighting factors are then used by those Service Instances matching the
Discovery request to generate their QoS. If one of these Service Instances makes use of
other entities itself, it forwards the weighting factors by sending out Discovery request
messages containing these numbers on its own. Hereby, the values for wg, wr and wg
of an initial request are propagated to all members of the Service Selection Graph.

QoS

(4.3)
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Figure 4.4: Example of a selection decision for a Service Instance having two Requested
Interfaces

4.3.3 Calculation of the end-to-end QoS of an application

In order to achieve the best performance of an application, it is necessary to determine
not only the QoS values of the Service Instances but also the end-to-end performance
of the overall Service Execution Graph. Furthermore, the composition algorithm as it
is described in chapter |6 is based on combined QoS parameters of sub-graphs of the
application to execute the Service selection.

The end-to-end QoS calculation is based on two simple rules:

Rule 1. For each requested Abstract Service, the Service Instance offering the lowest
end-to-end QoS is selected.

Rule 2. The end-to-end QoS of a Service Instance is calculated by adding the highest
QoS of the selected Service Instances to its own QoS.

Rule 1] describes which Service Instance is chosen when several instances match the
functional criteria of a requested functionality. It says, that whenever there is a selection
to be made, the one Service Instance offering the lowest end-to-end QoS is selected.
The graph given in Figure 4.4 illustrates this principle. The Service Instance that has
to select other entities is named A. Its own computed QoS value is 2. Service Instance
A owns two interfaces that make use of other Services. After executing the Service
Selection, it identified two Service Instances for each of these interfaces. The first
interface, that requests an Abstract Service called B, discovered the Service Instances
B1 and B2. While the QoS value of B1 equals to 7, the one of B2 is 9. For the Abstract
Service C the Service Instances C1 and C2 have been detected. These entities provide
a QoS value of 11 and 10 respectively. As stated in rule 1, for each interface the Service
Instance providing the lower QoS value is selected. Figure 4.4 indicates this decision
using the grey out effect for B2 and C1.

The second rule describes the procedure when computing the end-to-end QoS value.
It states, that in order to determine the overall QoS of a Service Instance, the entity
has to add its own QoS value to the highest QoS within the instances selected for its
interfaces. This is due to the fact that for all three components of the quality vector,
a single instance of bad quality within the application workflow lowers the end-to-end
quality significantly. For example, one entity within the workflow that suffers of long a
response time would highly slow down the whole application. The same is true if the
accuracy of data is considered. A single instance within the data processing flow adding
noise to a data stream would add imprecision no matter how accurate the remaining
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entities are. In the field of safety and security that one single weak point could screw
up all effort that has been undertaken to safeguard the system. This rule can be again
explained using Figure |4.4. After executing the selection as described earlier the Service
Instances to be used by instance A are B1 and C2. B1 delivers its functionality with a
QoS value of 7. The quality parameter reported for C2 is 10. Following rule |2, Service
Instance A adds its own QoS, which is 2, to the one of C2. This calculation results in
an end-to-end QoS value of 12. If Service Instance A is requested to publish its overall
QoS, it will use a QoS value of 12 to indicate the quality of service it is able to deliver.

4.4 Summary

The SODA reference model as it has been described in this chapter defines the terms,
concepts and components used within the framework. It also specifies their relations
to one another and derives an architectural blueprint of a Service. In order to develop
this model, several other models targeting at Service-oriented Architecture have been
analyzed. These models are belonging to one of the categories phase models, system
models, meta models, component models or reference models. It has been showed that
reference models combine the different aspects included within the other models and
combine them into a single structure. However, the reference models for SOA that have
been examined within this chapter do not fit the needs of DDAS and the automotive
domain. For this reason a unique reference model for the SODA framework has been
developed. It is including all the terms, concepts and components used. At the same
time it constraints itself to keep the structure tailored and avoid any overhead.

The development of the SODA reference model followed a clear and structured line of
action. It started with the definition of the goals of the framework which are expressing
the needs of Distributed Driver Assistance Systems. From these goals, Service-oriented
concepts to achieve them were derived. In a further step components were defined.
These components implement the concepts while keeping a clear structure and ensuring
traceability. In a last development step, these components were arranged to build a
reference architecture which serves as an architectural blueprint. An actual Service
architecture can now be derived from this reference architecture using the process model
described in chapter 5.

Finally, a quality model has been defined in this chapter. It respects the constraints
of the automotive domain by generating a single QoS parameter. In order to achieve a
multidimensional characteristic, this parameter is calculated from a quality vector using
the SAW method. By leaving the exact composition open to the person specifying the
Abstract Service, it can be adjusted according to the characteristics of the functionality.
This approach ensures that the quality vector respects the varying properties of different
entities such as sensors, output or processing devices. In order to be able to adjust
the selection process to the needs of a specific application, the weighting factors used
within the SAW calculation are not fixed by the SODA framework. Instead, they
are propagated through the system using the data section of the Discovery request
messages. Furthermore, rules are defined that manage the computation of end-to-end
QoS parameters for an application or a subset. This fact simplifies the selection process
described in chapter 6.

The developed SODA reference model described in this chapter is unique in its
constitution and automotive focus. It defines and relates all necessary terms, concepts
and components without creating the overhead caused by many other reference models
in the literature. It ensures the achievement of the goals defined while respecting the
specific needs and characteristics of the automotive domain.
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5 Model-driven development of SOA-based
DDAS!

’As long as there were no machines,
programming was no problem at all;
when we had a few weak computers,
programming became a mild problem,
and now that we have gigantic
computers, programming has become
a gigantic problem.’

Edsger W. Dijkstra®

5.1 Introduction

This chapter introduces SODAdev: a model-based development procedure to create
SODA-based DDAS in a structured and straight-forward way. It is based on the SOMA
methodology that has been introduced and described in chapter 3. Just as SOMA,
it makes use of SoaML, a profile of the popular Unified Modeling Language (UML).
However, as described in chapter 3, SOMA has several drawbacks that mainly arise
from its focus on enterprise software applications. SODAdev refines the procedure in
order to enable the specification of Distributed Driver Assistance Systems.

One important point is that SODAdev is restricting itself to the specification of the
functional properties of the application under development. This leads to the fact,
that only the phases "Business Modeling and Transformation", "Identification" and
"Specification" are within its scope. Consequently, this chapter focuses on these three
phases and does not discuss the other ones targeting either on administrative tasks or
the non-functional requirements.

Furthermore, this chapter discusses how SODAdev can be integrated in an automotive
development scenario. Therefore, its three phases are correlated to the different stages
of the "core process for system and software development" (CPSSD, see [117]). Since
SODAdev does not define any integration or testing stages the focus of this chapter lays
on the left arm of CPSSD and leaves the right arm unchanged. Finally, the described
SODAdev approach is used and evaluated in a case study that develops an actual DDAS.

5.2 SODAdev: Model-based development of SODA-based
DDAS

In this section the SODAdev development process is described in detail. Furthermore,
it is integrated into the CPSSD approach and thereby into one of the most used best
practices in automotive development.

!This chapter is based on my publications [139] and [142]. Parts of it are extracted from these sources.
2The Humble Programmer, ACM Turing Award Leture 1972, see [43]
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5.2.1 Application Level Design

The CPSSD approach of Schauffele and Zurawka starts on the top-left corner of the V.
This first development steps are named Application Level Design. This is because each
CPSSD process starts with the definition of the properties of the overall application. In
SODAdev the Application Level Design is done by carrying out the phases "Modeling
and Transformation" as well as "Identification".

Phase 1: Modeling and Transformation As stated in chapter |3| the SOMA develop-
ment approach starts with the phase "Business Modeling and Transformation". In this
phase of the SOMA model the "Business Process Model and Notation" (BPMN) is used
to identify tasks and parties within a business workflow. While this is a great method
in the domain of enterprise software or Web Services it is not usable in the automotive
domain without completely ignoring the semantics of BPMN. In this sense, it has to be
replaced by a description method that allows such a specification. On the other hand
the consistence and continuous flow of SODAdev should be maintained. This means
that the resulting artifacts of each phase have to be directly usable for the next one. In
the specific case of this first phase a replacement for BPMN and especially its "task"
stereotypes that are originally used in the specification phase has to be found. In the
newly created first phase of SODAdev, which is called "Modeling and Transformation"
to emphasis that it is no longer focused on business process modeling, UML2 Activity
Diagrams are used to create a first system description. Similar to BPMN models the
workflows of applications can be described. On the other hand Activity Diagrams are
not restricted to any specific domain. Furthermore, they are part of UML which allows
seamless integration into SoaML without any kind of semantic violations. With the help
of an Activity Diagram the idea for a DDAS can be modeled as a workflow consisting of
a number of activities. These activities can be either executed in a sequence, in parallel
or in a mixture of both modes. They are important because each of them represents
one functionality of the DDAS to be developed. The overall Activity Diagram on the
other hand describes how these activities cooperate to represent the DDAS. Figure 5.1
shows a simplified DDAS modeled as an Activity Diagram. The different functional-
ity is arranged in a workflow to illustrate the mode of operation of the overall application.

It is expected that especially in this first phase of the development process the
conducting team is very heterogeneous. This fact calls for a description model that
is easy to understand even by team members that have no computer science back-
ground. In order to keep it simple the number of nodes used in this development
step is restricted to the six entities pictured in Figure |5.1. The main element used
here is the action node. It is the fundamental unit of executable functionality [100].
Illustrated as a rectangle with rounded corners it represents an operation were data is
generated, processed or displayed. The edges connecting these actions are the second
type of element used. They allow to demonstrate directed flows between the nodes
within the diagram. The remaining four entities are control nodes that coordinate this
flow. The first one is the initial node that symbolizes the beginning of the control
or data flow after the system has been invoked. Its counterpart is the final node
illustrating the end of the flow. The fork node and the join node allow to split the
flow into multiple concurrent flows or synchronize them respectively. This set of nodes
should be sufficient to model all needed application configurations in the scope of DDAS.

As already mentioned, the first phase within SODAdev is to transform an idea for a
DDAS into a coarse-grained abstraction. In this sense it is the match to the specification
of the Logical System Architecture (LSA) in CPSSD as shown in Figure 5.2. The Ac-
tivity Diagram fulfills all demands of a LSA for being an abstract solution without any
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Figure 5.1: An example for a DDAS modelled as an Activity Diagram
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Figure 5.2: Integration of SODAdev into the V-model of CPSSD

technical details describing the components of an application, their functionality and
their interfaces. In the automotive industry development teams are often very diverse
being constituted for example of software engineers, electrical engineers or mechanical
engineers. The usage of widely-known and almost self-explaining Activity Diagrams
simplifies the work within such teams. Another important point is, that the initial idea
for a DDAS can be described in a variety of ways. It ranges from natural language de-
scription to semi-formal or formal representations. Additionally, migration of an existing
system into the SODA framework is possible. In this scenario code could be analyzed
and converted into an Activity Diagram.

Phase 2: Identification This phase aims at dividing the overall system into small
junks of functionality that eventually will become Services. It can be compared to
defining the Technical System Architecture (TSA) in CPSSD as concrete decisions on
how the system will be realized are made. In this step, the development team determines
for example which Services will be needed and what functionality will be carried out
in each of these entities. In this sense Identification phase is integrated into CPSSD as
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Figure 5.3: The Service Candidates derived from the example Activity Diagram

the definition of the Technical System Architecture as illustrated in Figure 5.2. SoaML
defines a specialized stereotype for these Service Candidates called Capabilities. In
the original SOMA development process this phase inspects the lanes and tasks of the
BPMN model. Each lane, which represents some acting party, is directly transformed
into a Capability. Afterwards, every task assigned to the specific lane is added to
the corresponding Capability as a so called Operation. A SoaML Operation is what
eventually will become a method in the implementation of the Service logic. The result
of this procedure is a relatively coarse-grained model with a low number of Services
potentially providing a big amount of functionality each. This leads to highly specialized
Services tailored to the specific needs of the application under development. However,
this specialization makes it difficult to re-use the Service in some other application. Fur-
thermore those extensive Services which are quite demanding regarding computational
power and memory requirements limit the possibilities when assigning them to ECUs
in a distributed embedded system.

In order to overcome these drawbacks the architecture should be rather fine-grained
with a relatively high number of Services. In the SODA framework this is brought to
extremes by shrinking down each Service to offer only a single functionality. To achieve
this, the Identification phase is modified. In SODAdev the Activity Diagram generated
in the previous phase is analyzed and the UML 2 action nodes are extracted. In a
second step, each of these action nodes is transformed into a single SoaML Capability.
Subsequently, each Capability is enriched with one Operation that will provide the
functionality of the Service. Coming back to the example Activity Diagram given
earlier, the corresponding TSA is shown in Figure 5.3. This figure shows the seven
Capabilities derived from the seven action nodes of the Activity Diagram as developed
in phase 1. The Operations attached to these Capabilities reflect the specific func-
tionality offered by each of them. Furthermore, the workflow of the system that has
been defined in the Activity Diagram is transformed into usage relationships between
the Capabilites. As an example, the Capability "CalcTrajTractiveUnit" is making use
of the Capability "GetSteeringAngle". This relationship is directly derived from the
fact that within the workflow given in Figure |5.1] the action node "ReadSteeringAngle"
processes its data to the action node "CalculateTrajectoryTractiveUnit". The developed
model of the Service candidates using the newly created SODAdev Identification phase
is now very fine-grained. Each Service that is eventually derived from this descrip-
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tion is more likely to be re-used in some other development project than the ones
produced by SOMA. Besides, the engineers assigning these Services to ECUs have a
high degree of freedom in doing so since the final implementation will be less demanding.

5.2.2 Component Level Design

By setting up the Capabilities model the Application Level Design is finished and the
focus swaps towards the specification of the different Services in detail. This corresponds
to the changeover between Application Level Design and Component Level Design in
CPSSD.

Phase 3: Specification The third and last phase of the SODAdev process model is
called Specification. It uses the Capabilities defined during Identification and transfers
them through several steps into a full specification of the functional requirements of the
system’s Services. This transition from application development towards Service devel-
opment equals to passing from application level into component level in CPSSD’s "V".
For that reason this phase is arranged as a replacement for the software architecture and
software component specification as illustrated in Figure |5.2. Due to its extensiveness
the Specification phase is split up into four sub-phases. The first one of these defines
the Servicelnterface. It is followed by the Specification of the ServiceContracts. In a
third step the so-called Participants are identified and generated. The final sub-phase
brings all the Service specifications together to build the overall ServiceArchitecture.

Phase 3.1: Servicelnterface Specification In this first sub-phase a Servicelnterface is
derived from every Capability defined in phase 2. In other words, every future Service
gets a first representation in form of a Servicelnterface. The original SOMA process
model recommends to specify a number of sub-interfaces to each Servicelnterface. These
sub-interfaces are of the standard UML type "Interface". However, SOMA does not
set up any rules or guidelines beyond this recommendation. The number and function
of these entities is left unclear. This fact turns out to be problematic in the DDAS
scenario. As the Services to be developed shall be used for runtime adaptation later on,
it is essential to obtain a common structure within their SoaML specification.

To achieve this the process of Servicelnterface specification has been refined and stated
more precisely. This is done by adding two additional guidelines:

e Transfer Operations into Provided Interfaces using UML Interfaces

e Add a Requested Interface for each external functionality needed using UML In-
terfaces

First of all, in SODAdev every Operation offered by a Capability is converted into
an UML Interface. This approach leads to one Interface per Service which fulfills the
demand of creating very fine-grained and easily reusable Services. The Interface derived
from an Operation is called a Provided Interface as it reflects the specific functional-
ity provided by the Service. With this step the functionality, that has been initially
introduced as an action node in phase 1 and transferred into a Service Candidate
in phase 2, is now attached building a Service. In order to use the specification for
decentralized reconfiguration this information is not enough. Therefore, the second
part of the refinement demands to generate one additional Interface for every external
functionality needed by the Service to execute its task. These Interfaces are called
Requested Interfaces as the Service itself requests their functionality. They are also
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Figure 5.4: The Servicelnterface of one of the exemplary Services modeled using SoaML.

enriched with an Operation. This Operation can be seen as a classic get-method that is
implemented to access the desired functionality from the Requested Service in form of a
Service call. This extension within the SODAdev procedure is a crucial point regarding
the runtime adaptability of the applications to be created. By adding this information
each Service is now self-aware of its state. This is because, every Service does now have
the knowledge of what other functionality in the form of Services has to be reachable. It
can now explore its environment by executing a Service Discovery cycle calling specifi-
cally for implementations of the Services needed. If at least one implementation of each
requested Service is currently available, the Service can put itself into the operational
state. Furthermore, if there is more than one implementation available, it is able to
decide which implementation will be used by requesting the quality parameters of each
of these Services. In a next step the quality parameters of the selected implementations
along with its own characteristics can be used to calculate an overall parameter. This
overall parameter is given back to any request directed to this Service. In other words,
the inclusion of information about the requested Services enables the SODA system to
re-configure itself in a decentralized manner without the usage of a central configuration
entity. The details of the Service selection procedure are presented in chapter 6l

An example of the procedures of the Servicelnterface Specification phase is given in
Figure [5.4. As illustrated here, a SoaML Servicelnterface is derived from a Capability
modeled in the last phase using the Exposed relationship that has been introduced in
section 3.5. The offered functionality of the Servicelnterface is expressed by the Provided
Interface on the left side of the picture. On the right hand side another Interface is
provided. This one is a Requested Interface which determines that a Service called Get-
SteeringAngle is needed in order to run the Service’s functionality. This configuration
can be directly derived from the Capability diagram given in Figure 5.3. As this picture
shows, the Capability "CalcTrajTractiveUnit", which is the basis for the "TrajTractive-
UnitService" offers the functionality "CalcTrajTractiveUnit" which is now expressed
by the Provided Interface "CalcTrajTractiveUnit". Furthermore, Figure 5.3 shows,
that this Capability makes use of another Capability named "GetSteeringAngle". This
circumstance is transferred into the Requested Interface "GetSteeringAngleRequest".
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Phase 3.2: ServiceContract Specification As stated in chapter |3l SOMA makes use
of the contract-based specification style. In SOA-based systems contracts formalize the
exchange of information between the Service and the calling entity. Defining a contract
means specifying two things:

e Specification of the roles within a ServiceContract

e Specification of the communication protocols

The first step is to determine the roles within the contract. Roles define which partners
interact with one another when the Service is called. The second part of the contract
specification is the definition of communication protocols. These protocols constitute
the messages and the message sequences to access the Service and all its functionality.
Again, SOMA is not very precise in this step. According to the SOMA specification the
roles can be of any type that is allowed to be used within the SoaML specification. This
opens up three options namely "Servicelnterface", "Interface" or "Class". In the case
of diagrams to describe the communication protocols SOMA allows to use any adequate
UML diagram. This lack of precision is understandable as SOMA is targeting on a wide
audience and different fields of application. On the other hand precision is needed when
the models are intended to be used for runtime adaptation. This is why SODAdev adds
several constraints to the original SOMA process model:

e Usage of Sequence Charts to model communication scenarios
e Usage of a Remote Procedure Call style
e Usage of the UML Interface type to model roles

e Precise definition of the messages exchanged

As a first constraint UML Sequence Charts are chosen to illustrate the communication
cycles. Sequence Charts are easily understandable regardless of being quite flexible.
Additionally, they allow to add several extensions to the workflow as for example
detailed descriptions of the messages to be exchanged. As a further constraint all
communication is done in Remote Procedure Call (RPC) style. Compared to other
SOA implementations such as Web Services where XML documents are exchanged,
this method guarantees relatively low overheads. This is important because of the
restricted transmission rates offered by today’s automotive network systems. For the
roles within the contracts Interfaces are used. This allows a more detailed description
of the communication sequence as the actual Interface involved can be named rather
than indicating the Servicelnterface which possibly combines several Interfaces. The
last addition to the original SOMA approach is the extended definition of the messages
exchanged between the roles of a contract. This information is needed later on to be
able to define a tailored SODA middleware as described in more detail in chapter 7.
The information needed here is especially the length of each message which can be
determined by analyzing it’s content. For this reason the UML Sequence Charts used to
specify the interactions is extended. The exchange entities used are constrained to be of
the Asynchronous Signal Message type defined by the UML specification. These entities
allow to link each data exchange with an UML Signal. This Signal on the other hand
can be defined in high detail by adding all parts of it alongside with their data type.
In the SODAdev development process the Signals that are linked to the Asynchronous
Signal Messages are defined within a special section of the SoaML model called "Signals
and Datatypes". In the same section the data types used are described. Bringing all
three parts together, the Sequence Charts with the Asynchronous Signal Messages, the
Signal definitions and the data types, a complete specification of the communication
behavior is created. An exemplary Sequence Chart is shown in the lower part of Figure
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Figure 5.6: The Signals and data types corresponding to the communication scenario
illustrated in Figure 5.5

5.5 while Figure 5.6/ illustrates the corresponding definitions of the Signals and used
data types.

Besides these unavoidable extensions the Sequence Charts are kept short and thereby
easily parsable. Therefore, the number of different entities to be used here is kept
small. Lifelines are used to describe the interaction of the roles within the contract.
The interaction is limited to the already introduced Asynchronous Signal Messages
type. Using this small subset of entities it is possible to define event- and time-triggered
Service invocations holding all information needed for the subsequent development steps.

Figure 5.5 illustrates a contract defined using the guidelines of SODAdev. In this
simple example two roles are defined in form of Interfaces. These two roles are then used
in the Sequence Chart to define the message interaction when calling the associated
Service. In this example the Sequence Chart is enriched with information on the content
of each message by using UML signals.

Phase 3.3: Participants Specification In the next sub-phase the so called Participants
are specified. The definition of the stereotype Participant in SoaML is quiet vague. The
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Figure 5.7: An example Participant with it’s Service Point

SoaML specification [102] states that it may be a "person, organization, [...| system,
application or component". The only qualification is that the entity has to be "a
provider and/or consumer of Services". In other words, a Participant is some kind of
entity that offers or uses Services. SOMA interprets this stereotype as some kind of
computing unit that is able to execute the implementation of such a Service or at least
to send a Service request call. In this sense it uses this sub-phase to map the different
Services to hardware entities. In a Web Services scenario this may be the mapping of
functionality to different servers. In the enterprise software domain such entities may
be servers, work stations or even mobile computing units. In the SODA framework this
kind of assignment of Services onto some hardware is not necessary as the addressing of
the Services is not node-based. Instead a message-based addressing scheme is realized.
For this reason the assignment of Services to specific computing units is not part of the
specification as it does not have any effect on the functionality of the SODA application.
Nevertheless, a model-driven development approach needs to be consistent. As the next
step within the process model uses Participants they have to be introduced anyway.
At this point, the broadly framed definition of the stereotype is used. In SODAdev
Participants are defined to be an instantiated process. This agreement complies with
the demand of the SoaML specification as these instantiated processes provide and use
Services. At the same time they can still be assigned to any kind of hardware entity
at a later stage of the development. This interpretation of the semantics behind the
Participant entity does not influence the process flow within SODAdev. From a practical
point of view, the modeling step is done exactly in the way that SOMA proposes. From
a semantic point of view, this decision is quite far-reaching since it significantly enhances
the flexibility of the approach.

Figure |5.7 illustrates such a Participant. The Servicelnterface is assigned to a Service
Point pictured as a rectangle on the right hand side of the Participant. In this simple
example the Service Point holds a single Provided Interface.

Phase 3.4: Architecture Specification In this last sub-phase the overall architecture
of the SODA-based DDAS is defined. It is modeled using the SoaML ServiceArchitecture
stereotype. As described in section 3.5|it illustrates the relationships of the Participants
involved using their ports and contracts. In the first step of the architecture definition
the involved functionality in form of Participants is selected. As the Services specified
are very fine-grained and offer only one functionality each Participant holds only one
Provided Interface within its port. In a second step the contracts corresponding to
the Provided Interfaces of the Participants selected are added to the architecture de-
scription. As described earlier, these contracts specify roles that represent participating
parties within a Service call. As a last step, the Interfaces within the ports are assigned
to the roles of the contracts. With this step the interaction of the selected Participants
is defined by the Sequence Charts given in the contract that connects them. Again,
the difference between SOMA and SODAdev can be found in the semantics behind the
modeling. While the practical operation of setting up a ServiceArchitecture is the same,
the meaning of what kind of entities are connected is different since the semantics of the
Participant stereotype is interpreted differently.
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Figure 5.8: An excerpt from a example ServiceArchitecture

Figure 5.8 shows an excerpt of a ServiceArchitecture. In this simple example two

Participants are selected. The one on the left hand side offers a Service needed by
the one on the right hand side. Within the contract they are assigned to the role of a
provider or a consumer respectively. The interaction between the two Participants is
defined by the Sequence Charts specified in the contract connecting their ports.
The specification of the ServiceArchitecture completes the specification phase. The last
phase of the left arm of CPSSD’s "V" is called "Component design and implementa-
tion". Ome part of this is the design of the communication stack which is a central
module in every middleware architecture. In SODA, the development of this module is
supported by the SOAcom procedure that analyzes the SoaML model in order to define
a tailored communication middleware. More precisely, it parses the xml documents
containing the Servicelnterface, ServiceContract, Participants and ServiceArchitecture
specification. It then determines a list of all Services within the application alongside
with some information on the biggest message exchanged as well as the presence of
periodic messages. This information is needed to design the communication stack.
Please refer to chapter |7 for more details on this consecutive development procedure.
Besides the communication module, this phase is to define some implementation details
and to finally write code. In order to support the implementation the descriptions of
the interfaces and the contracts are analyzed by the same program that collects infor-
mation on the communication stack. The program goes through the xml documents
and extracts the Requested and Provided Interfaces of the Service to be implemented.
Furthermore, it parses the Sequence Charts of the contracts to determine the size and
format of the data exchanged. Using this information a code skeleton is generated. This
skeleton consists of a function body for every interface of the Service enriched with it’s
parameters. The type and name of the parameters are derived from the messages within
the contracts. This automated generation of the code skeleton supports the developer
by providing the fundamental structure of the program. However, as the SoaML model
does not contain an internal program flow, it is still up to the developer to implement
the code within the function bodies.

5.3 Case Study

The exemplary application for this case study with the SODA framework is a Distributed
Driver Assistance system for truck and trailer combinations. More precisely the system
to be developed using SODAdev is supporting the driver while backing up a two-axle
trailer using the visual modality.

Figure 5.9 illustrates the principle structure of such a visual HMI for backing up
trailers. A monitor presents a picture of the area behind the trailer to the driver.
Furthermore several trajectories are computed and overlayed allowing the driver to
predict the future path of the combination. The outer, blue trajectories symbolize the
skid marks of the rear axle tires of the trailer assuming the bending angles between
truck and trailer won’t change. These lines inform the driver on the long-term behavior
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Figure 5.9: The HMI of a Visual Assistance System to back up a trailer |\

of the vehicle. The inner, green line illustrates the future path of the center point of the
trailer depending on the current steering angle. This curve allows the driver to make an
assumption on the short-term behavior of the combination. It is directly responding to
movements of the steering wheel. These trajectories are calculated using the steering
angle as well as the two bending angles. Additionally, a number of dimensions of the
truck and trailer are needed like for example the wheelbases. In order to offer the visual
HMI as shown in Figure 5.9/ a camera mounted to the back of the trailer and a monitor
to output the video is needed. This case study will show how such a system is specified
and developed using the SODAdev development process.

Phase 1: Modeling and Transformation The first phase is to develop the Logical
System Architecture. In the case of SODAdev this artifact is modeled as an Activity
Diagram. The basis for this case study is an implementation of the DDAS described
earlier on a driving simulator (see ) The description of the functional properties
as well as the code itself is used to define this first coarse-grained description. Figure
5.10 shows the Activity Diagram developed. The system is built by a combination of 13
functional entities. The ones in the column on the left side are either sensors or entities
that offer information about physical dimensions of the truck and trailer combination.
All the other Activities carry out some calculations on the basis of the data produced
by some other one.

Phase 2: Identification In the second phase the future Services are identified. This
is done by analyzing the Activity Diagram and deriving SoaML Capabilities. For the
example application used in the case study, this leads to the model illustrated in Figure
5.11. As described earlier each Activity is converted into a Capability in order to develop
lightweight Services. As a result each Capability only holds one Operation and thereby
only implements a single functionality. The relationship between the Activities of the
Logical System Architecture are transferred to the technical one by "use" relations
connecting the Capabilities.
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Figure 5.10: The Activity Diagram of the DDAS
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Figure 5.11: Overview of the Capabilities derived for the example application
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Figure 5.12: The Servicelnterface of the Service to calculate the trajectory of the center
of the trailer

Phase 3: Specification Using the Technical System Architecture the Capabilities
identified are picked up one by one and specified in-depth. This section focuses on one
of the Services to be developed in order to obtain lucidity. The chosen Service is called
"CalculateTrajectoryCenterTrailer". It uses a number of sensors and vehicle dimensions
to predict the future path of the center point of the attached trailer.

The first step of this phase is to design the Servicelnterface of each Capability. This is
done first of all by deriving one single Servicelnterface for each Capability. In a second
step a Provided Interface to gain access to the functionality of the Service is created.
This Interface holds the Operation actually carrying out the Service logic. The last
step of the Servicelnterface specification is to create a Requested Interface for every
functionality needed by the future Service to execute its logic.

Figure 5.12/ shows the created Servicelnterface of the Service to calculate the trajec-
tory of the trailer center point. In the middle the Servicelnterface is pictured. It is
connected to one Provided Interface on the left and seven Requested Interfaces on the
right side of the figure.

The next step of the Specification phase is to design the communication scenarios to
access the Service by developing contracts. This is done by defining the roles of the
communication scenario and the interaction between these roles.

Figure [5.13| pictures such a contract for the example Service. In the upper part of
the figure two roles are shown, namely a provider and a consumer. The lower part
illustrates the messages to be exchanged in order to access the Service. This contract is
kept quite simple for several reasons. First of all the content of the messages exchanged
is symbolized by a UML Signal specified in another part of the model. Second, only the
scenario of calling the functionality of a Service is described here. All other interaction
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Figure 5.14: The Participant of the example Service

scenarios such as for example Discovery Requests are standardized within the SODA
framework. Because of this, they are defined centrally and do not have to be repeated
in every single contract.

In the third part of the Specification phase the Service Candidates are converted
into Participants. Each Participant is an entity enriched with a Service Point which
holds all Interfaces of the Service Candidate. As explained earlier, this step is rather
administrative. It does not add any additional information to the specification. But
since the next step of the Specification phase uses these entities it is necessary to obtain
the consistency of the process. Figure |5.14 illustrates the Participant developed for the
Service to calculate one of the trajectories. To the left of the entity the Service Point is
attached. The eight Interfaces of this Service are symbolized by the eight ports added
to the Service Point.

In the last step of the Specification the overall ServiceArchitecture is defined. In the
presented use case all the Services developed are brought together to build the driving
assistance application. Therefore, the 13 Participants specified are added to the dia-
gram. Furthermore the contract of each Service is added. In a last step the Participants
are connected to each other through these contracts. The procedure of connecting
two Participants equals the definition of a role binding within the connecting contract.
Figure |5.15 shows the complete ServiceArchitecture of the specified application.

The last step of the left arm of CPSSD’s "V" is to implement the specified Services.
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5 Model-driven development of SOA-based DDAS

Figure 5.16: Picture of the demonstrator vehicle

This has been done using the SoaML model derived through the SODAdev process.
Using the information extracted and the code skeleton generated by the automation tool
13 units have been implemented. These units were either Intel Atom boards running
Lubuntu 12.04, Raspberry PI modules running Raspbian OS or small processor boards
with an Atmel AT90OCAN128 or an Atmel ATmega88 chip respectively. The units were
mounted on a demonstrator vehicle consisting of a Mercedes B-Class car and a small
two axle trailer as shown in Figure 5.16. Please refer to chapter 9 for more details on
the implementation and the evaluation of the demonstrator system.

5.4 Summary

In this chapter SODAdev, a unique, model-driven development process for SOA-based
Distributed Driver Assistance Systems, has been introduced. This procedure is based on
the Service-Oriented Modeling and Architecture approach introduced by IBM to create
Service-based enterprise software. From this approach SODAdev adopts its fundamental
modeling language SoaML, a profile of OMG’s UML standard.

By changing the starting description from using the BPMN notation to the much
broader-focused UML Activity Diagrams, SODAdev enables the usage of such a process
model for the DDAS domain. Besides, this modification did not interrupt the flow of
the development process but allowed to use this first description within the subsequent
phases as well.

In the second phase called Identification SODAdev restricts the size of each future
Service to the lowest possible level by allowing only one functionality for each entity.
This approach leads to small and easy to assign Services. Furthermore, this method
increases the chance to re-use each Service in a different application.

Within the specification phase several refinements of the workflow were done in order
to make it applicable to the DDAS domain. For example, the composition of the Ser-
vicelnterfaces was structured to get a clear pattern which contains all the information
needed for executing Service selection. Moreover, ServiceContracts were defined very
precisely in order to use them for communication analysis during the tailoring process
of the Communication model. This includes the introduction of an additional section
within the SoaML model that contains all UML Signals and data types used within
the communication scenarios. Within the Participant specification the semantics of this
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5 Model-driven development of SOA-based DDAS

stereotype have been re-interpreted. While still compliant to the SoaML specification
the interpretation done in SODAdev allows to keep the Services independent from any
hardware unit. Finally, this newly interpreted Participants have been used to build the
overall ServiceArchitecture of the application.

In order to show that this sequential model-based design approach can be used within
an automotive development process, SODAdev has been integrated into the "core pro-
cess for system and software development" (CPSSD). It has been proved that SODAdev
fits well into the structure of CPSSD and its two layers namely Application Level and
Component Level Design.

The overall SODAdev procedure has been evaluated by using it to develop a DDAS
that assists the driver while backing up a two-axle trailer. This application was com-
pletely defined within the SoaML model. This model can now be used for further
processing such as automatic code generation, formal validation or to extract specific
properties.
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6 Adaptation through Re-Composition!

"The measure of intelligence is the
ability to change.’

Albert Einstein

6.1 Introduction

As stated earlier, the central point of future DDAS is that they need to be able to react
to changes within the system at runtime. In this sense they need to adapt themselves
whenever software or hardware components are added or removed. In Service-oriented
systems adaptation is realized through re-composition of the Services within the applica-
tion. The process of re-configuration is started by the Service Discovery. This operation
determines all Service Instances currently available. In a next step it is decided whether
all Abstract Services within the Service Function Graph of an application are matched
by at least one Service Instance. If this is not the case the application can’t be executed
and the re-configuration process stops. Otherwise the composition procedure moves
on by selecting one Service Instance for each Abstract Service of the Service Function
Graph. This selection is based on the quality parameters of the Service Instances and
targets on creating the best composition possible or at least on building a feasible
solution. As a result a Service Execution Graph is generated that contains the new
configuration of the Service-oriented application.

In this chapter the act of re-composition in SODA is described in detail. In section
6.2 the events that trigger re-configuration are described and analyzed. Section 6.3
discusses two different approaches of controlling this procedure while the sections 6.4
and 6.5 illustrate the concrete steps that are carried out to adapt the system to a new
situation. Finally, section 6.6 summarizes the chapter and points out the contributions
of this work to the research community.

6.2 Events of re-configuration in DDAS for truck and trailer
combinations

In this section the possible events of system changes in truck and trailer combinations are
discussed. The discussion is based on [145]. These events are the reason why adaptation
is needed. The analysis of their characteristics allows to derive requirements regarding
the re-composition procedure. In total six events that are critical to this domain have
been identified. These events are:

1. Ignition on
2. Connecting a trailer at runtime
3. Disconnecting a trailer at runtime

4. Change of the type of assistance at runtime

IThis chapter is based on my publication |143]. Parts of it are extracted from this source.
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6 Adaptation through Re-Composition

5. Change of the quality parameters at runtime

6. Failure of a Service Instance at runtime

The first event, called Ignition on takes place whenever the driver starts the vehicle.
In this situation a re-composition has to be executed. This is the case because there
might have been changes to the system during the time the vehicle was turned off. As
the components of the DDAS can’t spot such changes in this state the application has
to be re-configured to guarantee its performance.

In the second event a trailer is connected to the pulling vehicle. This operation may
add several components holding a multitude of Service Instances each. These Service
Instances have to be discovered and taken into account when generating the Service
Execution Graph for this new situation.

The counterpart of connecting a trailer is disconnecting one at runtime. This third
event leads to a situation where there is no trailer connected to the pulling vehicle and
hereby to terminating the assistance system. However, as there are no explicit sign off
mechanisms defined in SODA it is up to the re-composition algorithm to detect the
absence of a trailer.

The next event to look at is the change of the type of assistance at runtime. As
Uwe Berg and Dieter Zobel have shown in 20| there is a multitude of possible human
machine interfaces that could be used to assist the driver while backing up. These in-
terfaces might for example use the visual, auditory or tactile modality. From a technical
point of view each of these variants is an independent application defined by its own
workflow in the form of a Service Function Graph. In this sense, switching between
the human machine interfaces executes the deactivation of the current DDAS and the
activation of another one. To guarantee the performance of the newly selected system
a re-composition takes place before starting it.

The fifth event to be discussed is the change of one or more quality parameters at
runtime. One example for such a situation is the variation of response times to a Service
call due to unbalanced utilization of the ECU executing it. It may also be possible that
external influences affect the performance of a Service Instance. An example is an opti-
cal sensor which is often directly influenced by the amount of light currently available.
Hence, changes in the amount of available light may directly alter the performance of
the sensor both in precision and timing characteristics. Such changes of the perfor-
mance of individual Service Instances might lead to a situation in which the currently
selected composition is no longer the best one available. Only the re-composition of the
application could assure optimality in such an event. However, these events might occur
very frequently. A re-configuration of the system in each of these events may lead to a
DDAS that is constantly re-configuring itself instead of providing the assistance to the
driver. To avoid this SODA is not tracking the performance of the Service Instances
continuously but periodically. This compromise ensures long-term performance and
stability while avoiding frequent re-composition activities.

The last event that might occur is the failure of a Service Instance. In this situation
there are three different sub-events:

e Failure of a Service Instance currently not used
e Failure of a Service Instance currently used with alternatives available

e Failure of a Service Instance currently used with no alternatives available
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In the first situation the SODA framework does not recognize this circumstance until the
next Service Discovery. As it does not affect the performance of the application currently
executed this sub-event is not examined more closely. If a Service Instance fails that is
currently used, the execution of the present composition is no longer possible. When
there are other instances available matching the Abstract Service the re-configuration
procedure is carried out to generate an adapted Service Execution Graph. In the
case of the absence of any other Service Instance offering the needed functionality the
application has to be shut down.

These six events, their characteristics and impacts on the execution of the applica-
tion have been used to develop the re-composition approach used within the SODA
framework.

6.3 Architecture-driven vs. Interface-driven adaptation

The following discussion is based on the ideas first published in [141]. There are
basically two different approaches on how the adaptation procedure is supervised. In
the first one a central unit that overlooks the whole system controls the process of
re-configuration. This central unit has a global knowledge of the application as well
as an extensive database of all Service Instances currently available including their
functionality and quality characteristics. It is able to select appropriate Service In-
stances in order to build the best composition currently achievable. In the context
of Service-oriented Architectures this approach refers to the term orchestration [74] as
the re-composition is controlled by a central unit just like a conductor leads an orchestra.

In the SODA framework this approach is called Architecture-driven adaptation. This
is because the specification of the Service Architecture as it is done within the SODAdev
development process could act as the Service Function Graph which contains a global
view of the application. Such a Service Architecture Specification does not only contain
all Abstract Services needed but also how they are connected and what kind of messages
they exchange. Due to the fact that the XML model of the Service Architecture is easily
parsable it can be directly used to automatically generate data structures that represent
it. With the help of this data structures a central re-orchestration of the application
could be achieved quite easily.

But orchestration has some major drawbacks, especially in the domain of embedded
automotive systems which SODA targets on. The first one is, that introducing a single
central unit to control the adaptation procedure creates a single point of failure. If
this component stops to work for any reason the system is no longer able to react
to changes. Furthermore, this would set up the demand for a computing unit that
does not deliver any functionality noticeable by the consumer. Besides, such a central
composition unit would require a rather high amount of memory and computing power
since it would be in charge for storing a complete Service Repository and would have to
carry out the complete Discovery and Selection process. Finally, our target domain of
truck and trailer combinations lacks of a system integrator, since truck, trailer and even
bodywork are normally produced by different companies. This means that there is no
single institution that decides on which supplier has to bring in the orchestration unit.
As a result the system would have to face the possibility that either no such device is
available or a multitude of orchestration units is present within the system. In the first
case the application would not be configurable at all. In the latter case this circumstance
would require additional protocols to allow a negotiation between the units in order to
select a superior one among them. Besides, the resources of the orchestration units not
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selected are wasted.

All these drawbacks call for the second approach which is based on decentralized
re-configuration. Such a technique uses small and effective algorithms in each Service
instance without the superior control of a central adaptation unit. In Service-oriented
Computing this style refers to the term choreography [74]. Just like a group of dances
that manage to perform their movements synchronously without the help of a leading
person Services are able to compose an application without a central composition unit.
The key to this capability is knowledge. Dancers are only able to perform in the right way
if they know their individual step sequence. In this sense each Service Instance has to
have some knowledge on what actions it should carry out in the event of re-configuration.

In SODA this knowledge is held within the Requested Interfaces of each Service.

During the SODAdev development process every Abstract Service is enriched with
information on its functionality modeled as a SoaML Provided Interface. With this level
of self-awareness it is able to react to Discovery Requests. Furthermore the information
on what external functionality is needed in order to provide its own service is held in
the Requested Interfaces. In this sense, each Service is able to discover and select the
external Service Instances needed by itself without having a full view of the application.
In other words, the Service Function Graph splits up into pieces instead of existing
in its entirety. In SODA this approach is called Interface-driven adaptation since all
knowledge needed can be extracted from the interface descriptions of the involved
Abstract Services.
This distributed way of adapting a driver assistance system solves the problems raised
by the central approach. As each Service Instance comes with its own knowledge
and composition component there is no single point of failure. The failure of one of
these components would only cause the drop out of the dedicated Service Instance
rather than the whole application. Besides, there is no extra unit needed which does
only provide management functionalities not noticeable by the user. Furthermore, the
requirements for memory and computing power on each Service Instance are quite low
since the database and the selection algorithm only have a local view of their functional
environment rather than having to handle the complete DDAS. In terms of the absence
of a central integrator in the truck and trailer domain the distribution of the algorithm
avoids the problem scenarios of having no or more than one adaptation unit which
eliminates the need for a negotiation between these entities.

Taking all these facts into account the SODA framework has been equipped with an
Interface-driven, choreography-style, distributed adaptation mechanism. This mecha-
nism will be illustrated in full detail within the sections 6.4 and 6.5.

6.4 Phases of the re-composition procedure

The re-composition process that carries out the adaptation whenever a SODA-based
system changes consists of four consecutive phases. These phases are illustrated in
Figure 6.1.

The re-composition in SODA starts with the Discovery and Selection phase. During
this step the Service Instances build a local Service Repository of potential partners and
select one of these partners per Requested Interface. Afterwards each entity calculates
its current quality parameter and responds to the initial Discovery Request. This pro-
cedure is presented in Figure 6.2l As SODA uses a distributed approach the Discovery
Requests to the individual Abstract Services are sent in a sequential manner: The
Sink Service starts to send out Discovery Requests for each of its Requested Interfaces.
Every Service Instance that fits to one of these also starts to carry out the Discovery
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Figure 6.1: The four phases to re-compose a SODA-based DDAS.

and Selection phase and hereby triggers the execution of this phase within the group of
Abstract Services requested by one of its own interfaces. This procedure is repeated until
all Abstract Services of the Service Function Graph of the application have been invoked.

Having a closer look on the sequence of actions given in Figure 6.2] it can be seen
that each Service Instance switches from idle state to Service Repository generation
when a Discovery Request has been received. In SODA the Discovery Requests contain
the weighting factors of the Quality of Service parameter. These weighting factors are
received by the Service Instance and initially used to create the Discovery Request
messages for its Requested Interfaces. The local Service Repository is then built by
sending out these messages and collecting the responses. As a result every Service
Instance generates a local list of potential Instances and their quality characteristics.

At this point a first decision can be made locally in every Service Instance. If there
is not at least one candidate available for each Requested Interface the Discovery and
Selection phase is stopped. In this case it switches back to the idle state without sending
a response to the Discovery Request. The Service Instance hereby becomes invisible
to the rest of the system. If there is at least one candidate per Requested Interface
available the procedure goes on by switching to the re-choreography state. This step is
necessary that early because of the way the QoS parameter is calculated. This single
dimensional parameter is composed by the performance of the Service Instance itself
as well as the quality of the available partners and the network used to access them.
The second part of the calculation which refers to external functionalities can only be
carried out when the selection among the candidates has already taken place. As the
choreography process is a quite complex topic it is not described here in all details.
Instead it is illustrated and discussed in section 6.5.

As soon as the selection process has finished, the QoS parameter can be determined.
Therefore, the Quality Vector of the Service Instance is weighted using a Simple Additive
Weighting (SAW) procedure. Furthermore it is combined with the QoS parameter of
the selected instances matching the Requested Interfaces (for details see section 4.3).
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Figure 6.2: Procedure of the Discovery and Selection phase.

This step is crucial as it generates a value not only representing the performance of the
Service Instance itself but reflecting the characteristics of the overall Composed Service.
This fact allows to compose an application offering the best possible overall performance
in a distributed way. As soon as the QoS parameter has been calculated the Discovery
Response message is created and sent out on the network. This step completes the
Discovery and Selection phase.

After the Discovery and Selection phase has finished the applications are either ready
to run or not executable as not all Abstract Services were matched by a concrete Service
Instance. The detection of these two possible states is done within the second step. This
detection is possible through to the fact that every sink is implemented as a Service
as well. Due to this the state of the overall application can be determined using the
Discovery Interface of the Sink Service. As every application represents a possible type
of assistance this procedure analyzes the availability of assistance systems. In the third
step the type of assistance to be executed is selected. This can be done either manually
or automatically. In the latter case a computer program makes the decision based on
for example pre-configured priorities. A manual decision would be made by the driver
himself supported by an appropriate human machine interface.

The execution of this decision is done within the last phase called Service deployment.
Again the interfaces of the Sink Service are used to invoke the functionality of the
application. This final phase of the procedure lasts until the system changes again and
forces the application to re-configure itself.

6.5 Service Selection

In Service-oriented systems the problem of making a selection appears whenever there
is more than one Service Instance available within at least one Abstract Service of the
Service Function Graph. This selection could be done arbitrary since every possible
composition is able to provide the requested output to the user. Then again if there is
a number of possible configurations of a DDAS available one would want to make sure
that the user’s satisfaction is maximized. From a technical point of view this desire
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Figure 6.4: The different Service Execution Graphs for local and global optimization

sets up the the problem of finding the composition of Service Instances providing the
best end-to-end quality characteristics. This is a well known, NP-hard problem (see e.g.
[84],[8])-

One might say, that this problem can be solved easily by simply choosing the best
available Service Instance for each Abstract Service. But research, like for example the
one published in [8], has shown local selection strategies do not automatically generate
the best results regarding the overall quality aspects of the application. One reason
for this phenomenon is the influence of the network connections between the Service
Instances. This effect can be nicely illustrated using the Bending Angle Warning System
(BAWS) example. For the sake of simplicity it is assumed that only the Abstract Ser-
vice Limit Check is matched by two possible candidates. For all other ones the current
system only offers one possible candidate. The resulting Service Selection Graph is
illustrated in Figure 6.3l

Using local optimization the system would choose to use Service Instance C to ex-
ecute the functionality needed since its QoS parameter is lower than the one of its
rival instance B. This would result into an overall quality measure of 16. Even if this
algorithm would be extended to also take the quality parameter of the local network
connections into account the resulting configuration would be the same. However, if
the Service Selection Graph is analyzed completely it is to be noted that there is a
better composition available offering an overall QoS value of 15. Both Service Execution
Graphs are presented in Figure [6.4.

In recent years a multitude of selection algorithms has been introduced to the scientific
community. Section 6.5.1) discusses some of these regarding the special demands within
this domain of application. Based on the results of this analysis the algorithm developed
for the SODA framework is presented in section 6.5.2.
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6.5.1 State-of-the-art in Service composition algorithms

The problem of selecting a configuration of Service Instances has been extensively
discussed in recent years. The number of published approaches is that high, that even
very detailed surveys like for example the one of Strunk [127] are presenting only a
subset of these. This discussion of state-of-the-art follows the same idea. Hence, it is
not meant to be understood as a complete overview of the approaches published but
as a classification of algorithms for Service composition. Furthermore it discusses the
presented approaches in the context of the special requirements of Distributed Driver
Assistance Systems.

The four requirements to the composition algorithm in the SODA framework are:
1. Re-configuration at runtime

2. Determination of the optimal solution

3. Executing a choreography-based approach

4. Ensure low resource consumption

The first one of these requirements expresses the need for runtime re-configuration.
Although this seems to be obvious a number of approaches completely focuses on
design-time composition. However, since SODA has to be able to react to system
changes at runtime a static composition approach is not satisfying.

The second demand to the composition algorithm for SODA is that it has to be able
to find the configuration with the best end-to-end quality value currently executable.
This is important since the driver assistance seeks to offer the best performance possible.

Another requirement that is set up by the SODA framework is that the composition
algorithm should work in a distributed choreography manner rather than being con-
trolled by a central instance. The reasons therefor are discussed in section 6.3l

Finally, the fact that the algorithm will be executed at runtime on rather small em-
bedded computing units calls for low resource consumption. The discussed approaches
will be examined in particular concerning the used memory, processor and network loads.

The algorithms to be investigated are all listed in Table 6.1, The first group within
this list accumulates the static composition approaches. Amsden proposes a procedure
in [6]. It uses a distributed model-driven approach to generate a Service Execution
Graph offering the best QoS available. It is quite close to the ideas of Mayer et al.
in [93]. Here, a UML extension is described that enables design-time orchestration
using the Business Process Execution Language (BPEL). Both approaches are not
examined regarding their resource consumption as this is not a concern when executing
the composition at design-time. Although both processes guarantee to generate the
best configuration possible they are not taken into account since it is not possible to use
them for runtime re-choreography.

A large group of composition algorithms makes use of heuristics to simplify the
selection procedure. The general idea of these approaches is to find a configuration
that matches a certain level of quality often defined using Service Level Agreements
(SLA). The first one to be discussed within this category is the propose of Mohabey et
al. in [97]. In this publication a central computing unit acts as an auctioneer that helps
finding Service Instances performing at a pre-defined level. However, this approach is
based on a central unit and causes a relatively high amount of network load through
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Publication

Runtime
composition

Optimal
solution

Distributed
manner

Low resource
consumption

Approach

Amsden [6]
Mayer et al. |93]

Design-time composition

Mohabey et al. |97]
Li et al. [83]
Yu et al. [153]
Yuan & Liu |154]
Cardellini et al. [31]
Garcia Valls & Basanta Val [56]

Heuristics

Liu et al. |85]
Chang & Wu [34]
Wu et al. |150]
Qiqing et al. |107]
Tao et al. |129)

Genetic Algorithm

Grossmann et al. [63]
Zeng & Benatallah (local opt.) [157]

Local Optimization

Zeng & Benatallah (global opt.) [157]
Ardagna & Pernici [7]

Integer Programming

Wan et al. [147]

Divide & Conquer

Huang et al. |70]
Gao et al. [54]

Dynamic Programming

Aiello et al. [5]
Li et al. [82]

SN NN N NN NN N N N NN R N N N NN

SN ANEXSNAX XXX XX XXX XXXXSNS

XXX XXX XX XIXXXXXXXNXXXIXN

X XN A XX XN X XXX XS

Graph-based

Table 6.1: Comparison of different selection algorithms
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using standards like the Simple Object Access Protocol (SOAP) that exchanges XML or
CSV documents instead of messages. Another algorithm is presented by Li et al. in [83)].
This procedure replaces Service Instances within a Service Execution Graph until all
critical levels of quality are reached. However, it is also controlled by a single instance
and the publication lacks of any technical details that would allow to estimate resource
consumption. Yu et al. describe a broker-based approach in [153]. Using this method
a central entity called broker is responsible for all adjustments at runtime including
Service Discovery and Selection. The goal of this broker is to preserve a certain level
of end-to-end performance. Just like the propose of Mohabey et al. it suffers from the
fact of depending on a single unit that controls the adaptation. Furthermore it also
uses heavy-weight protocols like SOAP which decreases the efficiency of the system.
Yuan and Liu interpret the Service Selection problem as a modified version of a routing
scenario (|154]). The great benefit of their approach is the usage of a distributed
algorithm to avoid a single point of failure. However, it limits the number of examined
paths by using two different kinds of heuristics. Hereby it can’t guarantee to compose
the best Service Execution Graph currently available. Furthermore, since no technical
details of the implementation are given, the resource consumption can’t be evaluated.
The approach presented by Cardellini et al. in [31] makes use of SLAs. These contracts
set up margins which the selection algorithm tries to match. In the case of the propose
of Cardellini et al. this is done using a central broker architecture. Again, as technical
details of the implementation are missing the resource consumption can’t be ranked. In
[56] Garcia Valls and Basanta Val present an algorithm explicitly targeting on embedded
real-time systems. In addition to the classic selection criteria it also takes schedulability
into account. Through being developed to be used within embedded systems it is very
careful in using system resources. Nevertheless it is based on a central entity that
overlooks the whole system causing all the problems stated earlier.

In general one can observe that using any kind of heuristic to simplify the composi-
tion process results in not being able to guarantee the generation of the best Service
Execution Graph currently available. As a result this category of algorithms might be
very interesting in scenarios where the number of Abstract Services and/or the number
of available Service Instances is very high. In DDAS these numbers are expected to be
rather modest. This fact questions the benefits of the simplification of the selection pro-
cess compared to the potentially major consequences of not executing the composition
with the highest performance measure.

The next group of approaches uses genetic algorithms to select Service Instances
among each other. Liu et al. for example use an evolutionary algorithm that is inspired
by the ideas of natural selection, crossovers and mutations in [85|. The same concepts
are applied by Chang and Wu in [34]. Their propose repeats the evolutionary cycle until
a certain criteria has been met. Wu et al. have enhanced this method in [150] to speed
up the convergence towards the optimal configuration. In order to do so the algorithm
starts with an enhanced initial population and uses improved procedures for the selec-
tion and mutation processes. Tao et al. pushed the usage of evolutionary algorithms to
its extreme in [129|. In this approach the main evolutionary algorithm is accompanied
by several so called island models. These island models are evolution systems with a
lower population to get a faster generation of extreme configurations. The models run
in parallel to the main algorithm to get faster results in case the optimal solution can
be found in a rather extreme configuration. The last approach that is examined within
the category of genetic algorithms is based on the ant colony optimization algorithm
originally published by Dorigo and Di Caro in [40]. The basic idea of the algorithm is
to search for a minimum cost path in a graph using artificial ants. These ants mark the
path they take using pheromones. Over time the concentration of these pheromones on
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the elements of the graph allows to draw conclusions on the optimal path. Qiqing et
al. uses this principle in |107] to find a path within the Service Selection Graph of a
composition problem.

All these approaches allow to carry out Service Selection in Service-oriented systems
at runtime. However, they all face the same problems regarding the requirements set up
earlier in this section. None of them allow choreography since they are all controlled by
a central instance or need to have a complete overview of the system. Furthermore, none
of them is able to guarantee the generation of the optimal Service Execution Graph. But
the biggest issue regarding these methods is the high demand for computing power and
memory. Just as the algorithms using heuristics they are only interesting for large-scale
systems where executing a configuration that meets a certain quality level is sufficient
rather than finding the best solution available.

Another group of composition approaches is based on local optimization. Grossmann
et al. present an algorithm in [63] that is based on abstract models generated within a
model-driven development procedure. The information stored in these models is used
to select the Service Instances in the case of runtime re-configuration locally for every
single Abstract Service. This simplification decreases the complexity of the selection
algorithm which makes the propose interesting for being used in embedded systems.
Nevertheless, the approach is controlled by a central instance instead of using a dis-
tributed mechanism. Another algorithm based on local selection is presented by Zeng
and Benatallah in [157]. The authors make use of a central Service Repository as well
as a central Service Composition Manager to locally select a single Service Instance
for each Abstract Service of the Service Function Graph. This is done by weighting
different quality aspects and then choosing the instance offering the best performance.
It is the nature of local selection approaches that they use relatively simple algorithms
that are characterized by low resource requirements. Nevertheless, all these approaches
do not fulfill the requirement of composing the configuration with the best end-to-end
performance.

Other approaches use the principles of linear programming to solve the selection
problem. The basic idea of linear programming is that a set of variables, an objective
function and a set of constraints is given and an algorithm tries to optimize the objective
function by varying the values of the variables while enforcing the constraints. Mapped
to the selection procedure a boolean variable for every Service Instance is defined which
holds a true if the entity is used and a false otherwise. The overall quality function
is used as an objective function and additional constraints are used for example to
hinder the algorithms to select more than one Service Instance per Abstract Service.
These techniques are used by Zeng and Benatallah in a second algorithm described in
[157] and by Ardagna and Pernici in [7]. Both approaches are able to find an optimal
configuration at runtime. However, both of them are quite exhaustive and controlled by
a central instance. In doing so both do not fit the profile of requirements.

Wan et al. present another technique for handling Service selection in [147]. The
basic idea is to split up the overall Service Function Graph into smaller parts and
optimize them separately. This divide and conquer strategy simplifies the selection
processes within the subgraphs and hereby lowers their complexity. However, since all
calculations are done in a single computing unit the overall complexity does not change
significantly. Additionally this approach is somehow similar to local optimization as it
only guarantees the best selection locally instead of globally.

Another group of algorithms picks up classic graph-based techniques. Li et al. for
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example use a Dijkstra algorithm to find the shortest path through the graph and
hereby the optimal configuration in [82]. Aiello et al. published a propose in [5] that
executes an extended breadth first search with priority queues. All approaches manage
to find the best solutions currently available. Nevertheless, they are quite exhausting.
Especially the mechanisms used by Aiello et al. may potentially create huge queues and
therefore use a high amount of memory. Furthermore they both need a supervising unit
that overlooks the whole graph in order to carry out the adaptation procedure.

The last group of approaches to be discussed uses dynamic programming. This method
generally solves complex problems by dividing it into smaller subproblems. These sub-
problems are then solved independently from one another and the subsolutions are com-
bined in a way that the overall optimal solution is reached. Although being very close to
the technique of divide and conquer, dynamic programming features two main benefits.
Since the combination of the subsolutions is also subject of an optimization procedure
end-to-end optimization can be carried out. Furthermore dynamic programming stores
and re-uses the subsolutions to calculate them only once per algorithm execution. In
the use case of composition algorithms there is another difference to point out. While
divide and conquer tries to divide the Service Function Graph, dynamic programming
splits up the Service Selection Graph of the application. The technique of dynamic
programming has been picked up for example by Huang et al. in [70]. The algorithm
presented here divides the Service Selection Graph into smaller chunks that are solved
separately. After finishing this procedure the subsolutions serve as an input for a back-
ward search algorithm that computes the best overall composition. The propose of Gao
et al. in [54] makes use of a detailed 3-layer model of the Service Selection Graph to
divide it into subgraphs, solve those smaller problems and create the overall solution.
Both approaches suffer from the fact that they use a central instance that overlooks and
controls the whole system. Nevertheless, the principle of dynamic programming has high
potential for being used within the SODA framework. It allows runtime re-configuration
of the system. It is also able to find the composition offering the best end-to-end quality
value. All this is done using a rather modest amount of computing power, memory and
network load. Furthermore, as dynamic programming splits up the problem into smaller
subproblems, the algorithms to solve them are numerous but rather simple. This fact
meets the nature of DDAS as an aggregation of small, distributed, embedded devices. If
the problem of being centrally controlled, that the example approaches are faced with,
could be solved this technique would fulfill all demands set up by the application domain.

6.5.2 The Service composition algorithm in SODA

As the discussion of the state-of-the-art in Service composition algorithms has shown,
the technique of dynamic programming is a promising approach. This is because it
allows to build algorithms that find the best composition currently available. Through to
its solution strategy that involves dividing the overall problem into smaller subproblems
and the reuse of the calculated subsolutions it makes a contribution to create a resource-
friendly algorithm. This is important since SODA has to carry out re-composition at
runtime using embedded devices. The only open issue in the approaches of Huang et al.
and Gao et al. was the usage of a central instance which creates a single point of failure.

For these reasons the composition algorithm designed for SODA picks up the solution
strategy of dynamic programming and combines it with a distributed control mechanism.
Looking at the structure of algorithms using dynamic programming one can identify three
phases:

1. Division of the problem into subproblems

2. Calculation of the subsolution for each subproblem
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3. Combination of the subsolutions to achieve the overall solution

During the first phase the overall Service Selection Graph is divided into smaller sub-
graphs which represent smaller parts of the problem. Hereby, the goal is to find a level
of fragmentation that generates subproblems easy to solve. As there is no central unit
nor a complete picture of the graph at a single location in SODA the decision on how
the division is carried out must be made in a distributed manner.

There are basically two potential approaches to do so. The first one is based on
negotiations between the Service Instances. Using this technique an overall view of the
graph is generated by merging the local knowledge of the instances. On the basis of
this complete Service Selection Graph the problem is divided into subproblems. In a
next step these subproblems are assigned to different instances to resolve them. All de-
cisions made are based on negotiations between the Service Instances currently available.

A second approach to carry out the subproblem generation is the explicit specification
of cutting lines at design time. This technique does neither require an overview of
the system nor any negotiations or calculations at runtime to reach a decision. Due
to these benefits, explicit cutting lines are used in the SODA framework. In order to
achieve a complexity close to the excellent values of the local composition algorithms
the subproblems are limited to one Service Instance and its direct neighbors in form of
the candidates to its Requested Interfaces.

The small size of the subproblems simplifies the second step, which carries out the
calculation of the subsolutions. It is reduced to selecting the best subsolution candidate
offered at the moment. This can be done very easily by going through the possibilities
given for a Requested Interface and choosing the one with the best QoS among these.
Hereby another characteristic of dynamic programming is used. As soon as a Service
Instance calculated the solution for its subproblem it stores it for later use. In the case
of a second request for the subsolution the saved result can be used without repeating
the calculation.

The third step within a dynamic programming algorithm is to combine the subsolu-
tions in such a way that the best overall solution is found. In the algorithm used in the
SODA framework this is automatically done through to the fact that the subprobelms
are solved consecutively. Hereby, each subsolution is calculated on the base of the
solution of the minor subsolutions calculated before.

The algorithm carrying out this choreography based on dynamic programming is
illustrated in Algortihm 1. The presented method ServiceAssignment is part of the
implementation of every SODA Service. It is called whenever the Service Instance
receives a re-composition request. The weighting factors needed to compute the overall
QoS are part of this request and handed over to the method through its parameters.
In a first step the algorithm checks whether the Service Instance has any Requested
Interfaces. If this is not the case, there is nothing to be composed by this Service
Instance. The only tasks to carry out are to calculate its own QoS using the weighting
factors and to respond to the initial request by sending out this value. These steps are
executed in line 2 and 3. If the Service Instance owns at least one Requested Interface
not the own QoS but the solution of the subproblem built by selecting a candidate and
calculating the overall QoS has to be returned. In the case this subsolution has already
been generated, it is load from memory and sent out as shown in line 6 of the algorithm.
If this is the first request the lines 9 to 22 are executed. It starts with the calculation of
its own QoS. In a next step all Requested Interfaces are inspected. In order to do so a
loop counts from 0 to the overall number of Requested Interfaces (#RIF). Within each
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Algorithm 1 ServiceAssignment(uint8 t weightingFactors| |)

1. if Service has no requested interface then
2:  OwnQoS = CalcOwnQoS(weightingFactors)
3:  Send a QoS response using OwnQoS
4: return true
5: else if OverallQoS has been already calculated then
6:  Send a QoS response using OverallQoS
7 return true
8: else
9:  OwnQoS = CalcOwnQoS(weightingFactors)
10: for all RequestedInterfaces ¢ such that 0 < ¢ < #RIF do
11: for all AvailableServices j such that 0 < j < #AS do
12: QoScurrent = OwnQoS + requestQoSof AvailableService(i,j) +
requestQoSofConnection(i, j)
13: if QoScurrent < QoSminimal then
14: QoSminimal = QoScurrent
15: Set j as assigned Service
16: end if
17: end for
18: if QoSOverall < QoSminimal then
19: QoSOverall = QoSminimal
20: end if
21:  end for
22:  Send a QoS response using OverallQoS
23: end if

24: return true;
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Figure 6.5: A simple Service Selection Graph of the Bending Angle Warning System

cycle the candidates of the respecting Requested Interface are investigated by running
a loop from 0 to the overall number of available Service Instances (#AS). In each cycle
the QoS of the corresponding candidate, which represents the solution of its subgraph,
is requested. The received value is then added to the quality measure of the connection
and the Service Instance’s own QoS (line 12). In each cycle the solution currently
determined is compared to the best solution found so far. In case the new one is better,
its QoS is saved and the corresponding candidate is selected (lines 13-16). Finally, the
overall QoS of the Service Instance is determined by choosing the highest QoS among
the Requested Interfaces and sending it as a response to the initial request.

The global view of the re-configuration of an application can be illustrated using the
BAWS example application. One possible Service Selection Graph is presented in Figure
6.5. In this case for both of the Abstract Services Sound Sink and Limit Check two
candidates are available. The procedure of re-composition is illustrated in the sequence
chart given in Figure 6.6. It starts with a Discovery Request message including the
weighting factors (wf) sent from some unit that wants to execute the driving assistance
(Assistance Requester). It is first received by Service A which is an implementation of
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Figure 6.6: The sequence chart of the SODA compositon algorithm for the example given
in Figure 6.5

Sound Sink. In order to be able to determine which one of the two candidates C and
D, which both offer the Limit Check functionality, should be selected A first sends out
a Discovery Request to instance C. This instance owns two Requested Interfaces, both
matched by one instance each (E and F). To calculate the solution of its subproblem
a Discovery Request is sent out by instance C to both Service Instances. Since E and
F are implementations of the Abstract Services Bending Angle 1 and Bending Angle
2 respectively both do not own any Requested Interfaces. As described in Algorithm
1 both of them do only use the weighting factors received to calculate their own QoS
value and directly respond afterwards with the values 2 and 4 respectively. These
responses brought together with the quality measures of the connections and its own
QoS by instance C. This procedure solves the subproblem assigned to C with the result
of 9 which is responded as subsolution to the requesting instance A. Since instance A
identified a second candidate D it also requests D’s subsolution. Just as instance C
did a moment ago, instance D calls E and F to get their QoS. The results of this calls
are used to calculate the solution of the subproblem of D which equals to 12 in this
example. Since instance A has now all values available it is able to calculate and return
its own subsolution. Taking into account A’s own QoS, the received subsolutions and
the connection qualities the result of this computation is 15. In a next step, the second
candidate for the Sound Sink, instance B receives the Discovery Request. As it has
discovered two candidates, C and D to its Requested Interface it requests both to send
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their subsolutions. Both instances make now use of the re-use principle of dynamic
programming. As they already solved their subproblems they directly respond to the
request using these values. As a result instance B computes an overall solution of 16
and sends that to the initial requester. The Assistance Requester would now choose to
use the application offered by Service Instance A with an overall QoS value of 15 over
the one offered by B providing a quality measure of 16.

In order to rank the complexity of the re-configuration the overall number of Discovery
Requests and thereby of calls of the Service Assignment algorithm is used. The reasons
therefore are that it is easy to measure and it is a good indicator for the processor
load caused by the adaptation process. Furthermore it is independent from the actual
implementation and hardware used and thereby suitable to compare the complexity of
the algorithm on an abstract level.

Analyzing the example given in Figure|6.5 the SODA algorithm sends out 10 Discovery
Requests. Compared to an exhaustive depth-first-search which is also capable of finding
the optimal composition (14 calls) this equals to a cutback of about 30%. Other examples
confirm this benefit. Figure 6.7 (a) illustrates another possible Service Selection Graph
of the BAWS example. This time the Abstract Services Sound Sink and Limit Check
are matched by three Service Instances each. Bending Angle 1 and Bending Angle 2
are represented by two candidates in each case. While the exhausting depth-first-search
algorithm triggers 48 executions of the Service Assignment method, the one based on
dynamic programming cuts them in half by executing the procedure only 24 times.
The graph given in Figure 6.7 (b) represents a potential Service Selection Graph of a
visual backing up assistance for a truck and a one axle trailer. In the given scenario
some of the Abstract Services are matched by only one, some of them by two Service
Instances. Composing the application with the exhausting algorithm would trigger 25
executions compared to only 16 with the SODA approach. The last example is presented
in Figure 6.7 (c) and represents a potential Service Selection Graph of a visual backing
up assistance for a combination of a vehicle and a two axle trailer. The given graph
contains twelve Abstract Services and a total number of 15 Service Instances. The
reduction of Discovery Requests in this case is about 35% (46 with the exhaustive, 30
with the dynamic programming algorithm).

6.6 Summary

This chapter introduced a novel approach to react to runtime changes in driver assis-
tance systems. In SODA-based systems these changes are addressed by adapting the
application through re-composition of the Service Instances.

In order to determine the demands and circumstances of system changes in DDAS six
different events have been identified and analyzed.

Using the SoaML models created by the SODAdev process model two possibilities
have been identified. The Architecture-driven approach is based on the information
included in the Service Architecture. It orchestrates the system using a central unit
that overlooks the whole system. Although this is an interesting method, it implies
some disadvantages like creating a single point of failure or leading to the need for a
high amount of memory and computing power within a single unit. Besides, it is not
compatible with the situation in the truck and trailer domain which lacks of a central
system integrator. This fact would cause additional overhead through negotiations
between multiple re-orchestration instances. In order to overcome these issues an
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Interface-driven approach has been designed based on choreography.

The overall re-configuration procedure is organized in four consecutive phases. The
first one carries out a combined Discovery and Selection algorithm. The following two
steps determine the assistance applications currently available and selects one of these.
Finally the last phase executes the Service Instances chosen to deliver the assistance to
the driver.

The critical part of this re-configuration procedure is the Discovery and Selection
phase. For SODA, a novel algorithm has been designed in order to match the demands
set up within this application domain. Therefore, 22 different approaches belonging to
eight groups have been analyzed. As most of them are targeting at Web Services, the
major application domain of Service-oriented systems, these 22 proposes have been ex-
amined using domain-specific requirements. Although none of these proposes completely
fulfilled these requirements, the technique of dynamic programming turned out to be
quite promising since it splits up the problem into small subproblems that are easily
and independently solvable. Furthermore the re-use of already calculated subsolutions
saves resources while still being able to generate an optimal overall solution at runtime.

The unique selection algorithm that has been developed within this work uses pre-
defined cutting lines to divide the overall problem into smaller ones. Hereby no overhead
is created by deciding on the subproblem size at design-time. The results are very small
and easy to solve subproblems that can be calculated locally. Since based on solutions
of minor subproblems the overall optimal solution is generated without any additional
computations. Analyzing example Service Selection Graphs it has been shown that
the SODA algorithm offers superior complexity values compared to a depth-first-search
approach also calculating optimal configurations in a distributed manner.
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(a) Another example of a potential Service Selection Graph for BAWS
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Figure 6.7: Some examples for potential Service Selection Graphs
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7 A Communication Model for SOA in the
automotive domain!

"The single biggest problem in
communication is the illusion that it
has taken place.’

George Bernard Shaw?

7.1 Introduction

In recent years the usage of middleware technologies like for example SOA within the
domain of Distributed Embedded Systems (DES) has risen. Middlewares have been
identified to be of great use when these DES get very complex or heterogeneous, the
time-to-market has to be reduced or the systems have to be runtime adaptive. The
SOA paradigm has for example been used in the eSOA project [121] or in the SIRENA
project [25] among others. One issue when taking these two approaches into account is
the fact that they make use of IP-based protocols. This makes sense since most SOA
frameworks are also relying on these technologies. However, in the automotive domain
Ethernet and IP-based communication is still in a very early stage. None of the few
approaches currently available like for example SOME/IP are run in a production car.
Instead, specialized network systems such as the Controller Area Network (CAN) or the
Local Interconnect Network (LIN) are used. These systems are not capable of running
Service communication directly. This is the case since they have been developed to be
used in static scenarios where changes of the system are not taken into account. Further-
more they are used to directly hand over raw data instead of being a base for high-level
protocols which is another difference from, for instance, Ethernet. Another important
issue is that their addressing schemes are message-oriented and make use of broadcast
transmissions rather than using node-based addressing and peer-to-peer communication.

As introduced earlier in this work the SODA framework consists of several layers in
order to implement the separation of concerns principle. Figure 7.1 shows the Archi-
tecture which is used on the SODA Services within the system. It is divided into four
different layers:

1. Application Holds the implementation of the actual Service Logic.
2. SOA Middleware Implements the SOA specific paradigms and functionalities.

3. Communication Model Contains software components to adjust the network
used to the SOA Middleware.

4. Hardware Abstraction Layer Implements the low level network drivers.

This chapter focuses on the Communication Model layer as well as on a development
process which guides the software engineer through the development of this component.
This procedure is called SOAcom. The Communication Model has to fulfill the following
requirements:

!This chapter is based on my publications [13| and |140|. Parts of it are extracted from these sources.
2Leadership Skills for Managers, see [32]
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1. Runtime Adaptation The Communication Model layer must allow connecting
or disconnecting Services at runtime and has to handle the integration of new
Services into the existing network.

2. Ensuring advantageous attributes All of the different automotive network
systems are tailored for a special purpose. This means that they are designed for
a special class of applications and therefore have unique attributes to ensure the
efficiency, safety or timeliness demanded in these applications. These advantageous
attributes need to be ensured and preserved wherever possible when adding Service
communication mechanisms.

3. Interoperability The Communication Model should allow to run mixed networks.
Therefore it must be able to connect Services using a network which is used by
other components, running traditional communication at the same time.

4. Stability after initial configuration In the event of adding a new Service to
the communication channel, existing nodes should not have to re-configure their
communication stack. Instead, only the newly added entity is to be adapted.
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Figure 7.1: Overview of the SODA architecture.

This chapter is organized as follows. Section |7.2| summarizes the related work in
this domain to illustrate the state-of-the-art as well as the shortcomings of approaches
previously published. Section |7.3| gives an overview of the software components build-
ing the SODA Communication Model. Section [7.4 illustrates the associated SOAcom
Development Process in detail. This Development Process is used to construct the im-
plementation of the Communication Model of an example application for CAN in section
7.5. Finally, section |7.6| summarizes the chapter.

7.2 Related Work

As stated before, middleware approaches in the domain of Distributed Embedded
Systems have become quite popular in recent years. In this section, some of these ap-
proaches are evaluated regarding their communication mechanisms. The eSOA project
for example used the SOA paradigm to build systems that control smart buildings
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Scholz et al. [121] xml | node-based -
Bohn et al. |25] xml | node-based | DPWS
Lopez et al. [86] raw | node-based -
DySCAS |73] & |52] | raw | node-based | LINX

Table 7.1: Comparison of the some middleware approaches targeting on embedded sys-
tems

(|121]). However, the approach makes use of several traditional technologies of the Web
Services domain such as the Web Service Description Language (WSDL). This fact,
for example, requires to send XML files through the network to exchange information
between Services. This is a big drawback when a low bandwidth network system
like, for example, CAN or LIN is used. Furthermore, it makes use of ZigBee wireless
communication technology that works with node-based addressing. Another approach
called the SIRENA project, which is explained in [25], has the same drawbacks of not
being usable in low-performance networks. This is because it uses the Device Profile
for Web Services (DPWS) standard, that makes use of IP-based and hereby node-based
communication. Lopez et al. present a Middleware concept in |86] which is targeting
on the avionics domain. Instead of exchanging xml files between the Services which
causes a significant overhead, the authors developed their own communication protocol
directly on the TCP layer. However, since it also uses IP-based communication, it is not
directly usable in today’s cars. Two other approaches are directly aiming on automotive
networks. Jahnich et al. present an approach in [73| which uses a middleware to carry
out load balancing in the events of ECU failures or overloads. Their work is part of the
DySCAS project which targets on introducing self-configurable systems in the context
of embedded vehicle electronic systems. Being designed for automotive infotainment
systems low-performance ECUs are not taken into account. However the specific use
case within this work, namely the connection of devices distributed over a car and
trailer combination, is explicitly excluded from the approach [52|. This is because
of communication issues between car and trailer. This issue is fixed by the SODA
framework. The four approaches described are summarized in Table 7.1. As shown
here, none of them makes use of message-based communication which is the standard
in today’s automotive network systems.

Another field that is interesting within this context is the use of high-level protocols
for automotive networks. Much of the work done in this area has eventually became an
industrial standard. Most of these approaches have been targeting on the CAN network.
For example, the ISO TP standard defines a transport layer that allows to send frames
of a maximum of 4095 bytes via CAN (|71]). The two competing standards CANopen
(I35]) and DeviceNet (|36]) also aim on adding higher layers to CAN to offer some ex-
tended features. Unfortunately, all of these standards have been developed for being
used in only one of the several different automotive networks. In our approach of imple-
menting Service-based technologies, we want to use the whole spectrum of automotive
network systems. Other high-level protocols, like for example the XCP protocol (|80])
that enables engineers to calibrate ECUs within a car, offer interoperability throughout
a higher number of network systems. Unfortunately they are very restricted in their
purpose. Summing up one can say that none of the Middleware approaches or high-level
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protocols developed recently has all the features needed to build the Communication
Model of the SODA framework.

7.3 Overview of the SODA Communication Model for
SOA-based DDAS

As stated before, the Communication Model builds the bridge between the high-level
communication located in the SOA Middleware and the low-level automotive network
drivers. However, this layer exceeds the functionality of a simple wrapper. This is due to
the fact that it has to compensate the shortcomings of the automotive network systems
related to the application requirements. Thereby, it maps the particular functionalities of
the SOA middlware like for example discovery calls to find another Service in the network
to actual messages and hands them over to the Hardware Abstraction Layer. Another
very important duty of this layer is to organize the integration of the Service into the
underlying network and to offer transport protocol functionality like the segmentation
of large Service calls. As shown in figure [7.1 the Communication Model contains four
major components:

1. Addressing Scheme

This component maps the Service calls onto message addresses and vice versa.
Therefore, it contains all relevant information for this task. One difficulty within
this task is given by the fact that in many automotive network systems addresses do
not only identify the content of a message but also its priority. A SODA Addressing
Scheme component must be aware of this fact. Although the Addressing Scheme
is adapted according to the requirements of the application and the network there
are some characteristics that are identical within all SODA systems. The first
characteristic is, that message-based addressing is used. By using this principle,
the address describes the content of the message rather than the sender and/or
receiver. A second common technique is the use of a describing number that
identifies the functionality of the Service. In the SODA framework this number
is called Service Class Address (SCA). The basic idea is to assign a SCA to an
Abstract Service and to register it in a global document. By doing so, it is assured
that a functionality can be identified within a system using its SCA. Thereby, this
functionality can be reused by other applications.

2. Adaptation
The adaptation component carries out the integration of the Service within the
network. At the very moment when the Service is added to a network it needs to
announce the existence of its functionality and claim addresses or time slots to be
able to take part in the communication.

3. Segmentation
As some Service calls or data exchanges might be larger in size as the maximum
load of a single message in the underlying network, a segmentation process must
be available. This component divides the abstract SOA calls into message sized
junks in order to send them over the network. In a second step it takes care of
the transmission sequence. Moreover, it assembles the incoming messages when
receiving large size SOA calls in order to reconstruct them.

4. Transmission Arbitration
Since all automotive network systems use shared segments, in order to send mes-
sages, a channel access control mechanism has to be established. This mechanism
can be controlled by a central device, like in some time division approaches or for
example the LIN network. It also can be distributed over the nodes in the net-
work. An example for the latter mechanism would be CAN which uses a Carrier
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Sense Multiple Access / Collision Resolution (CSMA /CR) technique and the multi-
master principle. The Transmission Arbitration component has to be adapted to
the underlying network in order to make sure that the network’s channel access
method keeps the priorities and scheduling defined in the application.

Those components listed above are generic containers that have to deliver a specific
functionality. However, they have to be specifically designed and implemented for every
assistance project depending on the requirements set up by the application and the
characteristics of the actual network used. This approach allows to create a well tailored
middleware that fulfills all demands set up by the application in an efficient way. Due
to this and the fact that any particular implementation of the Communication Model
causes a significant amount of effort, a well structured development process that guides
the software engineer through several steps has been defined. This process model is
named SOAcom. In the following section the development process is described. Its steps
will eventually result in an executable implementation of the SODA Communication
Model.

7.4 SOAcom: A development process for SODA
Communication Models in automotive SOA-based systems

This section will describe the development process SOAcom. SOAcom is a tailored and
well structured approach to analyze the DDAS application carried out by the system
as well as the characteristics of the network used. Using the results of both analyses
the steps of the development cycle are created. Carrying out these development steps
a team of programmers is able to implement a SODA Communication Model tailored
to the specific needs of the overall system and thereby efficient in terms of memory and
processor usage. In the following subsections an overview of the approach as well as a
detailed illustration of the several steps to be carried out are given.

7.4.1 Overview of the SOAcom process model

The SOAcom process model consists of four major steps. These four steps guide the
developer in creating a SODA Communication Model tailored to a specific application
using a specific automotive network. Figure 7.2/ gives an overview over the whole process.

The process starts with phase 1 on the top left corner of Figure [7.2. This step carries
out SODAdev which has been described in chapter 5. As described there, SODAdev
allows to transform ideas for Distributed Driver Assistance Systems into a full system
specification of the functional characteristics in a model-based procedure. As a result, a
system description in SoaML is created. This model is used to extract the requirements
of the application which influences the communication.

In phase 2, the network protocol used is analyzed. This targets on deriving a summary
of relevant characteristics. Phase 2 can be carried out completely independent from
the actual application as its only concern is the network itself. The analysis is done on
the base of a questionnaire that guides the developer through this phase. As a result
of this step, those characteristics of the network which are important for designing a
Communication Model are summarized.

Phase 3 merges the results of the phases 1 and 2. The goal of this phase is to identify
which steps have to be taken to allow the usage of the desired network protocol within

the specific application.

Finally, phase 4 consists of the execution of the tasks identified in phase 3. By
carrying out those tasks the Communication Model is implemented step by step until it
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Figure 7.2: Overview of the SOAcom development process.

fulfills all requirements set up by the application and complements the mechanisms of
the network system used as necessary.

The remainder of this section will describe the four phases of SOAcom in detail.

7.4.2 Phase 1: Determining the requirements of the Communication Model
set up by the application.

In chapter 5 a model-driven development process for SOA-based driver assistance sys-
tems has been described. This process allows to generate a detailed description of such
a system in SoaML starting from the plain idea of a DAS or a non-SOA legacy system.
By working through the phases of the development process described there, the used
Services are identified and derived from the functional requirements. These Services are
enriched with descriptions about the provided and requested functionality, as well as a
contract. As described in chapter 5, a contract in a SoaML model is an artifact that
describes how providers and consumers exchange data with one another. Therefore the
UML metaclass collaboration is extended to define the roles of the interacting partners
as well as their behaviour ([101]).

The resulting SoaML model offers a detailed description of the communication ex-
changed between the Service and its requester. This description can be used to derive
the requirements set up by the application that have to be fulfilled by the Communi-
cation Model. Inside the description of the communication in each contract, which is
modeled using UML Sequence Charts, messages sent by both partners are attached by
UML Signals. A UML Signal is a standard modeling element of the Unified Modeling
Language. It is used to describe the data packet exchanged by two entities. This is
done by specifying the content of the Signal in detail using attributes. These attributes
on the other hand are of a specific data type. By specifying both, the attributes and
their data types a detailed description of each message exchanged within the system
is given and can be used to derive the requirements regarding the Communication Model.
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Figure [7.3a presents an example of such a Signal. In this case the name of the Signal
is "Sig CameraPositionResponse". It owns three attributes namely Height, Distance
and Angle. Each of them is of a specific data type. For example, the attribute Height is
an unsigned integer with 16 bits of length (abbreviated uint16).

The data types used for the attributes of the Signals have to be defined as well. In
SODAdev twelve different types which include, for example, the standard data types of
the common programming languages like integer number with 8 bits of length (int8),
floating point number with 32 bits of length (float32) or ascii characters have been
declared. Figure 7.3b| presents the data type uint16 that has been used in the example
to specify the size and coding of the Height attribute.

=signal=
= SllgLCamrzraPnsltmnResponse «dataTypes
g Height : uintlé uint16
[Eg DistanceToCenter : intl6
Eg Angle : float32
(a) Signal (b) Data type

Figure 7.3: Example elements

All Signals and data types are defined in a separate package within the SoaML model
in order to keep the model structured. The Signals are used in the contract definition
within Asynchronous Signal Messages. In contrast to UML Synchronous Messages
this type allows to directly add Signals to the message exchange artifact. This allows
to create an integrated and detailed description of the communication process at the
same time. Figure 7.4 presents an example of such a sequence chart within a contract
which uses this kind of messaging. In this example, which is an extract of a SoaML
contract created using SODAdev, two entities are participating within a communication
scenario. The consuming unit on the left hand side sends an Asynchronous Signal
Message containing a predefined Signal to the second one, a Service that provides some
information about the position of a camera. This Service answers the call by handing
over the information in the format specified in the Signal description given in Figure|7.3a.

E .. i . .
ConsumerCameraPositicnProcessing @ Provider:CameraPosition

1: Sig_CameraPositionRequest

1.1: Sig_CameraPositicnResponse

Figure 7.4: Example of a communication sequence using Asynchronous Signal Messages.

With this level of detail in the SoaML model it is possible to derive the requirements
of the application regarding the communication aspects. These requirements are:

1. The number of Services in the application.

2. A list of Services alongside with their functional identifier (SCA).
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3. The size in Bytes of the biggest message in the application.

4. The presence of periodic messages in the application.

The first requirement, the number of Services, can be easily discovered by counting the
number of Participants in the overall Service Architecture, which is part of the SoaML
model. In small size applications it can be done manually. For big size applications
this job could also be done using a simple program. This is due to the fact that the
SoaML model can be represented by an xml file. As such xml files are easily parsable
the analysis of the number of existing Services can be determined without big effort.

In the same way the second analysis, which creates a list of Services, can be carried
out. Again, the SoaML model can be either parsed manually whenever the application
is small or by using an automatic parsing for larger systems. By inspecting the Inter-
faces package within the SoaML specification all the necessary descriptions of the used
Services can be found. The corresponding SCA to describe the functionality of each on
the other hand, is meant to be defined in a global Service description file to allow re-use
of Services between different applications.

The most efficient way to determine the biggest message in the model is to analyze
the package containing the specifications of the used Signals and data types within the
SoaML model. This can again be simplified by using an automated script program
which analyses the UML model in order to reduce the effort of the developer especially
when the specification is large. As a result of this step the largest message as well as its
size in Bytes is identified.

The last step is to identify whether the system contains any single periodic messag-
ing scenario. This is important since some automotive network systems do support
such communication by default. As there is no central package available containing
an overview of all communication cycles the developer needs to sequentially scan all
contracts available when determining this issue manually. As an alternative, the xml
file describing the SoaML specification can be scanned for the existence of the UML
element used for periodic messaging. If there is only one periodic message in any of the
contracts, this has to be reported. This last analysis of the application’s SoaML model
completes the step of deriving the requirements set up by the application.

7.4.3 Phase 2: Characterization of the network protocol

Phase 2, which is designed to develop a high-level description of the automotive network
protocol intended to be used, is completely independent from phase 1. Therefore it
can be carried out either simultaneously or in sequence. The main goal of this second
phase is to hide the complexity of the protocol’s implementation and focus strictly on
its capabilities relating to the needs of the SODA framework.

The description of network protocols is often done using formal or semi-formal descrip-
tion methods. Two of the most popular ones are formal languages and state diagrams.
In the first case the focus normally lays on the exchanged data structures. State dia-
grams on the other hand try to provide a description that easily allows to understand
and follow the flow of the information exchange.

Both descriptions mentioned above are mainly used to give the developer guidance when
implementing a communication stack using this protocol. They do not explicitly high-
light the capabilities of the protocol. However, for the development of a communication
model within the SODA framework this information has to be extracted to be used
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within the ongoing process. In order to characterize network protocols, a characteri-
zation method based on a questionnaire has been developed. Phase 2 is conducted by
analyzing the protocol using this questionnaire.

In the following subsection a list of attributes specified to describe a network protocol
is presented. This is complemented by a questionnaire that makes it possible to collect
the values of these attributes.

7.4.3.1 Characteristic attributes of a network protocol

The network protocol description paradigm designed for the SODA framework summa-
rizes some of the most important attributes of a network. It is divided in five different
groups. The first group, called transmission, describes how the protocol transmits data
to the channel. The second group, called physical capabilities, details the topology and
physical medium. A third group, named network capabilities, gathers the characteristics
concerning the whole network. The fourth group, called dynamic capabilities, manifests
how the protocol adapts to environment changes. Finally, the fifth group, called de-
pendability, describes the safety and security mechanisms provided. Figure 7.5 gives an
overview over the characteristics used in the protocol description scheme.

Dependability

Network
Characteristics

Dynamic
Capabilities

Physical
Capabilities

Network
Capabilities

Figure 7.5: Groups of characteristics of a network system.

7.4.3.2 A questionnaire to characterize a network protocol

The discovery of characteristics of the network protocol to be analyzed is done by a
questionnaire. Within this questionnaire all relevant values are analyzed and extracted.
The questions are dedicated to the groups introduced in section 7.4.3.1. They are build
in a manner that the answers to them are one of the following three types:

e Checkboxes to allow multiple answers to a question.

e Radio Buttons to restrict the possible number of answers to one.
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e Free text answers to provide the chance to for example input numeric values.

Table 7.2 shows an example of one of these questions. The presented case is the test
for the prioritization mechanism of messages within a network. As visualized in the
table the answer type of this question is of the Radio Buttons type. This means that
only one of the offered options "Node-based”, "Message-based”, ”Scheduler-based” or "No
Prioritization” can be selected.

Frame prioritization
o Node-based
o Message-based
0 Scheduler-based
o No prioritization

Table 7.2: Extract of the questionnaire to characterize a network: Frame prioritization.

A second example is given in Table 7.3. Here, the possible modes of addressing are
determined. In the scope of SODA it is especially interesting whether the network
system is able to address nodes or logical components in order to make design decisions
for the communication middleware. In this example it is also possible that a network
supports both possibilities. Therefore the Checkbox style answer is used.

Possible entities to be addressed
(d Node
(A Logical component

Table 7.3: Extract of the questionnaire to characterize a network: Addressing.

The outcome of this second phase is a general model of the protocol that contains
all relevant information of the network systems in the scope of SODA. The information
gathered here is used together with the requirements of the application which have been
determined in phase 1 within the next phase of SOAcom. With the completion of this
second phase the analysis part of the process model is done and the focus swaps on
creating a well-tailored communication model.

7.4.4 Phase 3: Mapping requirements to attributes

In the third phase the shortcomings of the deployed network protocol compared to the
requirements of the application are identified. Furthermore a list of tasks which must
be carried out to develop a tailored Communication Model is created. In order to do so,
the information gathered in the two previous phases of SOAcom is linked to each other.
On the one hand, phase 1 provides the list with the communication requirements of
the application which, as explained, is composed of four different values. On the other
hand, phase 2 supplies the list containing the values of the network protocol attributes,
which describes the capabilities of the automotive network protocol.

These two information streams are processed using a set of flowchart diagrams. This

kind of diagrams are normally used by software designers to represent algorithms or
processes. In the SOAcom development procedure they are used for identifying the
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network protocol shortcomings and in a second step to determine the tasks to be carried
out to overcome them.

The following subsections describe these diagrams and how they are used within
SOAcom. Furthermore, an example of such a flowchart diagram as well as an extended
description of its contained tasks is provided.

7.4.4.1 Flowchart diagrams to guide the developer through the process

Each of the flowchart diagrams represents a structured set of questions and is linked to
a list of possible tasks. The questions given match the application’s requirements deter-
mined in the first phase with the networks’ attributes from phase 2. By going through
these flowcharts the comparison is carried out in a well structured and comprehensive
manner. In the event that one of these flowchart diagrams detects a shortcoming, the
selfsame circumstance highlights a pre-defined task to overcome its presence. Therefore,
each shortcoming alongside with the task to fix it is recorded. The outcome of this
phase is a set of development tasks to be executed by the development team.

The flowchart diagrams of this SOAcom phase are complemented by a text document.
This document contains both the explanation of each branch element in the flowcharts
and a detailed description of each development task to be carried out.

This third phase of SOAcom contains six different flowchart diagrams, each of which
is related to at least one attribute of the network protocol. Besides, the structure of the
diagrams reflects directly the configuration of the Communication Model components
as presented in Figure [7.1l

The first one of these diagrams corresponds to the Addressing scheme. It is dedicated
to analyze all properties and characteristics needed to create a mechanism capable of
guaranteeing the delivery of messages to the receivers. In order to fulfill this task it is
necessary to take into account the characteristics of the network protocol addressing
scheme, the network protocol transmission method and the set of Services defined in
the SoaML model describing the application under development.

The second diagram checks the ability of the used network to assign addresses dynam-
ically. This is important as it helps to extend the dynamic capabilities of the network
protocol if needed to allow runtime assignment of addresses to the Services and, in some
cases, to the nodes. For this, it is necessary to distinguish between node-oriented and
message-oriented network addressing modes.

Flowchart number three, which is called mode of communication, assists the developer
in adapting the channel arbitration mechanisms of the network in order to allow Service
communication using the SODA framework. Therefore it is necessary to check whether
the network protocol makes use of a master/slave or a multi-master communication
principle.

Similarly to the mode of communication diagram, the fourth one named mode of
prioritization assists the developer in checking for an important property when design-
ing runtime adaptive networks. This flowchart detects the network systems ability to
manage the prioritization of new Services dynamically.

The Fragmentation diagram which is flowchart number five, helps to ensure that
the network protocol is able to transmit messages when their content overcomes the
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Messages are directly addressed Yes
to the receiving nodes. Thus, each
node must own a unique address

) Has the network
Provide a communication protocol | o protocol any o Yes

to assign nsure that a new node has Nothing to be done
to the nodes
unique address?

Is the network
protocol node-oriented?

Messages are sent in broadcast.
Receivers filter them taking into
account the addressing info, which
identifies the service and command
providing the content. Thus, each
service must own a unique address

Is the network
protocol message-oriented?,

Out of the scope

Provide a local communication Provide a communication protocol
protocol to assign End to assign addresses dynamically
dynamically to the services to the services

Figure 7.6: An example flowchart diagram.

maximum payload. For this, it is necessary to compare the size of the messages within
the application, as well as the maximum message payload of the network protocol. In
the case the former value exceeds the latter one the flowchart also determines whether
a fragmentation protocol is already provided by the network system.

Finally, the sixth flowchart diagram called trigger condition explores the message
scheduling principles to be used. Therefore, the existence of periodic messages in the
application on the one hand and the types of scheduling schemes supported by the
network protocol on the other hand are examined.

7.4.4.2 Flowchart diagram example

This subsection presents one example of SOAcom’s flowchart diagrams. It is called
“ability to assign addresses dynamically” and is shown in Figure |7.6.

The semantics of the used flowchart elements are as following: the diamonds used
represent conditional statements. In the SOAcom approach they contain the questions
to be asked in order to identify the list of tasks to be executed. Within the flowcharts
itself these elements change the execution flow.

The rectangles used need to be divided based on the color. The first class of rectangles
is white-filled. These elements present important information regarding the flow of the
analysis. On the other hand, the gray-filled ones provide a short description of the task
to be carried out when passing that element while working through the flowchart.

Finally, the diamonds are equipped with labels. These labels refer to a specific section in
the text document which corresponds to them and describes the workflow in more detail.

By identifying shortcomings of the network protocol using the flowchart diagrams the
set of tasks to be carried out is determined. As illustrated in Figure 7.6/ each of these
shortcomings is equipped with a short task description. However, adding the complete
definition of the task as well as the possible options to be taken would increase the size
of the flowchart enormously. In order to obtain lucidity this additional information is
moved to an external document. In Figure 7.7, a summarized version of the document’s
extract corresponding to this diagram is shown and explained.

The given example helps the developer to achieve an adaptive architecture. Therefore,
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2. Ability to assign addresses dynamically

Simce we are constructing an adaptive architecture, the LLCM must allow connecting new nodes at runtime and participate in the
communication. Moreower, It must also allow to start new services at runtime when connecting a new node, or even later. In order to
be able to deliver messages to these new services it is necessary to ensure that they can acquire a unique address dynamically.
Additionally, in some cases, it could be also necessary to assign addresses dynamically to the nodes.

2.1. When the communication protocol is node-oriented

Messages are directly addressed to the receiving nodes and, thus, each node must own a unique address.

2.1.1. The LLCM must ensure that new nodes and/or services installed at runtime have unigque
addresses

In order to allow the communication among services in a node-oriented CP, the network must be able to provide mechanisms to
ensure that new nodes have already a unique address, or that they can acquire it dynamically.

In case the CP does not provide any mechanism io do so, the designer of the LLCM must provide a protocol fo assign addresses
dynamically to the nodes. This protocol should presenve the mode of communication of the CP, that is, the protocol should not force
to insert a central mode to camy out this task in mult-master networks. One possible option is to look into the existing CP high-level
protocols. In case any of them implement a suitable algorithm to assign addresses at runtime, the designer of the LLCM can extract it
and then added it inio the CP.

Omnce each physical component of the network is able to own a unigue address, services must be provided with unique addresses, so
messages can be delivered not only to the nodes but io the services. In this sense, the designer of the LLCM must provide an
algorithm to assign unique addresses to the services dynamically. Mote that, since part of the node-oriented addressing scheme of
the services already specifies the address of the node (which is unique) this algorithm can be executed locally in the physical device.

2.2. When the communication protocol is message-oriented the LLCM must ensure that
new services installed at runtime can acquire addresses dynamically

In & message-based CP messages are sent in broadcast and the receivers are the ones responsible for filtering them, so that only
the interesting ones are accepted. For this, receivers check the value of the addressing information, which identifies the service and
command providing the content of the message.

The designer of the LLCM must provide an algorithm to assign unique addresses to the services dynamically. Note that, contrary to
the algorithm used in node-based protocols, this algorithm must communicate with all the services of the network.

Ome possible option is to use the automatic identifier assignment algorthm presented in “A CAN-based Communication Model for
Sarvice-Oriented Driver Assistance Systems®™. This algorthm is based on the Bully Algorthm used for electing a leader in a
distributed system presented in "Elections in a Distributed Computing System”. The main adwantage of using this algorthm is that all
the address assignment process can be camied out without a central logical component.

Figure 7.7: Extract of the document describing the tasks.

the Communication Model must allow connecting new Services at runtime. Moreover,
in order to be able to deliver messages to these new Services, it is necessary to ensure
that they can acquire a unique address dynamically.

Figure [7.7| shows an extract of the document describing the tasks. In this part of the
document the tasks that are executed to allow dynamic addressing are described. The
first conditional statement in Figure 7.6/ which is labeled 2.1 checks whether the network
protocol is node-oriented. In this case, messages are directly addressed to the receiving
nodes. If so, each node must own a unique address. In this sense, the Communication
Model must ensure that new nodes and/or Services installed at runtime have unique
addresses in order to be reached separately.

The requirement of providing unique addressing is expressed in the second condi-
tional statement, labeled 2.1.1. In case the network protocol does not provide such
a mechanism, the designer must add a protocol which offers this feature. However,
this protocol should preserve the mode of the network. More specifically, the protocol
should not force to add a single master node when dealing with a multi-master scheme.
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There are different approaches on how to solve such an issue. One of them is to check
whether there are extra protocol layers. One example for such a circumstance is the
ISO 15765-2. This standard specification is also known as ISO-TP. Originally the CAN
specification only defines the layers one and two of the Open Systems Interconnection
model (OSI). ISO-TP adds the layers three and four and thereby takes care of for
example segmentation. Similarly to this widely used CAN extension other protocols
used in the automotive domain also feature such enhancements. Such add-ons are a
good starting point when having to add mechanisms that are not part of the original
network specification as these gaps might have been problematic in other scenarios
of usage as well. In case that any of them already implements a suitable algorithm
to assign addresses at runtime, the designer can extract it and then add it into the
Communication Model.

Coming back to the initial example, the communication model must ensure that not
only new physical components of the network are able to retrieve a unique address. As a
matter of fact, new Services, which can be seen as logical components, must be assigned
with unique addresses, too. In this sense, the designer of the Communication Model
must provide an algorithm to assign unique addresses to the Services dynamically. Note
that, if a node-oriented addressing scheme is already executed by the network system,
the addressing of the Services can be managed locally inside the physical device.

A completely different path of the flowchart is chosen when the network protocol is
message-oriented. This case is visualized at label 2.2 in figure [7.6. Messages in such
systems are sent in broadcast which means that they have no explicit receiver. Instead,
the addresses of the packets are describing their content. In such networks, it is the
receivers that are the ones responsible for filtering them. In the Service communication
scheme as it is used within SODA, the address of a message identifies a Service call.
Looking at such a Service call in detail, it contains an identification of the functionality
and the Service instance. As the addressing is not node-based, the designer does not
have to assign addresses to the nodes. On the other hand, an algorithm to assign
unique addresses to the Services dynamically must be provided. This means, that
each Service must be identifiable by a unique combination of the functional and the in-
stance identifier. One possible option is presented in the example given in section 7.5.3.2.

7.4.5 Phase 4: Implementing the components of the Communication Model

In the last phase of the SOAcom procedure, the Communication Model is constructed
by defining the content of each of its components. This is done by executing the tasks
collected in the previous phase and hereby extending the capabilities of the network.

One important characteristic of SOAcom is traceability. Trailing a specific piece of
code within a Communication Model implementation to the discrepancy between appli-
cation requirements and network characteristics can be done in two steps. First, using
the tasks documentation one can easily backtrack each implemented component of the
Communication Model to a task. Second, the flowcharts used allow to trace this task
all the way back to the specific characteristics of the network and the application which
set up the need of this implementation. Table 7.4| gives an overview of the relation-
ship between the components of the SODA Communication Model and the SOAcom
flowchart diagrams. This high level of traceability simplifies changes within an already
implemented stack and allows conclusions on the amount of code needed to fix each
discrepancy between application needs and network features.
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Component Flowchart diagram
Addressing scheme Addressing scheme
Ability to assign addresses dynamically
Adaptation Mode of communication
Mode of prioritization
Fragmentation Fragmentation
Transmission arbitration | Trigger condition

Table 7.4: Relation between Communication Model components and flowchart diagrams.

7.5 The usage of SOAcom in a real world example

In this section the SOAcom approach is evaluated using an example development. The
running example is a visual assistance application for a car and one-axle trailer com-
bination. The used network is the Controller Area Network which is still the most
popular one in today’s cars. Within this exemplary development cycle for a specific
and well tailored Communication Model for this application-network combination the
SOAcom process model is used and thereby evaluated. More specifically the following
sections describe how the SOAcom process model is used to analyse the application and
the network, to determine its shortcomings and specify the components of a suitable
Communication Model.

7.5.1 Example application

As already mentioned, a real world example is used for this evaluation. The application
chosen is a visual assistance for a car and trailer combination as shown in figure [7.8.
This system helps the driver in the process of backing up a vehicle with a one-axle
trailer connected. The main idea is to calculate and visualize the future trajectories of
the trailer and the overall vehicle. These trajectories are based on the dimensions of
different parts of the combination as well as on the steering angle and on the bending
angle between car and trailer. The calculated trajectories are transformed and overlaid
onto the picture of a rear view camera mounted on the trailer. Figure 7.9 shows the
interface of the system to the driver. For more details on the application or on the
semantics of the assistance, please refer to [21].

Figure 7.8: Overview of the prototype. \|

By using the SODAdev development cycle as described in chapter 5 the application
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il

Figure 7.9: Human Machine Interface of the running example. \\

has been transformed into a SoaML model. This model is used as a base for phase 1 of
the SOAcom procedure. This example assistance system is built up by seven different
Services. Figure [7.10] illustrates these Services. Some of them are sensing Services, like
the ones used to determine the current steering angle or the bending angle. In Figure
7.10 these are shown on the very left of the picture. Some others are Services which
process these sensor signals to add additional information to them. Such entities are for
example the ones used to calculate the future path of the vehicle and its trailer, named
"trajTractiveUnitService" and "trajTrailCombService" in the picture. Finally, the last
group of Services outputs some information to the driver. In the example given, this is
done by a Service which displays the picture of the rear view camera overlaid by the
trajectories.

Ol TrajTractiveUnit : TrajTractive UnitService
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Figure 7.10: Service Architecture of the example application: a visual assistance system
for cars with one-axle trailers.

7.5.2 Applying the SOAcom process

In the first phase of the SOAcom procedure, the requirements of the communication
requested by the example application are determined. Therefore, its characteristics are
analyzed. As stated earlier and illustrated in Figure [7.10, the example application is
composed of seven different Services. These seven functional entities are extracted and
listed in Table 7.5, alongside with their functional identifier, the so called Service Class
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Address.
Name of Service Service Class Address
SteeringAngleService 290
BendingAngleService 291
TrajTractiveUnitService 300
TrajTrailCombService 301
RearViewService 295
OutputVideoService 310
OverlayService 311

Table 7.5: List of Services in the example application.

In a next step, the message with the biggest size within the application is identified.
Therefore, the UML signals which correspond to the CAN messages are inspected. The
largest one to be found within the SoaML model of the application is 8 bytes long.
It contains the information about the mounting position of the rear view camera and
is needed to calculate the transformation of the trajectories into the camera picture.
Figure |7.11 shows an illustration of this Signal containing three important values to
indicate the position and direction of the camera. Besides that, from the sequence charts
within the contracts of the seven Services, one can see that event-triggered messages as
well as periodic messages are used in the communication schemes. This means, that the
Communication Model to be developed must support both forms of communication.

=signal=
5ig_CameraPositionResponse

Eg Height : uintl
Eg DistanceToCenter : intlf
Eg Angle : float32

Figure 7.11: The largest UML Signals within the SoaML model of the example applica-
tion.

In the second phase, the questionnaire is used to characterize the network protocol.

In this case the CAN protocol is to be examined. The first value collected is from the
transmission group and contains the message-oriented communication style of CAN.
Moreover, it does not make use of a central master, but is carrying the bus arbitration
on a multi-master base instead. An analysis of the structure of the message shows, that
it has a relatively large identifier field, which offers to address more than 536 million
messages. A very specific characteristic of CAN is the fact that the identifier of each
message is directly defining the priority of the message and therefore is a critical point
in the Communication Model.
The second group within the questionnaire is the network capabilities group. One
important finding here is that the maximum payload offered by CAN is eight bytes.
The third and last group within the questionnaire checks the dynamic capabilities of
the network. Here, CAN lacks of mechanisms to add or remove nodes to the network
at runtime. This is because the protocol does not feature any mechanisms that allow to
assign addresses to newly added nodes or in this case messages.

Continuing with phase 3, the information collected through the two previous phases
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is combined by using flowcharts as introduced in section 7.4.4. Hereby, the shortcomings
of the CAN protocol in this specific application scenario are determined. Furthermore,
the tasks to be undertaken to overcome these shortcomings are defined. The outcome
of the procedure supported by the flowchart diagrams is a list of four different tasks:

1. Set up the SOA-based addressing scheme

The Communication Model must allow to deliver SOA-based messages in CAN.
Using the questionnaire that examines the network properties, CAN has been
identified to be a message-based network protocol. Because of this, the CAN
identifier scheme must be constructed in a way that allows to identify the Service
call including the command executed. As the CAN addressing field has a relatively
high number of addresses, the CAN identifier can be directly used for addressing
the Services.

2. Make the address scheme encoding consistent with the priority scheme
used
In CAN, the message identifier directly defines the priority of the message. Thus,
it has to be set up with care. The priority rules of CAN specify that the higher the
number of the identifier, the lower the priority of the message. When setting up
the addressing encoding this priority scheme, as well as the priority of the Service
must be taken into account.

3. Provide a communication protocol to assign addresses dynamically to
the Services.
The Communication Model must allow to add or remove nodes at runtime. This
includes the integration of Services and hereby the dynamic assignment of addresses
to the Services. Since CAN does not provide such a mechanism it is up to the
communication layers of the SODA middleware to provide one. These facts define
the task of developing and implementing a dynamic address assignment module.

4. Schedule periodic messages using event-driven scheduling

The Communication Model must ensure that each SOA-based message is sched-
uled using the most suitable scheduling policy, so time constraints are fulfilled. The
CAN protocol is designed to be an event-based bus, which means that there is no
in-build mechanism that allows to trigger messages on a periodic base. Unfortu-
nately, as explained previously, the example application contains periodic messages.
Because of these circumstances, it is necessary to introduce a periodic scheduling
module using the event-driven policy of CAN. This module must ensure that no
deadline is violated. Finally, note that is has been proven by Davis et al. in |38]
that it is possible to constitute periodic messages using CAN.

In the last phase of the SOAcom process the modules of the Communication layer
that have been identified in phase 3 are implemented. In the example used here, these
are:

1. Addressing Scheme The two first tasks, ”"Set up the SOA-based addressing
scheme” and "Make the addressing encoding consistent with the priority scheme
used” lead to the modules which form the Addressing Scheme component. It ba-
sically manages the addressing of the Services and hereby controls the priority of
each message.

2. Ability to assign addresses dynamically By executing the task "Provide a
communication protocol to assign addresses dynamically to the Services” the Adap-
tation component is created. The main goal of this component is to provide mech-
anisms to manage dynamically the addresses of Services when they are added or
removed from the system.
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3. Trigger condition The task ”Schedule periodic messages using event-driven
scheduling” leads to the Transmission Arbitration component. This component
ensures that any Service is able to sent out periodic messages in an event-triggered
network protocol such as CAN.

The fourth component of the Communication Model is not touched in this running
example as the biggest message within the application fits into a single CAN message.
The concrete design as well as some implementation details are explained in Section
7.5.3 and assessed in Section [7.5.4L

7.5.3 Design and implementation of the Communication Model

This section will explain a possible implementation of a Communication Model for the
example application on the CAN network. It starts with introducing existing approaches
that have tried to add high-level layers on this fieldbus. Afterwards, it introduces the
design of the three modules that have been identified by phase 3 of the SOAcom process.

7.5.3.1 Related work in high-level protocols on the Controller Area Network

One quite obvious solution for such a communication layer that brings Service-orientation
to the CAN bus is to introduce IP-based communication to this network. Such an ap-
proach has been realized by Reichelt et al. in [109]. The basic idea is to assign a single
identifier to every node in the network. Furthermore, the addressing drops out of the
identifier section of the CAN message by reserving space for the IP addresses and ports
of the sender and the receiver in the data section of the frame. Since the size of an IP
packet is normally much higher than the maximum frame size of CAN, the IP packets
have to be split up and sent through several CAN messages. Although this approach
is quite interesting it has some drawbacks, too. First of all, the static assignment of
identifiers to nodes does not allow changes of the CAN network at runtime. It also
violates some of the main characteristics of CAN, as it changes the addressing mode
from being message-oriented to being node-oriented. As the identifiers in CAN are also
determining the priority of the message, the prioritization is no longer message-based
but node-based. If now, for example, a node with a high priority identifier sends out a
very long IP-based message, the bus may be blocked for a long time whether the message
being sent is of high-priority or not. As the addressing scheme of IP is maintained,
the communication mode changes from being broadcast into being singlecast. Besides
that, the high level of fragmentation as well as the fact that the header and trailer of
each packet are sent within in the data section of the CAN package causes a significant
overload.

In order to avoid the drawbacks of simply adding an IP-layer to CAN several re-
searchers have published techniques to directly operate middleware technologies on the
Controller Area Network. In [81] for example, Lankes, Jabs and Bernmerl present an
approach to allow the usage of a CORBA middleware in CAN-based networks. A similar
technology has been introduced by Kim et al. in |77]. However, both proposals assume
a static assignment of identifiers to nodes within the network configured at design-time.
Furthermore the maximum number of nodes is limited to 16 and 32 respectively. An-
other method is presented by Kaiser, Brudna and Mitidieri in [76]. The main idea
is to deploy a real-time enabled middleware in Controller Area Networks. Again, the
approach lacks of the opportunity to assign identifiers dynamically to the nodes but uses
static ones instead. One well known technology for high-layer protocols on CAN is the
DeviceNet standard [99]. In order to guarantee unique identifiers within the network,
the identifier field partly consists of a combination of a vendor specific ID and the serial
number of the device. This definition also leads to a static identifier assignment which
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is not sufficient within SODA-based applications.

Other approaches are capable of handing out identifiers to the nodes connected at
runtime. One of these is presented by Cavalieri in 33| to ensure real-time characteristics
of a CAN network by dynamically changing identifiers and in doing so changing the pri-
orities of the messages. Another approach is the standard CANopen [11] which includes
a mechanism to change the identifiers of messages at runtime within the protocol stack.
This mechanism is used and extended by Zhou et al. in [158] to build a self-organized
protocol stack for networked control systems. However, all three approaches mentioned
are based on a central master device responsible for managing the identifier assignment
within the network. Using such a master-based assignment requires maintaining an ex-
tensive database of nodes and their identifiers. Besides that a protocol has to be defined
to keep this database consistent even in the event of disconnecting a node spontaneously
by cutting-off its power source. Since this scenario is typical for embedded systems
it has to be taken into account. Finally, the dependency on a central master device
generates a single point of failure and thereby reduces the reliability of the network.

A last approach uses the reserved bits specified in the extended identifier specification
(CAN 2.0B). In |152] Yellambalase and Choi introduce an automatic assignment mech-
anism operating without a central master device. The reserved bits of the extended
frame are used as flags within a protocol to negotiate identifiers between the nodes of
a network. However, the usage of reserved bits as well as the complicated negotiation
mechanism requires the design of a specialized CAN controller and in doing so demands
a disproportional effort.

None of the approaches mentioned above is fully capable of running SODA-based
systems on CAN with adequate performance. In order to achieve this, the modules
identified in phase 2 are implemented as described in the next three sections.

7.5.3.2 Addressing Scheme

One of the most significant attributes of Controller Area Networks is the fact that they
are message-oriented. This means that other nodes are able to determine the content
of the messages by reading the identifier. This principle allows establishing an efficient
communication mechanism using broadcast messages. At the same time, the identifier
defines the priority of the message and hereby of the data sent inside. In order to
preserve these benefits the addressing structure of the Communication Model has to be
structured carefully.

For the purpose of keeping the bus message-oriented, the identifier should allow to
draw conclusions on the content of the message. This leads to a scheme including the
so called Service Class Address (SCA). On the basis of the definition given by Rocco
et al. in [111] a Service Class is defined to refer to a specific functionality implemented
as a Service. In an automotive environment this may be, for example, functionality
offering to retrieve the current steering angle. A Service Class Address is a number
identifying a specific Service Class. A Service Instance on the other hand is an in-
stantiated implementation of this Service Class. Using the SCA as an identifier would
preserve the message-oriented communication style as the content of the message would
be announced. However, this approach would not allow having several Service Instances
of the same Service Class on the same network as the identifiers would not be unique
anymore. This is why the SCA is combined with an Instance Identifier (IID). The
IID is used to distinguish between several Service Instances of the same Service Class.
Additionally the identifier is supplemented with the command that has to be executed
by the Service addressed. The combined identifier ensures uniqueness and preserves the
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expressiveness given by the message-oriented addressing approach.

A B Cl D

Unused Service Class Instance
Bits Address Command | yentifier

Figure 7.12: The Addressing Scheme developed for SODA Service Communication on
CAN.

The overall composition of the identifier is shown in Figure [7.12. The first bits of the
identifier, that build section A, are not used within our addressing scheme. In doing so,
the demand to allow simultaneous deployment of Services and classical functionalities
on the same bus is ensured. This is because only one combination of these bits could
be used for the Service-based approach while all other combinations may be used for
standard CAN messaging. Furthermore, these bits could also be used to set up virtual
channels on the bus offering different priorities. In the automotive domain this could be
used for example, to define different channels for safety and comfort applications which,
due to the broadcast-style messages, could still exchange data. The next section holds
the SCA followed by the command bits included in section C. The least significant bits
combined in section D are reserved for the IID. This order allows defining the priority
of Service messages and other messages on the bus, as the overall priority is mainly
depending on section A. The order of the remaining sections ensures a prioritization
primarily given by the functionality which is expressed by the SCA and hereby allows
giving important functionalities preferential treatment. The influence of the command
and IID fields on the prioritization is rather small. The actual size of the individual
sections of the identifier may vary. In this concrete example the extended identifier of
CAN, containing 29 bits, has been used. As illustrated in Figure 7.13, section A takes
position on the bits 0 to 4 while section B is located between bit 5 and bit 20. The
following section C consists of 3 bits and the remaining 5 bits are reserved for section D.
This arrangement allows up to 65536 different Service Classes as well as 31 instances of
the same class. The number of possible commands is set to 8 which are enough in the
light-weight SODA framework.

21

0.4 95...20 24...28
23

Unused Service Class Instance

Bits Address ~ “ommand |gentifier
Figure 7.13: The bit lengths used for the Addressing Scheme in the given example.
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7.5.3.3 Ability to assign addresses dynamically

The second module of the Communication Model to be implemented in the given exam-
ple contains a mechanism to dynamically add or remove nodes and thereby Services at
runtime. To avoid duplicate identifiers within the network it is essential to automatically
assign them in the event of a system change. The approach used in this example is
based on the multi-master principle of CAN avoiding the usage of a central network
master for administration. Therefore a negotiation mechanism has been developed
which enables the nodes to assign identifier among each other. As mentioned before,
the identifier consists of three parts. The SCA describes the functionality offered and is
hereby predefined for every Service. The command bits are not describing the Service
but the action to fulfill and hereby can’t be used to ensure uniqueness. This is why the
identifier assignment procedure is basically an IID assignment procedure that makes
sure that no two instances are using the same identifier.

The algorithm developed is presented in Figure |7.14. It is a recursive, distributed
algorithm based on the Bully Algorithm used for electing a leader in a distributed
system presented by Garcia-Molina in [55|. After powering up a device the Service
running on it is putting itself into idle state until a timeout occurs. The length of this
timeout is chosen at random to avoid simultaneous bus access at startup of too many
devices. After the timeout the Service reaches the Request state. In this state it waits
until the bus is free. Again, it has to be made sure that no two Services with the same
SCA are accessing the bus at the same time. Therefore the node waits again for another
random period of time. Then, it starts to send out messages to request an identifier.
The message is send as a Remote Transmit Request containing no data bytes, carrying
an identifier composed of the SCA, the command for a Service Request and the starting
Instance Identifier which is 1. All other nodes within the network are now called to
check this message. If there is a Service in the network already assigned to this identifier
it has to answer the request within a specified period of time. The requesting Service
holds the state "Waiting for Answer" until this period of time is elapsed or some other
node has answered to this request. If there has been no answer, the algorithm finishes
by assigning the request IID as the IID of the Service. If there has been an answer to
the request, the IID is increased by 1 and the process of sending out a request message
starts again. The algorithm stops after exceeding the maximum Instance Identifier
without assigning an identifier to the Service and disables it.

This negotiation approach allows to automatically add nodes by assigning identifiers
to the Services running on them. Furthermore the absence of a central network master
as postulated earlier is maintained. Finally it assures stability after initial configuration
since Services that already have an identifier assigned, do not have to be re-configured
when a new node comes into the network.

7.5.3.4 Trigger condition

The last task to be executed in order to fill the gaps of the CAN protocol regarding the
example application is to implement the Transmission Arbitration component of the
SODA middleware. More specific, this component has to enable the Services to send
Service calls periodically.

The implementation of this functionality is carried out by introducing a periodic message
handler based on state machines. Within this handler a small state machine for each
message which is marked to be periodic is implemented. This state machine has two
states namely "idle" and "send periodic message". After initialization the state machine
changes to the "idle" state. This state is left as soon as the periodic time defined by
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Figure 7.14: Identifier Assignment Algorithm.

the message is expired. The state machine then reaches the "send periodic message"
state where the Service call is handed over to the hardware drivers to be sent over the
network. Finally, the state machine changes back to the "idle" state where it waits for
the next timeout event. Figure 7.15 illustrates this simple state machine for one periodic
message. Please note that in order to build an efficient and tailored SODA middleware
the Transmission Arbitration module should only be integrated in those Services that
have to send at least one message on a periodic scheduling.
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Figure 7.15: State machine for a periodic message.

7.5.4 Assessment of the running example

In order to validate the functionality and the performance of the approach experiments
have been run. For these experiments the extended identifier of CAN as well as the
section lengths as presented in Figure [7.13 have been used. With these specifications
experiments have been prepared to run six different scenarios. For all tests the following
devices have been used:

e Embedded boards with an Atmel ATmega88 microcontroller running at 18.432
MHz as well as a Microchip MCP2515 CAN controller and a Philips PCA82C251

transceiver.

e The automotive network testing and simulation environment CANoe 7.6.84 (SP4)
from Vector.

e A CANcaseXL bus interface from Vector.

In the following scenarios Services have been implemented in two different flavors.
Some of them were executed on the embedded ATmega88 ECUs running the address
assignment algorithm in C. Other ones were simulated being implemented in Vector’s
CAPL programming language running within the CANoe simulation. The former
Services had a value for timeout when waiting for an answer to a request of 10ms. For
the latter ones the value for timeout was set to 100ms. The assignment negotiation is
run by Service Instances all belonging to the same Service Class. The experiments are
logged using the trace function of CANoe. The data transmission rate of the network
was set to 500 Kbits/s.

Scenario 1 The first scenario contains four Services, running on an embedded board
each. All of them were programmed to run the identifier assignment algorithm immedi-
ately after power up. The boards were powered up simultaneously and start to obtain
identifiers. This scenario simulates turning on the ignition when starting a car.

The experiment succeeded as all four participating nodes assigned themselves with a
unique identifier. The time elapsed between the start of the process and the assignment
of the last node was always less than 50ms.

Scenario 2 In the second scenario the same four embedded boards were used again.
This time only three of the boards were powered up in the beginning. The fourth one
was started after the Services running on the other ones already successfully executed
the algorithm. This scenario simulates adding a Service at runtime into an already
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initialized network.

Again, the experiment went well. The three boards powered up at the beginning
negotiated the identifier assignment in little more than 30ms. The fourth module ran
successfully through the algorithm in up to 32 ms.

Scenario 3 This scenario combines the four embedded boards used in the other
scenarios with three simulated Services to increase the number of nodes involved. As in
scenario 1 all nodes are powered up at the same time to simulate the start of a car.
Through to the longer timeout of the simulated Services it took about 430ms to assign
identifier to all seven nodes. This time could be decreased significantly using lower
timeouts in the nodes ran in CANoe.

Scenario 4 Again, a mixture of Services is used. Scenario 4 consists of four embedded

boards as well as 4 simulated nodes. The embedded boards are powered up at the same
time as three of the simulated ECUs. The fourth simulated ECU has already assigned
an identifier at startup.
As the first IID is already in use the newly added nodes compete starting with the
second IID. In comparison to scenario 3 the number of nodes increased which led to a
longer assignment time. In this experiment it took about 470ms until the last Service
successfully obtained an identifier.

Scenario 5 This experiment represents a scenario were nodes are added on multiple
events at runtime. One simulated Service is already running at the start of the test.
Three more simulated ones as well as three running on embedded boards are joining
the network some time later. Finally, one last embedded ECU comes into the bus and
requests an identifier.

The experiment ran well with timing characteristics comparable to the ones in the
former scenarios.

Scenario 6 In scenario 6 all formerly used simulated and embedded Services are

involved again. In order to validate that identifiers no longer used can be re-assigned
again, the following sequence was executed: One simulated Service was pre-assigned
with an identifier. In a next step three embedded and three simulated ECUs were
powered up. As soon as all identifiers are assigned one of the embedded Services is
switched off. In a last step the remaining embedded board is powered up to obtain an
identifier.
As a result the lastly connected ECU obtained the identifier originally assigned to the
one that already left the network. The experiment proved that identifiers originally
assigned to nodes that are no longer part of the network are automatically free to be
used by newly added Services.

In addition to the experimental measurements the address assignment algorithm has
been evaluated by calculating the worst case times. The scenario created is universal
in a sense that all other scenarios can be derived from it. First of all, there might be
nodes within the network that use fixed identifiers. As the identifiers of these nodes
cannot be used anymore but might be requested by some node running the assignment
algorithm each of these nodes causes a delay. This delay consists of the time needed
for a Request Frame (tgp), the Data Frame carrying the answer to the request (tpr)
as well as the maximum length of the timeout before sending another request (t7or).
This delay occurs for every node with a fixed identifier and therefore is multiplied with
the number of these nodes (#gnvopErs). Equation (7.1) presents the total delay caused
by these nodes.
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tENODES = #ENODES * (tRF + tpF + tTOR) (7.1)

Besides this delay, the assignment algorithm itself also needs some time to execute.
The workflow of the algorithm shows that a node waits for the timeout after the bus
is free. In worst case this is the maximum timeout (t7or). After that, the node sends
out a Request Frame which consumes trr to be proceeded. The whole sequence has to
be repeated for every single node which assigns an identifier (#nynyoprs). The overall
amount of time for this sequence is calculated by equation (7.2).

tNNODES = #NNODES * (tror + tRF) (7.2)

To calculate the overall time elapsed until the assignment algorithm finishes tpnopES
and tyyoprs have to be summed up. Besides that, the maximum timeout in the
beginning of the algorithm (t7og) as well as the maximum time that a node waits for
an answer before it is allowed to use the requested identifier (¢ty4) have to be added up.
The overall time consumed by the assignment procedure in worst case is calculated as
stated in equation (7.3).

toverall = tENODES + tNNODES + tTos + twa (7.3)

This universal equation might be applied to all possible scenarios. In a normal startup
scenario like the one simulated in scenario 1 of the experiments the number of existing
nodes (#gNnopEs) is set to zero. The worst case times for scenario two could be calcu-
lated setting the number of existing nodes (#gnopEs) to three and the number of new
nodes (#nnopgs) to one. The worst case times can now be calculated and compared
to the times actually measured in our experiments. Scenario 4, for example, would cal-
culate a total amount of 641.32 ms. Since the total measured time averages to 470 ms
this is within the expectations. Calculating scenario 3 the ratio is 540.93 ms calculated
worst case time to 430 ms measured time during the experiments.

7.6 Summary

In this chapter the Communication Module of the SODA framework has been described.
This layer is highly important since it allows the Service-oriented communication mech-
anisms to be transported using state-of-the-art automotive network systems. This is
crucial since all common SOA frameworks make use of IP-based communication which
is not a standard in today’s cars.

In order to analyze the state-of-the-art and develop an efficient Communication
Model, four requirements have been defined: This layer must allow to add or remove
Services at runtime. Besides, it has to ensure the advantageous attributes of the used
network. Furthermore, interoperability has to be guaranteed. And finally, the last
requirement defined is to achieve stability of the Services after initial configuration.

In a next step state-of-the-art SOA frameworks and high-level protocols for automo-
tive networks have been analyzed using the four requirements defined. This step has
shown that besides being restricted to IP-based networks most existing SOA frame-
works are causing a tremendous overhead by either exchanging whole xml descriptions
or making use of large messages to transmit Service calls. Furthermore, none of the
examined high-level protocols for automotive networks fulfills the requirements defined.

As a result a unique, SODA specific Communication Model containing four major
modules has been developed. The first one of these modules, called Addressing Scheme,
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translates the abstract Service calls into actual messages and vice versa. The second one
named Adaptation is in charge for allowing to dynamically add or remove nodes to or
from the network. Module number three, called Segmentation, divides and reconstructs
large Service calls into message-sized junks in order to transmit them through the
network. Finally, the last module of the Communication Module takes care of the
transmission arbitration.

All the modules named are not static implementations but functional entities that are
tailored specifically to the needs of the application/network combination and the Service
that owns them itself. This approach ensures to create efficient implementations with
a low memory footprint that can be easily integrated even into very small embedded
systems. This tailoring is done using the SOAcom process model. It contains four
structured phases that guide the development team that implements the Communica-
tion Model. The first phase analyzes the SoaML model of the application to derive it’s
requirements regarding the communication channel. This can be done either manually
or automatically using the xml description of the application. In the second phase an
easy to use questionnaire guides the developer in determining specific characteristics of
the network planned to be deployed. Both results, the requirements of the application as
well as the network characteristics, are matched in phase three to identify gaps that have
to be filled by the Communication Model’s implementation. This third step is carried
out by using flow chart diagrams. These diagrams ensure both, the simplicity of usage
as well as the possibility to transfer them into code to execute this phase automatically.
The result of phase three, a comprehensive specification of the Communication Model,
is used in the last phase that finally constructs the modules by writing code.

The overall concept of the Communication Model and the SOAcom process model
has been evaluated in an exemplary development. Therefore, a real-world example has
been chosen. The application used was a visual driver assistance system for a car with a
single-axle trailer. The seven Services within this example were connected using CAN.
During the process four gaps between application requirements and network charac-
teristics have been detected and solved using SOAcom. Furthermore, an exemplary
Addressing Scheme and Adaptation algorithm have been presented in detail.

The evaluation proved the structured and straight-forward nature of the SOAcom
development process. It also showed the high degree of traceability being able to
follow each section of the implementation all the way back to the gap that caused all
later development steps. The impemented Communication Model proved to be very
efficient in terms of adaptation times and memory footprint. This fact is a result of
the unique approach to use a well tailored Communication Model rather than inserting
pre-implemented code.
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8 Integration of the SODA middleware into
AUTOSAR!

'It’s hard to read through a book on
the principles of magic without
glancing at the cover periodically to
make sure it isn’t a book on software
design.’

Bruce Tognazzini?

8.1 Introduction

As described in the former chapters of this thesis the Service-oriented Driver Assistance
framework (SODA) has introduced many unique techniques to enable Service-oriented
Computing within the domain of automotive embedded systems. While maintaining the
main benefits of SOA, SODA has suggested solutions within several different problem
areas such as communication, development processes or re-configuration algorithms.
One last open point in order to bring down a round figure is to discuss the compatibility
of the framework with the most used automotive software standard of the last few years.
This standard is named AUTomotive Open System ARchitecture and is widely known
under its abbreviation AUTOSAR.

The integration of SODA into the layered software architecture of AUTOSAR sets up
3 different requirements:

e Integration of the Service logic into the AUTOSAR architecture
e Integration of the SODA middleware into the AUTOSAR architecture

e Introduction of runtime adaptivity to the communication modules of the AU-
TOSAR architecture

The first requirement is to find a proper position for the logical components within a
Service which implement the actual functionality and integrate them into the architec-
ture. Hereby, the interfaces of the Service logic component shall be of a type defined in
the AUTOSAR specification to ensure compatibility to the surrounding modules rather
than introducing legacy interaction points.

A second issue is to insert the two layers of the SODA middleware, namely the SOA
middleware and the Communication Model, into the standard’s architectural structure.
The crucial point here is to stay as close as possible to the original layout to minimize
the effects on surrounding modules and to keep the overhead caused by this addition as
small as possible.

!This chapter is based on my publication |146|. Parts of it are extracted from this source.
ZPrinciples, Techniques, and Ethics of Stage Magic and Their Application to Human Interface Design,
see [132]
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Figure 8.1: The modules of SODA and their relationship to AUTOSAR

Finally, the modules of AUTOSAR handling the communication have to be adapted as
well. This is because in the AUTOSAR methodology all modules are static. Regarding
communications, this means that all specified messages, routes or handles can’t change
at runtime. However, since Service-oriented Computing requests a certain adaptability
and flexibility AUTOSAR needs to provide this feature. Again, the main goal hereby is
to keep the intervention as well as the overhead as low as possible.

As illustrated in Figure [8.1, all parts of a Service’s implementation besides the Ser-
vice logic and the two middleware layers are provided by AUTOSAR. This includes
management components such as the scheduler and the OS as well as the abstraction
layers to the hardware.

The remainder of this chapter is structured as follows. Section [8.1.1) introduces the
main structure and principles of AUTOSAR which is of interest within this context. A
discussion and comparison of other approaches to add runtime adaptation to AUTOSAR
is presented in section [8.1.2. Section [8.2| presents three different approaches on the in-
tegration of the SODA framework into AUTOSAR. Finally, section 8.3| summarizes the
contributions presented in this chapter.

8.1.1 The AUTomotive Open System ARchitecture

The AUTomotive Open System ARchitecture is a standardized architecture as well as a
development cycle for automotive embedded systems. Figure 8.2 illustrates the overall
structure of its architectural blueprint. Note that all illustrations of the AUTOSAR
architecture within this chapter do not show a complete view but visualize only those
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parts that are of interest in the respective context. As the focus of this chapter lays on
the architectural integration of SODA rather than an adaptation of the development
processes the AUTOSAR design methodology will not be described here.

The topmost layer is the Application Layer. It holds the AUTOSAR software
components (SW-C). These self-contained entities carry the implementations of the
functionality offered by the ECU. In the AUTOSAR methodology these SW-Cs can be
easily reused and moved to different ECUs during the design process. This is due to
the fact that the Runtime Environment (RTE) underneath realizes a so called "Virtual
Functional Bus" (VFB) for each particular ECU (see [2]). The main idea of this VFB
is that it provides a virtual link to other SW-Cs. A calling SW-C simply uses this
virtual link to invoke another SW-C. Through to the high level of abstraction provided
by the VFB, this can be done without any knowledge whether the corresponding entity
is located on the same ECU or on any other one within the system. The RTE as the
local implementation of the VFB on the other hand is aware of these circumstances and
routes the request to the target destination. In case the requested SW-C is located on
the same ECU, intra-ECU-mechanisms are used like for example direct function calls.
In the event of a request to a functionality located on any other ECU within the vehicle,
the RTE makes use of static routes calling one of the communication channels avail-
able. Within an AUTOSAR development process the code of the RTE of each ECU is
generated by a special tool that analyses the distribution of the SW-Cs within the system.

Below the RTE the Basic Software (BSW) stack of AUTOSAR is located. It contains
all abstraction layers for the ECU such as for example communication interfaces, input
and output pins or the memory of the microcontroller. Using this abstraction the SW-
Cs are able to access hardware functionality through the RTE. One main idea behind
AUTOSAR is that the software modules building these layers are all well defined in their
functionality and interfaces. Through to this fact a company developing an AUTOSAR
compatible ECU is able to buy these modules as off-the-shelf products possibly even
from a number of different providers. The BSW can be divided into the services layer
(blue), the ECU abstraction layer (green) and the microcontroller abstraction layer
(red). The services layer is the most abstract one among the layers of the BSW. It
contains functionality like the operating system, ECU state and mode management as
well as an abstract interface to the memory and the communication modules of the
ECU. The ECU abstraction layer underneath adds an additional structure aiming on
increasing the hardware independence of the services layer. It offers a programming
interface to the hardware drivers that can be accessed by the services layer or directly
by the RTE in some cases. The lowest layer of the AUTOSAR BSW is called microcon-
troller abstraction layer. Its implementation depends on the actual hardware used. It
offers the functionality of this hardware to the upper layers of the BSW.

The last software module illustrated in Figure [8.2is the Complex Drivers component.
It spans all the way from the RTE to the hardware of the ECU. Thereby it bypasses
all layers introduced before. This allows the introduction of non-AUTOSAR compliant
software components into the BSW. Furthermore it can be used to migrate legacy
software or functionality with high timing constraints into AUTOSAR. Besides this
special case of the Complex Drivers component all interfaces between the different lay-
ers as well as the software modules within them are specified in the AUTOSAR standard.

In a typical development scenario the software components to be integrated into
a system are providing description files that list their characteristics as well as their
hardware requirements. The team of developers collects these files together with the
descriptions of the ECUs available in the system. In a next step the SW-Cs are as-
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Figure 8.2: The layered software architecture of AUTOSAR

signed to different ECUs in order to create an efficient overall system. This assignment
is used by a specialized tool that analyzes the description files of the SW-Cs and
the ECUs and then generates the code of the RTE and the modules of the BSW.
This code generation includes handles for hardware components as well as static look
up tables of the Signals and data packets that are exchanged by the SW-Cs on each ECU.

8.1.2 AUTOSAR in runtime adaptive systems

In recent years there have been a number of publications discussing the issue of creating
runtime adaptive ECUs complying to the AUTOSAR standard. These approaches can
be divided into two different groups targeting on two different scenarios. One group
focuses on the switching between different configurations of SW-Cs at runtime. The
second one actually tries to add or remove SW-Cs from the AUTOSAR ECUs while the
vehicle is running.

For the first group which uses configuration switching as a basis in order to change the
system four different approaches have been identified. The first one, proposed by Zeller
et al. introduces an AUTOSAR extension in [156]. This extension adds two additional
SW-Cs to the Application Layer of the AUTOSAR-based system: An Adaptation Service
and an Adaptation Manager. On the Application Layer, these two components are in
charge of activating and de-activating SW-Cs installed on the device. Additionally they
interfere with the lower layers as they control a Directory Service added to the BSW.
This Directory Service adapts the communication routes going across the AUTOSAR
layers for the different configurations. However, this approach has major drawbacks.
All possible interactions of the SW-Cs and all potential routes of communication have
to be defined at design time just like in a conventional AUTOSAR system. This leads
to an overhead within the architecture caused by all the routes and handles compiled
into it that might be used very rarely or even never at all. Despite this issue this
approach also adds complexity to the development process as all possible configurations
have to be determined and modeled during the design process. Finally this approach
adds a software component that does not exist in the original AUTOSAR BSW. In do-
ing so potential interference with other components within the stack must be eliminated.

An approach quite similar to the one of Zeller et al. is presented by Berger and Tichy
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in [22]. The authors integrated the Operator-Controller-Module (OCM) approach for
self-adaptive mechatronic systems to the AUTOSAR architecture. OCM is a architec-
tural model used for example in factory automation to introduce self-x properties. It
specifies three different control loops namely a motor loop that actually controls the
mechatronic device underneath, a reflective loop that allows to monitor and change the
configuration of the entities within the motor loop and finally a cognitive loop that
gathers information on the system itself as well as its surroundings to improve the
re-configuration mechanisms using a behavioral approach (see [59]). Berger and Tichy
combine this architectural style with AUTOSAR in order to allow runtime adaptation.
However, this solution is quite limited since it causes the same problems as the ap-
proach of Zeller et al. by not adding adaptability to the BSW but integrate all possible
configurations at design time instead. Hereby it suffers from the same drawbacks such
as overheads in the development process as well as in the final implementation.

The limitations of the previous proposals are also given for the approach of Trumler
et al. (|133]). While also based on switching between different configurations of SW-Cs,
the idea of the authors contains a negotiation mechanism that is run on different ECUs
in a system. This mechanism decides on which configuration should be instantiated
in each scenario. This approach draws requirements to the AUTOSAR BSW that are
quite similar to the ones of the SODA framework as the SW-Cs to be activated or
de-activated are distributed over different devices within the car’s network. However,
just like in the two former approaches, a static BSW is used which includes all routes
and handles possibly needed within any foreseen scenario. This, of course, creates a
huge overhead and does restrict the system to those configuration patterns discovered,
defined and implemented at design time.

The last approach to be named within this group has been presented by Becker et
al. in [16]. Just like the other publications before it is a technique to switch between
pre-defined configurations without adding real flexibility to the BSW. However, this
approach goes one step further by not only defining a configuration for the communi-
cation handles within the BSW but for the overall software architecture of the ECU.
A additional component called State Manager organizes the switches between these
different configurations at runtime and deploys the pre-defined one for each upcoming
situation. Although being integrated in a well defined and AUTOSAR compatible
development procedure this approach is even worse in terms of development and im-
plementation efficiency when comparing it to the proposals of Zeller et al., Berger and
Tichy and Trumler et al. This is because developing a single configuration equals to the
development of a complete ECU in the conventional AUTOSAR procedures.

The second group of approaches has a different perspective. In order to allow upgrades
or extensions to AUTOSAR-based ECUs that are already running within a vehicle, these
proposals target on dynamically adding and removing SW-Cs at runtime. The first one,
presented by Zeeb in [155], intends to enable installing software updates at runtime.
This is done by reserving memory capacity for future software variants at design time
and re-flashing parts of the memory in the event of an update while maintaining the
subroutine addresses of the SW-Cs. This focus on updates sets up two main restrictions.
First of all, it is limited to the update of already installed SW-Cs rather than allowing
to add additional ones. Second, since those updated components do use the same inter-
faces to the RTE and the BSW no changes within these layers are necessary. Hence, no
flexibility is added to these modules within this approach of Zeeb. This results in the
conclusion that, although this proposal adds some kind of runtime adaptivity to AU-
TOSAR it does not add any dynamics to the modules underneath the Application Layer.
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The main goal of another approach presented by Axelson and Kobetski in [12] is to
plug in new components at runtime. Therefore the authors suggest to add two SW-Cs
to each AUTOSAR ECU: the first one holds a virtual machine to run Java applications.
The second one which is called "external communication manager" establishes a direct
connection to a external software source. The approach follows the idea that software
components developed in Java are downloaded via the external communication manager
and installed into the virtual machine at runtime. However, the paper leaves unclear
how the Java components downloaded are interacting with the static RTE and BSW
underneath since no solution is presented on how to make the communication stack more
flexible. This leads to the assumption that those Java-based software modules can either
only access a pre-defined set of channels to the hardware and communication devices
or are not interacting with the remaining parts of the ECU and the overall system
accessible through the networks. This does not only reduce the fields of application but
also does not provide any answer to the requirements on a dynamic BSW as needed for
Service-oriented system design.

The last approach to be discussed is presented by Martorell et al. in [90]. Just as Ax-
elson and Kobetski the authors extend AUTOSAR to allow the addition of new SW-Cs
at runtime. However, the technique used to realize it differs significantly. Martorell et
al. suggest to add several empty SW-Cs to the architecture. These can be filled with
runnables that add new functionality to the ECU at runtime. However, just like the
proposal of Axelson and Kobetski the approach uses a static configuration of the BSW
instead of introducing some kind of flexibility. This means that all potential hardware
handles and communication routes have to be foreseen and implemented at design time.
As discussed earlier in the approaches of the first group, such a technique causes a
significant overload in terms of design time as well as in the memory footprint of the
final implementation. Furthermore, it can be argued that due to the long life cycles of
automobiles a system designer is not able to estimate the hardware handles and com-
munication scenarios of implemented software components during the whole machine life.

The discussion of the existing approaches to integrate runtime adaptability into AU-
TOSAR is summarized in Table 8.1. As shown in this table, the suggestions vary in
their level of integration and the overhead they cause. However, none of them is able
to re-configure the AUTOSAR communication stack at runtime which is essential when
adding Service-oriented applications to such systems.

8.2 On the integration of the SODA framework into
AUTOSAR

As illustrated in section [8.1.2|none of the approaches previously published is able to offer
the degree of runtime adaptivity and flexibility needed to run Service-based software
applications within an AUTOSAR environment. In particular, those proposals lack of
mechanisms and techniques to allow re-configuring the communication stack which is
indispensable in Service-oriented Architectures.

In order to overcome these shortcomings three different approaches to integrate the
SODA framework with AUTOSAR have been developed. All three techniques provide
the necessary flexibility and cause relatively low overhead. Furthermore, they fulfill the
two remaining requirements mentioned earlier as they integrate the Service logic as well
as the SODA middleware into the AUTOSAR architecture. However, they are different
in the way they interact with the different layers and their level of integration into the
AUTOSAR BSW. The remainder of this section will describe and discuss these three
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Table 8.1: Comparison of different approaches to add runtime adaptation to AUTOSAR

approaches.

8.2.1 Integration using the Complex Drivers

The first approach to be discussed makes use of the Complex Drivers module of the
AUTOSAR architecture. As mentioned earlier the Complex Drivers are ment to be
some kind of bypass to the AUTOSAR BSW. This is because this module directly
connects the Application Layer and the RTE to the micro controller. The main idea
of introducing such a structure that avoids using any of the BSW layers was to enable
developers of highly time-critic applications to get full control over the implementation
between their application component and the hardware. However, in the history of
AUTOSAR Complex Drivers have often been used to include legacy code that does not
comply to the standard into an AUTOSAR ECU as this architectural bypass allows to
flexibly add modules that are not subject of the restrictions given in the case of the
other BSW components.

Figure 8.3/ illustrates how SODA is integrated into AUTOSAR using Complex Drivers.
The actual Service logic is encapsulated into AUTOSAR SW-Cs and thereby assigned
to the Application Layer. In the example given in Figure [8.3 the Application Layer
contains two Service logic implementations. This number is just an example as the
actual number of SW-Cs is not limited by AUTOSAR or by this first approach to inte-
grate SODA. The SW-Cs are using standardized AUTOSAR Interfaces to interact with
a third SW-C called SODA Component. Such AUTOSAR Interfaces are an important
part of the AUTOSAR standard as they specify some kind of interaction point between
two entities. Using this interaction point data and services are specified at design time
and exchanged during runtime between two SW-Cs by making use of the RTE (see
[1]). The SODA component introduced to the Application Layer holds all the modules
of the SOA Middleware layer of the SODA framework namely the Contract, Service
Interface, Re-configuration manager, Discovery Interface and the QoS Interface. Figure
8.4 illustrates this mapping. Thereby this specialized software component is in charge
of the execution of the principles of a Service-oriented Archtiecture such as carrying
out Service Discovery or re-configuring the system by conducting Service Composition.
This structure makes use of the circumstance that the Service logic SW-Cs are only
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connected to the SODA Component SW-C. Thereby the data and services exchanged
between these units are known at design time. This is due to the way SODA systems
execute adaptation. In this framework, the adaptation takes place on the architectural
level which means that ECUs join and leave the overall system. Inserting or removing
software functionality as well as component migration between ECUs is not designed
within SODA. Since the number and type of SW-Cs as well as the connections between
these entities and the SOA middleware layer beneath are specified during the develop-
ment phase no changes at runtime are taking place at this point.

The SODA Component SW-C itself interacts through an AUTOSAR Interface with
the Complex Drivers module as shown in Figure 8.4. Within this part of the AUTOSAR
architecture the second part of the SODA middleware namely the Communication Model
is implemented. Being in charge of the abstraction of the communication channels like
for example CAN or LIN it hereby offers a direct channel between the SOA middleware
and the communication hardware. The connection between the two SODA layers "SOA
middleware" and "Communication Model" is predefined at design-time and does not
change during runtime. This is due to the fact that those two modules exchange Service
calls which only depend on the type and number of available Service logic implementa-
tions on the ECU which is static as described earlier. The necessary adaptation within
the communication channel is completely carried out within the Communication Model.
This technique also allows to create a never-changing interface to the hardware entities
at the lower end of the Complex Drivers module. During operation, the calls carried out
by the SOA middleware are transmitted to the Complex Drivers and transformed by the
Communication Model into actual network messages and vice versa. The adaptation
carried out is thereby limited to the re-configuration of the modules assigned to the
Complex Drivers stack which directly accesses the hardware without interfering with
the static modules of the BSW.

The approach of making use of the Complex Drivers is a quite easy and direct way
of adding the SODA framework and thereby adaptation capabilities to AUTOSAR. It
uses SW-Cs to encapsulate the Service logic implementations as well as standardized
AUTOSAR Interfaces to connect them to the rest of the system. The SODA mid-
dleware is integrated into the architecture by assigning the SOA mechanisms into an
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additional SW-C that acts as a gateway to the Communication Model that is wrapped
into the Complex Drivers. The Communication Model is implemented within the
Complex Drivers pillar and connects the SOA middleware to the actual communication
entities of the hardware. The drawback of this approach is the loose integration into
AUTOSAR. By bypassing the whole BSW the ideas and techniques that made the
standard popular in recent years as well as a huge part of the AUTOSAR methodology
is overruled. Furthermore the Complex Drivers would either have to implement their
own communication drivers or would have to get access to the ones of the BSW. In the
former case this would bring additional overhead and be problematic since two software
drivers would try to access a single hardware entity. In the latter case the AUTOSAR
communication drivers would have to be extended to allow access from the Complex
Drivers which would lead to non-standard software modules within the BSW.

8.2.2 Integration through replacing the XCP component

The technique to integrate SODA into AUTOSAR using the Complex Drivers sets up
several disadvantages as discussed in section 8.2.1. Some of these disadvantages can
be avoided by increasing the level of integration. The second approach to be discussed
here refrains from creating a bypass but exploits the modules of the BSW instead.
Therefore, the XCP protocol as well as its integration into AUTOSAR is examined
in detail. XCP is an abbreviation for the "Universal Measurement and Calibration
Protocol". It has been designed to read and write to the memory of automotive ECUs
through different network interfaces. It is especially used during the development pro-
cess of a vehicle as it allows to directly overwrite sections of the ECU’s memory. Using
this technique, parameters, constants as well as code sections can be exchanged quite
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easily in order to be evaluated during test runs. The main benefit of XCP lies in the
fact that these changes can be carried out without connecting a specific programming
device. Instead, the automotive networks such as CAN, LIN or FlexRay can be utilized
for this purpose. Since AUTOSAR release 4.0 the XCP stack is integrated into the
architectural blueprint as illustrated in Figure 8.5. In detail, the stack is attached to
the Communication Services of the BSW where it bypasses the modules of this layer.
The processing of an XCP call is executed in the following way. A message containing
an XCP command is sent to the ECU through one of its standard automotive network
channels such as for example CAN or FlexRay. This message is proceeded according
to the AUTOSAR standard: it is received by the Communication Hardware which is
controlled by the specific Communication Driver. This software entity then forwards
its content through the Communication Hardware Abstraction layer of the BSW to the
Communication Services. Unlike other messages that address SW-Cs the XCP messages
are not forwarded to the RTE and the Application Layer but are completely handled
within the XCP module. Within the stack the command is interpreted and executed
and the memory changes are carried out as desired. The result of this operation is
returned to the initial sender by a network message which is proceeded through the
lower layers of the AUTOSAR architecture in reverse order.

Unlike the other Communication Services like for example the Transport Protocol
(TP) the XCP stack introduces some kind of state-full behaviour to this BSW layer.
Rather than just forwarding messages according to pre-defined routes the XCP mecha-
nism has its own execution logic and is able to carry out operations depending on the
content of the message and its own state. Additionally, it is able to create and send
it’s own messages to other entities within the car. A potential way of making use of
this new degree of freedom for integrating the SODA middleware into the BSW is to
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substitute the XCP stack with a SODA component. As shown in Figure 8.6/ the SODA
module including both the SOA middleware and the Communication Model replaces
the XCP stack. The SW-Cs containing the Service logic implementations are directly
interacting with the SODA component through a Standardized Interfaced as specified
for all Communication Services within AUTOSAR. According to the AUTOSAR con-
sortium in [1] the only requirement these Standardized Interfaces have to offer is a
concrete application programming interface (API) offered to the SW-Cs. This API is
given by the interface of the Application Layer and the SOA middleware layer in the
SODA framework. By using these Standardized Interfaces AUTOSAR compatibility
regarding the interconnection of Service logic and SODA middleware is ensured. On
the lower end of the Communication Services layer the interaction to the Communi-
cation Hardware Abstraction within the BSW is done through the usage of Protocol
Data Units (PDUs). These entities are data structures that contain the properties
of a message as well as its content. PDUs are normally determined in their number,
format and content at design time. This fact raises a problem since SODA needs to dy-
namically adapt these PDUs at runtime in order to allow flexible Service communication.

The solution to this problem has been introduced in the latest version of the specifi-
cation: AUTOSAR release 4.1. Since newly introduced protocols like J1939 or Ethernet
also need some runtime adaptability in the two lowest layers a far-reaching change has
been done to them. Since AUTOSAR release 4.1 PDUs have an additional property that
allows to mark them as PDUs with a changeable address. In this case the address (in
CAN this would for example correspond to the Identifier) to be used for sending would
be attached to the PDU rather than being archived somewhere in the routing tables of
the BSW’s communication modules. This addition to the AUTOSAR communication
specification can be used by SODA to create messages with dynamic addresses that can
be re-defined for every transmission carried out. The technique used here is to introduce
a fairly low number of PDUs with changeable addresses. The low number ensures that
the created overhead stays quite small. These flexible PDUs are managed by the SODA
stack and used to create messages for every possible communication scenario. Using
this approach, the Communication Model of SODA is able to realize all communication
necessary.

This second approach which makes use of the AUTOSAR XCP module enhances the
level of integration significantly compared to the Complex Drivers proposal. It ensures
a seamless integration of the SODA middleware into the communication channels of the
BSW. It also complies to the AUTOSAR specification in the way the Application Layer
is connected to the SODA module. However, one last drawback is left, the need for a
SODA specific implementation of the interface between SW-Cs and the Communication
Services. In order to overcome this drawback and increase the level of integration even
more a third approach is discussed in section 8.2.3.

8.2.3 Integration through transport protocol enhancements

Although the second approach presented increased the level of integration into the AU-
TOSAR BSW significantly it still requires a SODA specific interface between the SW-Cs
containing the Service logic and the SODA stack within the Communication Services.
In order to overcome this issue a third approach to integrate Service-orientation into
the AUTOSAR architecture has been developed which will be presented and discussed
within this section.

This last proposal again makes use of some of the innovations of the AUTOSAR
release 4.1. As explained before this new standard introduced the Ethernet and J1939
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Figure 8.6: Approach 2: medium level of integration (figure bases on )

protocol. Although those two networking protocols are quite different in their purpose
and technology they have in common that both need some degree of flexibility on
the lower levels of the architecture. However, both have to make use of the standard
AUTOSAR communication as they are part of the BSW.

In case of the Ethernet protocol this means that its stack has to realize several upper
layer protocols such as the User Datagram Protocol (UDP), the Transmission Control
Protocol (TCP) or the Address Resolution Protocol (ARP) while complying to the
specification of the AUTOSAR communication schemes. However, the IP addresses
used are not static but can be assigned to the ECUs within the network using the
Dynamic Host Configuration Protocol (DHCP) at runtime which creates the need for
some runtime flexibility within the communication pillar of the BSW.

In the case of the J1939 protocol, which is an upper layer protocol on the basis of CAN,
dynamic peer-to-peer connections have to be established. In order to realize this the
Identifier and the content of CAN messages have to be runtime adaptive rather than
being configured at design time.

Figure 8.7 illustrates the integration of J1939 and Ethernet into AUTOSAR. Both
use the static approach of AUTOSAR to connect to the SW-Cs via Signals and static
PDUs. Hereby a Component on the Application Layer sends a pre-defined Signal
to the Com module using the static RTE. The Com module receives the Signal and
makes use of a look up table to assign the Signal to one of the pre-defined PDUs.
One characteristic of such a PDU is the so called transfer property. It defines the
transmission schedule of the entity. This can be either "on change" which means that
the PDU is transmitted whenever one of its Signals changes. The other possible option
is to simply store new values and send them out periodically. Both types of PDUs are
eventually transmitted by being handed over to the PDU Router (PduR). The PduR
provides a static routing table. By using this table the module forwards the PDUs to the
designated network channel. This is done by handing over the PDU to the Transport
Protocol (TP) layer which is normally only in charge of selecting the hardware unit
to be used for the transmission. Especially when considering CAN communication it
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is quite usual that an ECU possesses more than just one hardware entity. Focusing
on the TP layer, the protocols of J1939 and Ethernet are a bit different compared to
the other automotive network systems. This is because in these cases the TP layer
is not only in charge of forwarding the PDUs to the next layer but executes a much
more complex protocol state machine instead. In standard CAN, LIN or FlexRay
communication scenarios the next step would be to proceed the PDU to the Commu-
nication Hardware Abstraction which transforms it into an actual message which is
then forwarded to the Driver layer in order to be eventually sent over to the hardware
entity provided by the ECU. In J1939 and Ethernet scenarios this is different since the
communication between the SW-Cs and the stacks on the TP layer can be interpreted
as commands which are received and realized by the state machines within the TP mod-
ules. The communication beneath the TP layer is still controlled by these commands
but it is not an immediate through-connection of the Signals initially sent by the SW-Cs.

The principles used by the Ethernet and J1939 modules are applied to the Service-
oriented scenario to realize the third approach of integrating SODA into AUTOSAR.
It introduces an additional SODA module on the TP layer as illustrated in Figure 8.8.
This module can be either replacing J1939 and Ethernet or can be integrated alongside
with those two components. The SODA module used in this approach contains all
components of the SOA Middleware and the Communication Model layer of the SODA
framework. In order to connect to the lower layers and eventually to the communication
hardware the PDUs introduced in AUTOSAR 4.1 allowing changeable addresses are
used. Just like in the second approach described in section 8.2.2 a low number of PDUs
with this feature is instantiated and used to realize the network messages needed in a
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Figure 8.8: Approach 3: high level of integration (figure bases on )

very flexible manner.

The interaction of the SW-Cs which contain the Service logic and the SODA mid-
dleware consists of a number of commands of procedure calls. Since these interaction
handles are known at design time and do not change during runtime static Signals
and PDUs can be used. Therefore, each command or procedure call being exchanged
between the middlware and the Service logic is represented by a Signal. Each of these
Signals is mapped into a PDU which is assigned with a transfer property that ensures
immediate transmission in case of a Signal change. By doing so, the Com layer forwards
the command directly to the PduR whenever it receives such a Signal. The PduR is
statically configured to pass these PDUs to the SODA module in the TP layer. Hereby
the command is delivered and can be processed by the SODA framework. This kind of
link can also be used in the other direction starting from the SODA module, addressing
one of the SW-Cs. Since the number of commands connecting the Service logic and the
middleware is very limited and the structure of many of these is quite similar, the num-
ber of Signals and PDUs to be created is very low which limits the overhead significantly.

This third integration approach is completely using standard AUTOSAR interfaces to
connect the middleware with its surroundings. By including the complete middleware
into the Transport Protocol section of the BSW without using any bypasses the level of
integration is high.

8.2.4 Comparison of the three approaches

All three approaches discussed in this chapter fulfill the demands set up earlier by
providing an integration of both the Service logic and the middleware as well as allowing
runtime changes within the BSW. Table [8.2] illustrates the comparison of the three
proposals. As this table shows the main difference lies in the level of integration. While
the first approach using the Complex Drivers bypasses the whole BSW the two other
ones are much more integrated into AUTOSAR’s architectural blueprint. The proposal
to replace the XCP component still needs to generate a own interface between software
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components and the middleware. This last issue is solved by integrating the middleware
into the TP layer which allows to make use of standard Signals and PDUs to create this
interconnection.

8.3 Summary

In this chapter three different approaches to integrate the Servie-oriented SODA frame-
work and hereby to add runtime adaptation on the architectural level into AUTOSAR
have been presented.

The first one makes use of the Complex Drivers component. This stack is part of the
AUTOSAR specification and can be used as a bypass to avoid using the static modules
of the BSW. The main advantages of this technique are its simplicity and the ability to
use it right away within the current AUTOSAR standard. However, since it completely
bypasses the BSW it is fully overruling many of the ideas of the AUTOSAR standard
such as for example the usage of replaceable off-the-shelf modules. Furthermore this
approach has to implement its own communication drivers which raises problems such
as adding overhead and the usage of a single hardware communication channel by two
different software drivers.

The second approach presented picks up the ideas of the integration of the XCP
module into the AUTOSAR software stack. Hereby a communication module is added
in parallel to the layers of the Communication Services. In combination with the
extensions introduced by AUTOSAR release 4.1 which allow to introduce flexible PDUs
to the lower layers of the BSW, this technique makes it possible to integrate the
SODA framework rather than just bypassing a huge part as done by the first approach
presented. Nevertheless, this approach calls for changes within the AUTOSAR specifi-
cation. Furthermore it creates an additional Standardized Interface.

An even higher level of integration is given when using the third approach presented.
Hereby the TP layer of the BSW and especially its changes in the AUTOSAR release
4.1 are analyzed. With the introduction of Ethernet and J1939 to the specification the
previous mode of operation in which every layer of the BSW only adds relatively small
changes to the PDUs based on static look up tables changed significantly. This is due to
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the characteristic of the Ethernet and J1939 protocol where the data exchange between
the SW-Cs and the corresponding communication module is rather an exchange of
commands to control the data flow within the lower layers. In the third approach the
SODA middleware is integrated into the TP layer and hereby uses all layers beyond and
beneath as they were intended.

As a summary one can say that it is possible to integrate runtime adaptation into the
AUTOSAR standard using any of the three approaches presented in this chapter. All of
the three proposals made are unique compared to other approaches published in recent
years as these three techniques offer the capability to re-configure the communication
mechanisms of the architecture at runtime rather than designing all possible configura-
tions at design time. In doing so the overhead caused by the mechanisms presented here
is significantly lower. This is true not only for the code size and complexity but also for
the workload during the development. These unique advantages may pave the way for
introducing Service-oriented computing into embedded automotive distributed systems.
However, in order to make future AUTOSAR revisions more flexible regarding upcoming
technologies it should be opened and generalized. At the moment new technologies
are integrated into the standard after they hit the market which causes a huge delay
and a high effort. Instead, the architecture and especially the modules of the BSW
could be defined more openly and abstract to allow a seamless integration of upcoming
technologies without changes on the architectural blueprint itself.
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"Everything that can be counted does
not necessarily count; everything that
counts cannot necessarily be counted.’

Albert Einstein

9.1 Example application description

This chapter evaluates the SODA framework. This is done by applying the archi-
tecture and development process introduced within this thesis on a driver assistance
system for car and trailer combinations. The developed system is implemented on a
full scale demonstrator consisting of a Mercedes B-Class car and a small two-axle trailer.

The application used to evaluate SODA is an assistance system that helps the driver
to back up a car with a two-axle trailer attached to it. It has been developed within
the Real-Time Systems group of the University of Koblenz-Landau and implemented
during the Master’s thesis of Sascha Berkessel (see [23]). The system makes use of the
visual modality by informing the driver through a display within the car’s dashboard.
This display shows the area behind the trailer. The picture is augmented by additional
information through overlaying two different trajectories. Figure 9.1] is illustrating the
output of the system to the driver.

The first one of these trajectories, called "A", which is colored in green shows how
the center of the rear axle of the trailer would move if the current steering angle is
maintained. This allows the driver to estimate the future behavior of the overall vehicle.
In addition, trajectory A directly responds on the changes of the steering angle even
when the car is stopped. Through to this characteristic the vehicle operator is able to
analyze the effect of different steering angles on the future path of the trailer.

The second trajectory augmented is named "B" and colored in blue. The two curves
building this trajectory symbolize the future path of the tires of the trailer’s rear axle.
In contrast to the first trajectory, these skid marks are not corresponding to changes
on the steering angle. Instead, they show the trailer’s movement assuming that the
bending angle between the front and the rear axle of the trailer does not change over
time. In this sense, trajectory B shows the path of a stable movement of the combination.

The combination of both trajectories supports the operator of the vehicle in the two
main scenarios when backing up such a car and trailer combination. The first one of
these scenarios is a stable movement. Here, the driver wants to back up the combination
using the path illustrated by trajectory B. In order to do so, the only thing the operator
has to do is to keep the single line illustrating trajectory A between the virtual skid
marks. This ensures, that the vehicle follows the desired path. In the second scenario,
the driver wants to change the stable path of the combination into a specific direction.
This can be accomplished by changing the course of trajectory A using the steering
wheel into the desired direction. Trajectory B will slowly trail this path until it points
to the desired location. As soon as this state is reached, the driver can use the technique

138



9 FEvaluation

Figure 9.1: The HMI of the visual Assistance System for a trailer

described in the first scenario to move the car-trailer-combination into the required
position.

The system as it has been described above requires a number of soft- and hardware
entities to offer it’s assistance. On the hardware side it needs sensors to determine the
current steering angle as well as the two bending angles of the system: the angle be-
tween the car and the front axle of the trailer (Bending Angle 1) and the angle between
the front and the rear axle of the trailer (Bending Angle 2). Furthermore, a camera
recording the area behind the trailer as well as a monitor to output the assistance to
the driver are needed. On the software side, the measurements of the sensors have to be
processed. Besides, the two trajectories have to be calculated based on the sensor data
and some crucial dimensions of the combination. During the further procedure, the
computed paths have to be augmented to the picture of the rear camera and presented
to the operator. As those hard- and software entities might be distributed over the
car-trailer-combination their configuration and topology might change at runtime. For
this reason it makes sense to implement the system using the SODA framework and it’s
Service-based principles.

In chapter |5 the model-based development procedure to create such systems using
the SODA framework has been presented. Furthermore, the case study illustrated in
section 5.3 showed how this particular DDAS has been specified and developed. The
evaluation of the SODA framework is carried out on an implementation of the system
developed here. The only difference between the system developed in section 5.3 and
the application executed on the demonstrator is the fact that the Services "VideoOut-
putService" and "TrajectoryTransformationService" are merged into a single Service. A
detailed description of this implementation is given in section Section 9.3 evaluates
this system both on the Service and the system level while section [9.4] summarizes the
analysis of the demonstrator.
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Figure 9.2: The full scale demonstrator consisting of a Mercedes B-Class car and a two-
axle trailer.

9.2 System description of the demonstrator

As stated before, the visual DDAS for cars with a two-axle trailer has been integrated
into a full scale demonstrator. This demonstrator consists of a first generation Mercedes
B-Class car (T 245) and a small two-axle trailer. This trailer has been originally build for
narrow-track tractors. In order to match with the hitch of the car the open-end tow-bar
has been removed and replaced by a ball-type tow hitch. Besides that both parts of the
combination are in their original condition. Figure 9.2/ shows the combination used for
this evaluation.

The first addition that has been made to the demonstrator are the sensing entities
needed to detect the current status of the combination. This includes bending angle
sensors as well as a unit to detect the current steering angle of the car. The two bending
angle sensors have been attached to the trailer. The mechanism needed measure these
two values has been developed and integrated during a student research project at
Heilbronn University (see [61]). Figure 9.3/ shows the construction needed to detect
Bending Angle 1. It contains a two-piece mechanical actuator that transfers the rotary
motion between the car and the front axle of the trailer onto a rotary encoder. This
encoder is a industrial off-the-shelf solution with a CANopen interface. Therefore it can
be connected directly to the CAN network used for the assistance system. A similar
construction has been created to measure the second bending angle between the front
and the rear axle of the trailer. Is is attached to the pivot point of the trailer’s front
axle and makes use of a off-the-shelf rotary encoder of the same type which is also
directly connected to the CAN. However, as those rotary encoders do not implement the
SODA middleware but a CANopen interface instead the corresponding Services have
been implemented in the form of Service Brokers (refer to section 4.2.1 for more details).
This means that the Service "Bending Angle 1" does not actually control the hardware
measuring the angle. Instead, it requests the angle from the CANopen device measuring
it and offers it in the form of a SODA Service. The same principle is used to realize
"Bending Angle 2". By using the Service Broker approach within the demonstrator this
principle can be tested and evaluated. Both Services are implemented on a very small
ECU utilizing a small 8-Bit ATmega88 microprocessor as the main CPU.

The last sensor to be added is the steering angle sensor. This has been done by making
use of the car’s in-build steering wheel angle sensor device. This small ECU is attached
to the steering shaft and detects any rotary movement of this component. The generated
values are then transmitted periodically to the Engine CAN of the B-Class periodically.
As the other devices within the assistance system are not connected to this network
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Figure 9.3: The mechanical sensor for the Bending Angle 1.

the Service Gateway approach has been used (refer to section 4.2.1 for more details).
Therefore, a Raspberry PI board has been mounted into the car. This specific device
owns two independent CAN interfaces. One of these is connected to the engine CAN
and listens to the updates of the steering wheel angle sensor. The second one connects
to the Assistance CAN and allows other Services to request the current steering angle.
The software running on the Raspberry PI is also in charge of converting the steering
wheel angle into the actual steering angle.

A second addition to the demonstrator combination are the components needed to
allow a visual assistance for the operator of the vehicle. More specifically, a camera that
records the area behind the trailer and a monitor within the dashboard have been added.
For the rear view camera a simple USB webcam has been mounted to the body of the
trailer as illustrated in Figure 9.4. The visual output is done using a 10" color monitor
installed within the field of vision of the driver. Both hardware units are connected to
computational entities that control them and implement the Services offered. In the case
of the camera this entity is a Raspberry PI board connected via USB. The monitor is fed
using a HDMI connection by a standard office laptop running Ubuntu OS. Raspberry
PI and the Ubuntu laptop are both connected to the CAN network and offer or request
Services using this communication technology. However, since the bandwith needed to
transfer video streams exceeds the maximum bandwith offered by CAN the pictures
can’t be transmitted using this network. In the automotive domain this problem is often
solved by splitting the communication traffic into control messages and data packets.
The former ones are usually sent using a standard automotive network like CAN or LIN.
The latter one are exchanged making use of a network system offering more throughput
like for example Low Voltage Differential Signaling (LVDS). This ensures easy control
of the data streams from the whole network while offering a bandwith that fulfills the
requirements set up by video transport applications. In the demonstrator a similar
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set-up has been chosen to solve this issue. Besides the CAN connection the Raspberry
PI and the Ubuntu Laptop connect to each other using an Ethernet cable and UDP
communication. While the Ethernet connection is used to actually transmit the video
frames the control over the Services is done using the CAN bus. In other words, the video
frames are transferred through the Ethernet connection using a legacy protocol while
all Service communication complies to the SODA framework and is routed through CAN.

The demonstrator system, as it is illustrated in Figure 9.5 and 9.1, contains two ad-
ditional ECUs. The first one bases on a Intel Atom processor. This unit is constructed
using the Intel In-Vehicle Infotainment (IVI) reference design. It runs a light-weight
variant of the popular Ubuntu operating system called Lubuntu. This entity serves as
the platform for the two Services that compute the two trajectories which illustrate the
future movement of the car-trailer-combination. The last hardware unit is again based
on a small embedded board utilizing a ATmega88 CPU. It is attached to the trailer and
offers Services to request the dimensions of this part of the combination.

The overall system architecture is shown in Figure |9.5. This figure presents the six
different computing platforms that run the different Services distributed over the car-
trailer-combination. The main communication backbone is built by the Assistance CAN.
This network has been added to the demonstrator and connects all entities involved.
The network colored in blue in Figure 9.5 is running with a bit rate of 500KBit /s which
is a very common transfer rate in the automotive domain. As described before, the
two computing units exchanging video data are making use of an additional Ethernet
network. This switched Ethernet connection provides a maximum bandwith of 100
MBit/s as this is the maximum bandwith supported by the networking chip on the
Raspberry PI. The third network pointed out in Figure 9.5 is the Engine CAN. This
network, which is colored in green, is an integral part of the Mercedes B-Class. For
safety reasons this bus is wiretapped in listen-only mode to ensure that no data on
this network is corrupted. The Raspberry PI node (No. 4 in Figure 9.5) realizes the
Service Gateway as described earlier by accessing both the Engine CAN and the As-
sistance CAN to transfer the steering wheel angle information into the assistance system.

Regarding the software aspects of the demonstrator the twelve Services developed
in section 5.3 have been assigned to the different ECUs as shown in Table 9.1. The
three hardware units attached to the trailer run a combined number of six Services.
These are the RearViewService and CameraPositionService which are offering the rear
view and the camera attributes respectively. Both of them run on the Raspberry PI
module named ECU 2. The bending angles of the trailer are computed and encap-
sulated by the Services ReadBendingAnglel and ReadBendingAngle2 which are both
executed on the ATmega88-based ECU 5. Finally ECU 6, again a small ATmega88
hardware unit, hosts the remaining two Services. Both of them are enabling the
remaining assistance system to request trailer constants. While the first one called
TrailerWheelbaseService provides the distance between the two trailer axles the sec-
ond one named TrailerDrawbarLengthService returns the length of the trailer’s drawbar.

The other three ECUs are attached to the car and offer a total of six Services. The
Ubuntu Laptop named ECU 1 hosts the VideoOutputService which generates the aug-
mented video picture and displays it on the monitor attached to the dashboard. ECU
3, based on the Intel IVI reference architecture, executes two independent Services.
CalcTrajA is in charge of computing Trajectory A which shows the future path of the
vehicle involving all current sensor values. Furthermore, CalcTrajB is hosted by this
ECU and determines a potential trajectory for a stable movement. Finally, the last
ECU within the assistance system is the Raspberry PI board named ECU 4. It hosts a
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Figure 9.4: Simple USB webcam to create a picture of the area behind the trailer.

total number of three Services. The first one called SteeringAngleService is the Gateway
Service described earlier that retrieves the steering wheel angle from the Engine CAN
and computes and offers the steering angle as a Service within the Assistance CAN.
The second and the third one, named CarWheelbaseService and CarDistRearAxle-
HitchService respectively, provide important mechanical dimensions of the car. While
the former one offers the distance between the two axles of the car available to the
rest of the system, the latter one describes the space between the rear axle and the hitch.

The workflow of the assistance system, once it is configured, equals to the one de-
scribed in section 5.3: The two trajectory Services compute the future paths of the
combination making use of the sensor values as well as the mechanical dimensions of
the combination all provided in form of SODA Services. These two trajectories are then
picked up by the VideoOutputService which augments them to the video picture taking
into account the pose and characteristics of the camera which are also retrievable in
form of a Service call. The resulting video pictures are then output to the monitor to
support the driver when backing up the car-trailer-combination.

Additionally to the Services described here, several simulated Services have been
placed into the system, too. These simulated Services are providing Service Interfaces
of the same kind the real Services do. However, there is no functionality implemented
behind these interfaces. The reason for introducing these entities to the demonstrator
system is to generate rival Services that compete in the identifier assignment and Service
selection processes with those Services that actually provide the promised functionality.
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Ethernet

Assistance CAN

Figure 9.5: The system architecture of the demonstrator

No | Type (ON) CPU Services Implemented
Ubuntu Intel Core2Duo . .
1 | Laptop (Linux) 9 53GHy VideoOutputService
9 Raspberrv PI Raspbian ARM1176JZF-S RearViewService
PhErLy (Linux) 7T00MHz CameraPositionService
Lubuntu Intel Atom E640T CalcTrajA
3 | Intel IVI (Linux) 1GHz CalcTrajB
. SteeringAngleService
4 Raspberry PI f}iiit;? . ?01)61\1\;[&_11276JZF_S CarWheelbaseService
CarDistRearAxleHitchService
ATmega88 ReadBendingAnglel
g ATmega88 none 18.432MHz ReadBendingAngle2
ATmega88 TrailerWheelbaseService
6 | ATmegas8 none 18.432MHz TrailerDrawbarLengthService

Table 9.1: Description of the computing units used within the demonstrator
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9.3 Evaluation of the demonstrator

In this section the assistance system implemented on the demonstrator is evaluated. This
incorporates an evaluation process on the Service level which analyzes the performance
of each Service as a single entity. Additionally the overall SODA-based assistance system
is examined. In doing so, the application’s performance is analyzed in both phases, the
re-configuration phase and during provisioning of the assistance to the driver.

9.3.1 Evaluation on the Service level

The evaluation of the individual Service implementations is based on the software metrics
presented by Rossi and Tari in [113]. It has been refined and adapted to the character-
istics of SODA. The evaluation of the individual Services is done through five key figures.

The first one of these key figures is the so called "Operation Interface Size" (OIS). It
describes the aggregated size of the all parameters of a Service call and is measured in
byte. In other words, it is the sum of the sizes of all parameters that are transferred
within the data sections of the request and the response message of an individual Service.
Equation (9.1) illustrates the computation of this quantity.

OIS = sizerequest + SiZ€response (9.1)

For example, if a Service request contains a single byte of data and the corresponding
response implies four bytes of data, the OIS of this Service sums up to five bytes. This
metric, which can be determined offline using the SoaML specification, is important
since it directly influences the bandwith used by the Service in the event of a Service call.

A second metric used is the so called "Service Code Size" (SCS). It reflects the memory
footprint of the Service implementation. This includes a detailed separation between the
different parts of the executable binary namely the size of the SODA middleware, the
communication drivers and the Service logic which contains the functionality. The size of
the overall implementation as well as the individual parts are measured in byte. Equation
(9.2) shows the composition of the SCS.

SCS = SiZemiddleware T S12€drivers + Sizelogic + sizemisc. (92)

The importance of the SCS is given through to the fact that SODA Services are
meant to be hosted by very small hardware units that offer only very limited application
memory of potentially only a few kilobytes.

In order to analyze the involvement of an individual Service into an application the
"Collaborator Service Number" (CSN) is determined. This key figure gives the num-
ber of connections to other Services within an application and is measured in natural
numbers. It is an important indicator of the relationships towards other entities and
allows to draw conclusions on the potential consequences of a failure of this Service.
Furthermore, a high number of collaborators is often also a sign for very frequent calls
of this Service which may lead to a high utilization.

A very important metric when assessing the performance of a Service implementation
is its response time to a Service call. This quantity, named "Operation Call Time" (OCT)
in [113], is a crucial factor when creating responsive assistance systems that are able to
inform the driver about changes within the system without delays noticeable by human
beings. In the evaluation process carried out on the demonstrator the OCT metric has
been refined to create more details and better insight into the internal workflow of the
Service implementation. Therefor, not only the overall network response time has been
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measured but also the execution times of the different modules taking part in such a
Service call. In detail the analysis done includes the determination of the execution times
of the driver module, the SODA middleware and the Service logic. The composition of
the OCT metric is presented in Equation (9.3).

OCT = tmiddleware + Sizedrivers + Sizelogic + Sizeidle (93)

In applying this metric with such a high level of detail the performance of each module
can be determined rather than just looking at the Service as a whole. The dimension
used for the OCT is milliseconds.

Finally, the last figure to be looked at when analyzing an individual Service is the
bandwith used over time. This metric, called "Network Utilization" (NU) in [113],
depends on the OIS, the CSN as well as on the rate of Service calls within an application.
Its computation is done according to Equation (9.4).

NU :#Service calls per second * (SizeRequest data 1 #Request Messages * 67But

+ SizeResponse data T+ #Response Messages * 67B'Lt>

(9.4)

The rate of Service calls per second is introduced by the parameter #cycles per second-
It is multiplied with the amount of bits sent through the communication channel for
each of these calls. This amount is a sum of the raw data length of both the request and
the response as well as the length of the overhead caused by each extended CAN frame
sent. The resulting value is given in bit/s and shows directly the effects of an individual
Service on the busload.

The five key figures described above have been applied to the exemplary DDAS
implemented on the demonstrator combination. In the following the results of this data
collection are presented and interpreted.

The first key figure to be looked at is the OIS. As described earlier it summarizes
the sizes of the data sections of both the request and the response message of a Service
call. Table 9.2 presents the values of the individual Service implementations for this
parameter. As shown in this table the size of the data sections varies significantly. While
the size of the Service requests is either zero or one byte, the size of the response can be
anywhere between one and 70 bytes. This big differences propagate to the overall OIS.
Considering the average values of these three parameters the average size of the data
section within the Service requests is quite low with about 0.17 byte. The average values
of the Service responses and the overall sum are 12.67 byte and 12.83 byte respectively.
This shows that in the average case and every individual case the size of the data section
of a CAN message is sufficient to carry the Service requests. This is not true for the
Service response as this average value exceeds the maximum of eight byte fitting into
a CAN message. However, the high average value is due to the fact that there are two
Services with a really huge amount of data namely the CameraPositionService and the
CalcTrajA Service. All other Services are far below these maxima and fit well into the
CAN data section. In other words, only two of the combined 24 possible calls have to
be split up into several CAN messages to be sent over the channel.

The second key figure to be looked at is the Service Code Size. The SCS numbers
the memory footprint of a Service. Table 9.3 gives an overview over the results of
these measurements. As the SODA Services running on the same hardware platform
share the middleware and other resources like the driver layer or OS handles, the SCS
is determined for the different ECUs rather than the Services themselves. The only
exception here is the VideoOutputService. This Service is the only one to be executed
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Service Size Request [Byte| | Size Response [Byte| | Sum [Byte]
VideoOutputService 1 1 2
RearViewService 1 1 2
CameraPositionService 0 64 64
CalcTrajA 0 70 70
CalcTrajB 0 2 2
SteeringAngleService 0 2 2
CarWheelbaseService 0 2 2
CarDistRearAxleHitchService | 0 2 2
ReadBendingAnglel 0 2 2
ReadBendingAngle2 0 2 2
TrailerWheelbaseService 0 2 2
TrailerDrawbarLengthService | 0 2 2
Average 0.17 12.67 12.83

Table 9.2: Values of the Operation Interface Size for the individual Services

on ECU 1. The Service has an overall memory footprint of about 22 KByte. The
biggest share of the storage needed is allocated by the Service logic that provides the
actual functionality of the entity. The 15.9 KByte building this software module are
responsible for transforming and augmenting the two trajectories and presenting the
computed video to the driver. Another 941 Byte of memory are reserved for the driver
layer of the SODA architecture. The software modules summarized under the term
miscellaneous contain functionality like OS handles or wrappers to external components.
These modules allocate a memory block of a combined size of 322 Bytes. The remaining
4876 Byte are reserved for the SODA middleware containing the SOA layer and the
Communication Model.

When comparing this size to the overall amount of memory allocated by the Service
implementation, the percentage of the space needed by the middleware is about 22%.
As the SODA framework tailors each middleware implementation to the specific needs of
the Services that run above it, the size of this module is not constant. When comparing
the different ECUs regarding this figure, it can be seen that the VideoOutputService
has actually the biggest middleware implementation of all entities listed here. This
is due to the fact that it needs almost every single component of the middleware
to its full extend. For example, the Segmentation component has to be integrated
since it has to handle both Service calls that exceed the maximum length of a CAN
message. Furthermore, it not only offers a Service but also uses several other ones
which requires a full implementation of the Discovery Interface, QoS Interface and
the Re-composition Manager. The differences in memory footprint are most obvious
when comparing ECU 1 to ECU 6. Unlike the VideoOutputService implemented on
ECU 1, ECU 6 does only host Services that do not have Requested Interfaces. These
Services, namely the TrailerWheelbaseService and the TrailerDrawbarLengthService,
do not require an implementation of the Re-configuration Manager since their only
duty in the event of a Service selection is to respond to Discovery or QoS Requests
rather than running extensive algorithms to select external functionality. Furthermore,
the Discovery and the QoS Interface do not have to be fully implemented since they
also only have to respond to external requests instead of initializing such requests
themselves. Finally, none of the two Services has to be able to handle messages that
extend the eight Bytes offered by CAN, which eliminates the need for this component
as well. All these factors decrease the size of the SODA middleware implementation
to as low as 606 Bytes. This low amount of memory needed makes the SODA middle-
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ECU Sizesopa Sizerogic Sizeprivers Sizenise Sum pctsopa
[Byte] [Byte] [Byte] [Byte] [Byte] (7]
ECU 1 4876 15903 941 322 22042 22.12
ECU 2 4852 17515 960 494 23821 20.37
ECU 3 4577 11440 966 301 17284 26.48
ECU 4 4648 2688 1216 469 9021 51.52
ECU 5 610 746 2400 1332 5088 11.99
ECU 6 606 456 2412 1320 4794 12.64
Average | 3361.50 8124.67 1482.50 706.33 13675 24.58

Table 9.3: Memory footprint of the Services on the six ECUs
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TrailerWheelbaseService

TrailerDrawbarLengthService
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Table 9.4: The number of collaborators of the different Services

ware suitable even for tiny microcontrollers like the ATmega88 used in the demonstrator.

When looking at the average numbers of the demonstrator application the middleware
allocates about 3.4 KByte of memory. In comparison to the overall size of the different
Service implementations this adds up to a percentage of under 25%. This seems to be
reasonable when taking into account the benefits of a Service-oriented approach com-
pared to a traditional, static implementation of such a Distributed Driver Assistance
System.

The next metric considered is the "Collaborator Service Number" (CSN). As stated
before, this parameter counts the connections to other Services. Table 9.4 gives an
overview of the Services regarding this key figure. The Service to compute trajectory
A is the one having the most connections to other entities. This is due to the fact,
that this functionality needs a lot of information from quite a number of external
functionality: besides the dimensions of the car and the trailer, it makes use of both
bending angles as well as the steering angle to predict the future path of the vehicle.
Furthermore, it is called by the VideoOutputService which adds another collaborator
to the CSN. Many other Services do only have one collaborator that calls them. All
of these are data sources that do not need any further information in order to offer
their own functionality. Combining the CSN values of the individual entities the overall
application averages at 2.17 collaborations per Service.

148



9 FEvaluation

Although the exemplary assistance system implemented on the demonstrator is purely
informing and does not directly interfere with any actuator like for example the brakes,
responsiveness of the Services is highly important. This is due to the fact that studies
have shown that high latency within systems using augmented technology techniques
reduces the working performance of the people using it (see e.g. [110], |75]). The re-
sponsiveness of each individual Service is measured using Rossi’s and Tari’s "Operation
Call Time" (OCT). The results of eleven of the twelve Services are illustrated in Table
9.5, The VideoOutputService is not part of this list, since it is never called by any
other entity. Instead, it is the one actually initiating the assistance. For this reason
the response time of the functionality can’t be determined. Besides, two more Services
were not analyzed in full detail. The respective Services are the entities computing the
trajectories. The reason for this is technical in nature. Both of the Services are hosted
by the Intel IVI embedded board. Unfortunately, it was not possible to access any 1/0
pin on the board which would have allowed to trigger precise external measurement
equipment like for example an oscilloscope. Furthermore, the software-based measure-
ment methods offered by the Linux OS were not accurate enough to generate meaningful
results. In the case of these two software components only the overall response time
could be determined which was done through the log files of the CAN network.

The remaining Services have been measured by using a digital storage oscilloscope
connected to several I/O pins of the hosting hardware. The code of the Services was
extended to switch these 1/O pins to specified levels at different stages of the workflow.
By recording and analyzing the levels of those I/O pins using the oscilloscope, the
timing of the Service implementation could be evaluated in detail.

The overall response times vary between 33.15 ms and 0.71 ms as illustrated in Table
9.5. Especially the two Services that compute the trajectories catch the eye of the
reader. These long response times can’t be clarified completely, since the hardware
doesn’t allow further investigations. However, there are some correlations that can be
made. Comparing the two of them, the only difference has to be in the execution of
the Service logic, since both share the same middleware and driver components and run
on the same system. The difference of about 5.52 ms can be easily explained by the
higher effort to calculate Trajectory A compared to Trajectory B. Furthermore, when
looking at the other Services running on Linux OS like for example the RearViewService
or the SteeringAngleService, one can say that the average idle times within a Service
call are a significant factor regarding the Service response time. At the other end of
the scale, the TrailerWheelbaseService and the TrailerDrawbarLength have an OCT
of only slightly more than 0.7 ms even though they run on the ECUs with the lowest
computational performance. This time, the detailed decomposition of the measurement
helps to understand how the ATmega88-powered board manages to provide such a
superb response time behavior. The first factor is the very low execution time of the
Service logic, due to the simple functionality carried out. Furthermore, as there is no
compicated operating system and the SODA Services are the only functionality hosted
by this ECU there is no measurable idle time which delays the Service response. The
compact CAN driver used in the application only adds about an average of 0.15 ms
to the OCT which keeps the response times low although the SODA middleware is a
significant factor in this analysis needing an average of 0.24 ms execution time.

Looking at the percentage of the execution time of the SODA middleware compared
to the overall response time, Table 9.5 names an average of 19.22%. This number is sig-
nificant as this means that each time a functionality is called the time before an answer
is sent out is almost 20% longer than it would be using a traditional approach. However,
this overhead is worth it since the absolute values of the middleware’s execution time
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Service tsopa tLogic L Drivers Lidle t Response petsopa
ms] | fms | [ms [Byte] | [ms] %)
RearViewService 0.74 2.97 0.70 2.48 6.89 10.74
CameraPositionService 0.76 1.34 0.71 2.60 5.41 14.05
SteeringAngleService 0.78 1.17 0.72 4.70 7.37 10.58
CalcTrajA n.a. n.a. n.a. n.a. 33.15 n.a.
CalcTrajB n.a. n.a. n.a. n.a. 27.63 n.a.
CarWheelbaseService 0.80 0.36 0.77 3.67 5.60 14.29
CarDistRearAxleHitchService | 0.83 0.41 0.75 3.26 5.25 15.81
ReadBendingAnglel 1.11 4.09 0.40 0.00 5.60 19.82
ReadBendingAngle2 1.16 3.97 0.39 0.00 5.52 21.01
TrailerWheelbaseService 0.24 0.14 0.35 0.00 0.73 32.88
TrailerDrawbarLengthService | 0.24 0.16 0.31 0.00 0.71 33.80
Average 0.74 1.62 0.57 1.86 9.44 19.22

Table 9.5: The response times of the Services

average at about 0.74 ms which is justifiable.

One last key figure to be considered is the "Network Utilization" (NU). It combines
the message sizes of the Service requests and responses with the frequency of Service
execution. Table 9.6 illustrates these numbers and the overall NU for each Service
besides the VideoOutputService. This is again through to the fact that this Service is
never actually called but acts self-directed to initiate the assistance functionality. For
the remaining entities, Table 9.6 lists how often they are called (Calls/s), the size of
the data transferred in the event of a Service request (SizeRequest data) as well as how
many CAN messages are needed for a single request (#Request Messages)- Furthermore,
the data size of the respective response (SizeResponse data) 8 well as the number of CAN
frames used to transport this data (#Response Messages) are shown here. Combining these
values using the equation given in Equation (9.4), the overall NU value for each Service
can be determined. As illustrated in the table, the frequency used to call the Services
is either a single call per second for the static dimensions of the car-trailer-combination
or 25 calls per second for those quantities that change over time. In doing so, a smooth
output to the driver can be accomplished.

The values for the overall NU are varying from as little as 150 Bit/s to as much as
about 30 KBit/s. This extreme value is caused by the Service that calculates Trajectory
A. This is due to the amount of data needed to represent the trajectory combined with
the high frequency of calls. The difference to the other Service calculating a trajectory
is due to the fact that Trajectory B always follows a circular path. For this geometry it
is sufficient to communicate the respective radius of the curve rather than a point-based
description as used for Trajectory A. The overall bandwith occupied by the Services of
the exemplary assistance system is about 51 KBit/s second. Since the application is
running on a CAN network offering 500 KBit/s the system is using only about 10% of
the provided bus capacity. This avoids timing problems through network overloads.
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9.3.2 Evaluation on the System level

In this section, the focus swaps from analyzing the individual Service implementations
towards evaluating the overall system. In a first step the CAN identifier assignment
phase is examined. This phase, which starts directly after switching on the Services
Instances, assigns a unique CAN identifier using the addressing scheme and algorithm
described in section [7.5. The analysis is split up into two different scenarios. In the
first scenario, a number of Service implementations is switched on at the same time.
The actual number of implementations hereby ranges from only a single instance up
to 25 instances. Twelve of them are represented by the actual Services running on the
different ECUs of the demonstrator. The remaining 13 ones are simulated entities.
They are implemented in the CAN testing environment "Vetor CANoe" using Vector’s
CAPL programming language to represent the assignment algorithm. All 25 Services are
running a unique functionality which leads to the fact that no duplicates are attached
to the system. The time out used within the assignment algorithm is set to 2 ms.
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Figure 9.6: The time needed to finish ID assignment in the first scenario

Figure 9.6/ shows the results of the evaluation. It illustrates the average time needed
to assign an identifier to each entity, based on a series of ten test runs each. The
figure reveals the fact that the assignment time rises almost linear with the number of
Services present within the configuration. This discovery coincides with the relationship
illustrated in Equation (7.3). While a single Service Instance in the network needs about
11.58 ms to generate a unique address, it takes about 61.10 ms to do the same thing
with 25 entities. Right in the middle of this scale, a SODA-based DDAS consisting
of twelve Service instances as the one implemented on the demonstrator needs slightly
more than 34 ms in the average case to assign a unique CAN identifier to each unit.

The second scenario created to evaluate the identifier assignment phase analyzes the
effect of duplicate Service implementations. These duplicates slow down the assignment
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as they compete with each other and subsequently may block an address. This com-
petition increases the number of requests needed until all entities involved are assigned
with a unique CAN identifier. In this scenario all twelve implemented Service instances
are started at the same time. Additionally, up to six simulated Service implementations
are integrated. Fach of these simulated entities matches one of the actual Services in
its functionality. All entities, actually implemented as well as simulated ones, are using
a time out of 2 ms in their assignment algorithm.
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Figure 9.7: The time needed to finish ID assignment in the second scenario

Again, a measurement series of ten samples is carried out to create the average values
presented in Figure 9.7. The time needed to assign an identifier to every entity when
no duplicate is in the system averages at about 35.3 ms. This coincides approximately
with the slightly more than 34 ms measured in the first scenario when evaluating a
system counting twelve Services. At the other end of the scale, a system incorpo-
rating six additional duplicates, takes about 49.23 ms to finish the assignment phase.
In between these two cases, Figure 9.7 demonstrates a linear increase of assignment time.

As a summary one can say that the evaluation of the assignment phase has been very
successful. The system managed to assign CAN identifiers to all entities reliably and
with good performance. Even in the extreme examples of both scenarios the algorithm
managed to fulfill the assignment task quiet rapidly. Additionally, the property of
linearity discovered in both scenarios helps to keep the effort and delay caused by the
assignment phase manageable and in justifiable ranges.

In a second step, the overall re-configuration phase is evaluated. This includes the
identifier assignment phase analyzed before as well as the Service Discovery and Selec-
tion procedure. It makes use of the dynamic programming-based algorithm described
in section 6.5.2. In this algorithm time outs are introduced. The time outs describe the
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Service Time out [ms]
VideoOutputService n.a.
RearViewService 10
CameraPositionService 10
CalcTrajA 30
CalcTrajB 30
SteeringAngleService 10
CarWheelbaseService 10
CarDistRearAxleHitchS. 10
ReadBendingAnglel 10
ReadBendingAngle2 10
TrailerWheelbaseService 10
TrailerDrawbarLengthS. 10

Table 9.7: The time outs of the individual Services

amount of time to be waited after a Service Discovery has been sent to the network. If
they are too short, a Discovery response might be missed out. If they are too long the
runtime perfomance of the algorithms decreases. For the Service Instances implemented
on the demonstrator different time outs have been defined. Table 9.7 illustrates these
values. As an example, the time out value for the RearViewService is quite short lasting
only 10 ms. The low time out arises from the fact, that this Service does not need
to discover other entities but can directly respond to the request. This is not true
for other Services such as CalcTrajA. As this entity depends on several other Service
implementations it needs more time to discover those and finally answer to the request.
For this reason, CalcTrajA posses a relatively high time out value of 30ms. Again, the
VideoOutputService can’t be evaluated within this score, since it is never discovered by
any other Service.

These time out values are deployed to the demonstrator’s Services. In order to evaluate
the system in real-world events, the scenarios developed in section 6.2 are picked up
again:

1. Ignition on

2. Connecting a trailer at runtime

3. Disconnecting a trailer at runtime

4. Change of the type of assistance at runtime
5. Change of the quality parameters at runtime

6. Failure of a Service Instance at runtime

While this listing represents a full list of possible events, not all of them make sense
regarding the implementation of the demonstrator. For example, scenario 3 can be
merged in scenario 6 as the disconnection of a trailer leads to the failure of several Service
Instances. Besides that, scenario 4 is not considered as only one type of assistance is
implemented on the demonstrator. Lastly, as the demonstrator uses fixed values for the
QoS vectors, scenario 5 is also not considered within this evaluation. On the other hand,
it is quite interesting to differentiate within the scenario of a Service failure between the
failure of a duplicate implementation and a Service Instance that is unique within the
system. For these reasons, the scenarios used in this evaluation are as follows:
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1. Ignition on
2. Connecting a trailer at runtime
3. Failure of a duplicate Service Instance at runtime

4. Failure of a unique Service Instance at runtime

For all these scenarios the time out of the identifier assignment algorithm is set to 2
ms. The time out values for the Service Discovery are the ones presented in Table 9.7.

The first scenario represents starting the car-trailer-combination by turning on the
ignition. The configuration of the system under evaluation is as follows: all twelve
Service implementations developed are used. Additionally, four simulated instances are
added. Each of this four instances matches one of the actual Service implementations
but possesses a slightly worse QoS value. Through to this competition, the Discovery
and Selection algorithm as presented in section [6.5.2, is evaluated. The CAN network
used to transfer the Service communication is set to a bit rate of 500 KBit/s.

153 158 [ms]
Figure 9.8: Chronology of the events in the ignition on scenario

Figure 9.8 shows the averaged results of a test series of 10 measurements. On the
ignition on event the small 8-Bit ECUs are powered up, initialize themselves and start
the hosted Service Instances. The Linux-based hardware units are already booted. The
ignition on event makes them start loading and executing their Service implementations.
As illustrated in Figure 9.8 it takes an average of 15.1 ms until the first assignment
request message is sent to the CAN bus. This first message starts the identifier as-
signment phase which finishes after an average of 59.4 ms. As all Service Instances do
now own a unique CAN identifier the system moves on to the Discovery and Selection
phase. Within this second phase the Service Instances discover and select their partners
using the algorithm described in section [6.5.2. This second phase ends after an average
of 153.0 ms with having determined the configuration with the best end-to-end QoS
currently available. After an average of 158.2 ms the assistance systems starts working
by exchanging the first Service call.

Within the ignition on scenario the two algorithms assigning CAN identifiers and
discovering and selecting Service Instances worked reliable. The overall configuration
time of an average of 153 ms is reasonable as it is not very likely that the driver wants
to use the system during that time period after starting the car. The duration of the
identifier assignment matches the experiments done earlier. As illustrated in Figure 9.7,
the assignment algorithm needed an average of about 44.5 ms to finish its run when four
duplicates were attached. This range has been confirmed in the ignition on scenario as
it took about 44.3 ms to solve the same problem.
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The second scenario to be looked at when evaluating the re-configuration charac-
teristics of the demonstrator is the event of connecting the trailer at runtime. In this
scenario the ignition of the car has been turned on a sufficient period of time before the
trailer is attached to ensure the car’s Service Instances are completely initialized. The
chronology of the of events happening after the trailer is attached is illustrated in the
time line given in Figure 9.9.

Figure 9.9: Chronology of the events when connecting a trailer at runtime

Again, all numbers given here are average values calculated using a test series of ten
sample runs. After about 14.8 ms the three ECUs attached to the trailer are initialized
and the first message to request an identifier has been sent. Those three ECUs host a
total number of six Service Instances. Three of these Service Instances are not unique
within the system but are matched by one duplicate each. These duplicates have
been started together with the car. Therefore they are already initialized and got a
CAN identifier assigned to their functionality. Through to this fact, the three Service
Instances now being added have to compete with these duplicates in both the identifier
assignment and the Service Selection phase. These circumstances cause a relatively long
assignment phase that finishes after an average of 39.1 ms after the trailer got connected
to the car. The second phase, discovering and selecting the configuration that offers
the best QoS parameter, is rather fast. After an average of 55.9 ms this configuration
is found and established. This relatively short duration of only 16.8 ms arises from the
fact that a big share of the problem has been already solved right after the car has been
powered up. This leads to the fact that in the average case the newly configured DDAS
starts operating 60.2 ms after the trailer has been connected to the car. This means
that there is no delay noticeable by the operator of the car-trailer-combination when
attaching the trailer to the vehicle.

The third scenario evaluates the behavior of the SODA-based DDAS in the event of
the failure of a Service Instance. More precisely, it examines the failure of an entity
that is not unique but has a duplicate offering the same functionality. The configuration
used for this scenario is as follows: The system has been initialized and the DDAS is
active. It uses the twelve Service Instances implemented. The four duplicates are in an
inactive state since they have not been selected by the application. The failure scenario
is created by switching off one of the Service Instances currently used. In the following
the SODA system will try to recover the application by selecting a replacement for the
entity not responding any more. This scenario has been ran through with two different
Service Instances to be disconnected.

In the first ten test runs the Service CameraPositionService has been disconnected
from the system. Figure 9.10 illustrates the process of re-configuration for this case.
After the failure of CameraPositionService the system needs an average of 17.2 ms until
it detects that circumstance and starts to re-configure. This re-configuration, which

156



9 FEvaluation

Figure 9.10: Chronology of the events after the failure of the CameraPositionService

includes the Discovery and Selection of the duplicate available for CameraPositionSer-
vice, last until 21.8 ms after the initial failure event. About 25.0 ms after switching
off CameraPositionService the system is back in active mode and executes the DDAS
again. This recovery mechanism is fast enough to stay well under the human perception
threshold. In other words, the operator of the car-trailer-combination would not even
notice that something has happened to the system that required a re-configuration of
the Services.

One of the reasons for the good performance in the case of the failure of the Camera-
PositionService is the fact that this Service Instance has no Requested Interfaces. If it
fails, the only thing to do is to find and select a replacement. A more complex scenario
is given when a Service Instance fails that actually has Requested Interfaces. In such
a case, identifying and activating a duplicate is only the first step. Additionally, this
duplicate Service Instance must discover and select the requested functionality specified
through the Requested Interfaces as well.

5‘0 5‘3 [ms]
Figure 9.11: Chronology of the events after the failure of CalcTrajB

This more complicated case is evaluated by switching off the Service CalcTrajB. As
illustrated in Figure 9.11, the system needs about 32.3 ms until it detects the failure
and starts to re-configure the application. Afterwards, it executes the re-configuration
which is finished after 49.9 ms. The system is ready and active again after 53.1 ms.
The re-configuration time, which is about twice as long as in the case of the failure of
the CameraPositionService, is still in a very good range. The driver would not notice
anything but maybe a short unsteadiness of the augmented video picture presented.

The last scenario within the analysis of system re-configuration addresses the case
when a unique functionality fails. In this event the application has to determine this
failure and its inability to provide the assistance system any longer. After this diagnosis
has been made, the driver needs to be informed about it to avoid potential misleading
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Sensor Value Average age |ms]
Rear View Picture 49.23
Steering Angle 64.70
Bending Angle 1 63.19
Bending Angle 2 58.52

Table 9.8: The average age of the sensor data

information.

Figure 9.12: Chronology of the events after the failure of CalcTrajA

The time line given in Figure [9.12 shows the results of the system behavior when the
Service CalcTrajA is shut down. Again, the numbers are average values computed from
a test series containing ten runs. The average time to detect this failure is 21.3 ms. After
this discovery the system starts trying to discover alternative entities offering the same
functionality. As there is no such duplicate available it recognizes its situation about
62.4 ms after the Service Instance failed. The notice to the operator of the vehicle about
this situation is given after approximately 70.2 ms. This relatively low time between the
appearance of the failure and the notification of the driver ensures that no out-dated
or wrong information is presented by the assistance system. Please note that after the
notification the system keeps on sending out Discovery messages in case the failed Ser-
vice Instance recovers or a new entity offering the missing functionality joins the network.

The third and last step of the system evaluation is the analysis of the execution of
the application under normal runtime conditions. Here, the main figure to look at is
the timeliness of the overall application. In this sense, a evaluation of the average age
of sensor data when being presented to the operator of the vehicle has been carried
out. In order to do so, some Service implementations have been slightly altered. This
includes those Service Instances that act as sensors. They have been modified to send
a specific flag instead of the actual sensor value. This flag can now be traced through
the application workflow by observing the Service messages on the CAN network. The
VideoOutputService has been changed to send a message onto the CAN bus which
contains the flag in the very moment it visualizes the tagged data on the screen. The
message flow on the network is observed using Vector CANoe.

Table 9.8 illustrates the age of the sensor values that are requested at frequent inter-
vals. The lowest number is the age of the rear view picture as this value is transmitted
directly from the source to the sink. All other sensor data is processed by another in-
stance namely CalcTrajA or CalTrajB. This leads to values of up to 64.70 ms. However,
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the system always felt responsive when using it in the field.

9.4 Summary

This chapter described the evaluation of the SODA framework using a real world
demonstrator. This demonstrator is built up by a Mercedes B-Class car and a two-axle
trailer. This combination was enhanced with additional equipment such as a camera,
a monitor and several sensors. The exemplary assistance system created using SODA
consisted of 12 Services implemented according to the development described in 5.3l
The hardware units hosting them were either Linux-based or small 8-Bit ECUs which
were connected through CAN and Ethernet.

The evaluation procedure was split up into two parts: the evaluation on the Service
level and on the System level. On the Service level five key figures were examined
such as Network Utilization, Operation Interface Size or the number of collaborators
of each Abstract Service. Two additional measurements, which were of high interest in
order to analyze the effects of adding the SODA middleware were the Operation Call
Time and the memory footprint. Regarding the former key figure the time needed to
execute the middleware represents about 19.22% of the overall OCT. Looking at the
average absolute execution times of the implementations the middleware needed only
about 0.74 ms to fulfill all its tasks. Analyzing the memory footprint, the middleware
occupies an average of about 22% of the overall implementation size. When evaluating
the absolute numbers the maximum size of the SODA middleware is 3.4 KByte. On the
other hand, smaller Service Instances with less requirements feature SODA middleware
implementations of only 606 Byte of memory.

To summarize the evaluation of the individual Service Instances one can say that
the overhead created by the SODA middleware is quite low. The additional amount of
memory or execution time is well outperformed by the benefits this framework intro-
duces such as runtime adaptability. In this sense the evaluation of the SODA framework
regarding the Service level within the example application was highly successful.

On the System level, the evaluation consisted of three different parts. These were
the analysis of the CAN identifier assignment phase, the overall re-configuration of
the system as well as the runtime behavior. In order to examine the CAN identifier
assignment phase two scenarios have been developed. The first scenario evaluated
the execution times of this phase for different numbers of Service Instances. All of
these Service Instances were unique which leads to the fact that they did not compete
for the same identifiers. The evaluation revealed the linear correlation between the
number of Service Instances requesting an identifier and the time needed to complete
this assignment phase. For the configuration established on the demonstrator contain-
ing twelve Service implementations the assignment phase took an average of about 34 ms.

The second scenario within the assignment phase evaluation examined the effects
of duplicate Service Instances within a system. The test scenario introduced duplicates
varying from zero to six additional implementations. Again, a linear correlation between
the number of entities competing and the time needed to assign a unique identifier to
each Service Instance has been discovered. This linear correlation in both identifier
assignment scenarios allows the conclusion that the amount of time needed to finish the
identifier assignment phase is justifiable even for higher numbers of Service Instances.

In a second analysis on the system level the whole re-configuration phase including the
identifier assignment and the Service Discovery and Selection were evaluated. Hereby,
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the algorithm described in section 6.5.2] was used to configure the assistance system
online. The re-configuration was examined through introducing four different real-world
scenarios. The first one of these scenarios was the event of switching on the ignition and
thereby all Service Instances at the same time. The demonstrator successfully finished
the configuration of the system within an average of 158.2 ms. In the second scenario
the trailer was connected to the car at runtime. Here, the SODA middleware needed
an average of 60.2 ms to start up and integrate the newly added Service Instances and
create the overall application. The remaining two scenarios examined the error handling
capabilities of the demonstrator. In scenario three, a Service Instance that is matched by
a duplicate within the system was switched off. The SODA middleware was challenged
to discover this failure and re-configure the application using the duplicate Service
Instance. Again, this task was fulfilled with good performance needing only about 25
ms to recover the assistance application. In the final scenario a Service Instance unique
within the system was switched off. The SODA middleware had to detect this issue
and warn the driver about the fact that it is no longer possible to offer the requested
assistance. This warning was presented an average of 53.1 ms after the Service Instance
was shut down.

All these values showed that SODA is capable of re-configure the system reliable and
within very short time intervals. Please be reminded that all the numbers presented are
strongly depending on the time outs configured within the algorithms. The time outs
chosen for the demonstrator were somehow conservative and aimed first and foremost
on the reliability of the system. Shortening those time outs would even speed up the
algorithms but might lead to an unreliable behavior under specific circumstances. In an
actual product development these time outs could be examined and adjusted in order
to find a good balance between the reliability and timeliness of the application.

The last part of the analysis of the System level observes the phase when the system
is fully initialized and running. Here, a important figure is the age of the data when
being presented to the driver. This evaluation revealed, that the average age of the
sensor data might be up to 64.70 ms. This relatively high number originates mainly
from the long execution times of the Service logic implementation rather than being
caused by the SODA framework. Besides, the system always felt responsive.

Summarizing the evaluations done on the demonstrator one can say that SODA
proved to be functional and reliable, convinces with a very good performance and well
tailored middleware implementations that keep the overhead very low. These impressive
results demonstrate that Service-orientation does not only offer the capabilities needed
to create runtime adaptive DDAS but also shows that it is possible to apply these
principles within the automotive domain.
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10 Summary

"There is no real ending. It’s just the
place where you stop the story.’

Frank Herbert!

This thesis described the research that led to an adaptive software and system ar-
chitecture for DAS for truck and trailer combinations. The architectural style used
for the SODA middleware is Service-orientation. Service-oriented Architectures are
mostly used on desktop computer systems connected using IP-based networks. Since
this methodology became very popular in recent years, many frameworks have been
published by industry or academia. Chapter 2 discussed 23 of these approaches showing
that none of them fulfills all three central requirements of the given usage scenario
like automatic re-configuration at runtime, economical resource usage and distributed
management algorithms. Hence, the basic principles of SOA were used to create a
tailored, unique framework called SODA.

The foundations of the SODA framework are built by its reference model. This model
is constituted by the definition a set of terms and their relationships. This ensures clear
definitions of the principles and methods used. Furthermore, it establishes a clear set
of Service-oriented concepts used based on the goals set up by the truck and trailer
scenario. These concepts are implemented by a set of components. The aggregation of
these components builds an architectural blueprint, the so called reference architecture
of a SODA Service. Additionally, a Quality of Service parameter has been created that
reflects the functional characteristics of each Service Instance. This unique QoS param-
eter introduced in SODA allows to adapt its characteristics not only to the functionality
but also to the application created using this functionality. Besides, it is processed
into a one-dimensional parameter which highly simplifies the Selection process. This
resource-friendly QoS parameter complements the SODA reference model.

One disadvantage of a reference architecture is the fact that some components might
not be used in each Service instantiation as the concepts they implement might not be
requested. For example, a Source Service that does not need any other functionality
to fulfill its task does not necessarily have to implement all parts of the Discovery or
re-configuration algorithms. This is through to the fact, that this kind of Service is
purely passive in any kind of re-composition scenario. Hence, from a resource man-
agement point of view, it is reasonable to create tailored Service implementations that
do only include those components actually needed. In order to support this approach,
SODAdev has been created. SODAdev is a model-based development approach that
allows to create SODA-based Driver Assistance Systems from various starting points.
It’s well-structured, phase-oriented procedure guides the development team through the
design process and supports them by providing a tool environment. The outcome of
this procedure is a SoaML model that can then be used for further processing such as
model-checking, code-generation or to create a Communication Model for the Service
Instances involved.

LWillis E. McNelly: Interview with Beverly and Frank Herbert, see [94]
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As a matter of fact, the integration of Service communication into today’s most com-
mon automotive network systems is another important step in introducing SOA into the
automotive domain. In order to keep the implementation tailored, another procedure
called SOAcom has been created. Here, the requirements regarding the communication
stack of the driver assistance application are derived using the SoaML model created by
SODAdev. Furthermore, the characteristics of the automotive networks planned to be
used are determined by a custom-built questionnaire. Both information sets are then
combined using flowchart diagrams to detect the shortcomings of the networks in the
specific usage scenario. Using a list of tasks that describe the actions to be undertaken,
the design team is provided with a clear specification of the Communication Model
under development.

One crucial part of the introduction of Service-orientation into automotive embedded
is the re-composition algorithm that creates optimized Service Execution Graphs at
runtime using the Service Instances currently available. Despite the fact that there
are numerous suggestions on re-composition algorithms in the literature, none of them
fulfilled the specific requirements given in truck and trailer assistance systems. These
requirements include the ability to re-compose the system at runtime, the creation
of the optimal solution, the usage of distributed algorithms and the limitation of re-
sources used. Especially the last requirement is indispensable when trying to make
the framework runable on very small embedded devices. The solution to this problem
was the design of a novel re-composition algorithm based on dynamic programming. It
reduced the complexity of the selection procedure significantly by dividing the overall
problem into small subproblems that are solved in a distributed manner. Furthermore,
the principle of using hierarchical determination of optimal subsolutions guaranties the
achievement of end-to-end optimality without additional computations.

Another important achievement presented in this thesis is the integration of the
SODA framework into AUTOSAR. Besides the integration of SODAdev into CPSSD
this is another crucial point were the framework proved to be compatible to today’s
automotive software systems. In chapter § three different approaches on the integration
of the SODA components into the AUTOSAR architecture were presented. All of them
offered the dynamics in the software stacks needed and proved to be rather resource
friendly. However, they can be differentiated according to the level of integration offered.
While the approach using the Complex Drivers bypasses the complete basic software
stack, the one replacing the XCP module uses most of the layers of AUTOSAR. In the
third approach that enhances the transport protocol layer, all AUTOSAR layers, inter-
faces and handles are used the way intended. Although all three approaches are fully
functional, they are mend to be suggestions on possible extensions to the AUTOSAR
standard.

The final chapter of this thesis described the evaluation of a prototype implementation
of a truck and trailer assistance system using the SODA framework. The demonstrator
used is a Mercedes B-Class car connected to a two-axle trailer. The twelve Services
building the application are distributed over both parts of the vehicle. In order to
prove the framework on different hard- and software platforms the devices used ranged
from an Ubuntu Laptop, over Intel IVI boards to very small ECUs powered by an
8-Bit Atmel CPU. The system was analyzed both on Service and on application level,
during re-configuration and at normal operation. In all cases the application as well
as the underlying framework were stable, reliable and performed very well. Especially
regarding the memory footprint the system proved to be very resource friendly.

The author Frank Herbert once said: "There is no real ending. It’s just the place
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10 Summary

where you stop the story." This is also true for this thesis and the research it describes.
Although it features many novel approaches and techniques, there is still a number of
open issues regarding the usage of Service-oriented Computing in automotive embedded
systems. One of theses issues is certainly the need for security. As this approach opens
up the car’s electronic system, mechanisms have to be defined that ensure that this
openness is not used for harmful attacks. Another open point is the definition and im-
plementation of quality of service mechanisms on the network layer. As SODA might be
used for safety-related, real-time driver assistance systems, adding guarantees regarding
the reliability and timeliness of message transport would be very valuable. Furthermore,
this research showed that the usage of SOA is not only capable of managing truck and
trailer systems but should be beneficial in other Distributed Driver Assistance Systems,
too. Especially applications basing on car-to-x communication may avail oneself by
encapsulating functionality into Services and using these entities to build powerful
ad-hoc applications. Some other potential field of usage is the development of safety-
critical systems. Many of them derive their safety levels by providing redundancy for
critical functional blocks. The Service-oriented concepts that enable runtime adaptive
DDAS could also be used to manage the state transitions that have to be executed
when switching to a redundant component. Hopefully, future research will prove this
assumption to be true.

163



Abbreviations

ABS Anti-lock Braking System

ACC Adaptive Cruise Control

API Application Programming Interface

ARP Address Resolution Protocol

AUTOSAR AUTomotive Open System ARchitecture

AVB Audio Video Bridging

CSMA/CR  Carrier Sense Multiple Access/Collision Resolution
BAWS Bending Angle Warning System

BPEL Business Process Execution Language

BPMN Business Process Modeling Language

BSW AUTOSAR Basic Software

CAN Controller Area Network

CASE Computer-Aided Software Engineering
CORBA Common Object Request Broker Architecture
CPSSD Core Process for System and Software Development
CPU Central Processing Unit

CSN Collaborator Service Number

CSV Comma-separated values

DAS Driver Assistance System

DDAS Distributed Driver Assistance System

DES Distributed Embedded Systems

DHCP Dynamic Host Configuration Protocol

DPWS Devices Profile for Web Services

DSL Domain-specific Language

ECU Electronic Control Unit

ESP Electronic Stability Program

HAL Hardware Abstraction Layer

HDMI High Definition Multimedia Interface

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

1ID Instance Identifier

1P Internet Protocol

1SO International Organization for Standardization
ISO-TP International Organization for Standardization Transport Protocol
IVI In-Vehicle Infotainment

I/0 Input and Output

LDWS Lane Departure Warning System

LIN Local Interconnect Network

LSA Logical System Architecture

LVDS Low Voltage Differential Signaling

MDA Model-driven Architecture

MDSD Model-driven Software Development

MOST Media Oriented Systems Transport

NU Network Utilization

OASIS Organization for the Advancement of Structured Information Standards
OoCT Operation Call Time

OEM Original Equipment Manufacturer

164



OIS
OoOMG
0S
0OSGi
OSI Model
PDA
PDU
PduR
POF
QoS
RAM
ROM
RSA
RTE
SAW
SCA
SCS
SLA
SOA
SOAcom
SoaML
SOAP
SOC
SODA
SODAdev
SOMA
SOME/IP
SW-C
TCP
TSA
TTCAN
UAV
UDP
UDS
UML
USB
VDE
VFB
WSDL
W3C
XCP
XML

10 Summary

Operation Interface Size

Object Management Group

Operating System

Open Services Gateway initiative

Open Systems Interconnection Model
Personal Digital Assistant

AUTOSAR Packet Data Unit

AUTOSAR PDU Router

Plastic Optical Fibers

Quality of Service

Random-Access Memory

Read-only Memory

Rational Software Architect

Runtime Environment

Simple Additive Weighting

Service Class Address

Service Code Size

Service Level Agreement

Service-oriented Architecture

Service-oriented Architecture Communication Development Process Model
Service-oriented Modeling Language

Simple Object Access Protocol
Service-oriented Computing

Service-oriented Driver Assistance
Service-oriented Driver Assistance Development Procedure
Service-oriented Modeling and Architecture
Scalable service-Oriented MiddlewarE over IP
AUTOSAR software component

Transmission Control Protocol

Technical System Architecture

Time Triggered Controller Area Network
Unmanned Aerial Vehicle

User Datagram Protocol

Unified Diagnostic Services

Unified Modeling Language

Universal Serial Bus

German Association for Electrical, Electronic and Information Technologies
Virtual Function Bus

Web Services Description Language

World Wide Web Consortium

Universal Measurement and Calibration Protocol
Extensible Markup Language

165



List

1.1
1.2
1.3

3.1
3.2
3.3
3.4
3.9
3.6
3.7

3.8
3.9

3.10
3.11

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5

0.6

0.7
5.8
5.9
5.10
5.11
5.12

0.13

0.14
5.15
5.16

6.1
6.2

of Figures

The domains of the electronic system of a modern vehicle [117]. . . . . . . 11
The generic loop of informing Driver Assistance Systems (bases on [29]) . 13
The general cycle of the Design Research methodology [136]. . . . . . .. 20
The V-model of CPSSD|117] . . . . .. ... .. ... ... ... ... 33
SoaML stereotypes part 1) . . . . . . . . ... ... oo 39
SoaML stereotypes part 2 . . . . . . ... oo 39
SoaML stereotypes part 3/ . . . . . .. . .. ... o 40
The seven phases of IBM’s SOMA process model . . . . . . ... ... .. 41
The BPMN model of the bill printing example] . . . . ... ... ... .. 41
The the prospective Services of the bill printing example modeled as

SoaML Capabilities . . . . . . . . . . .. 42
A possible model of the Servicelnterface of the Service to print a bill . . . 43
A possible ServiceContract of the exemplary Service which creates the

content of a billl . . . . . . ... 44
The SoaML Participants of the example application . . . . ... ... .. 44
The SoaML ServiceArchitecture of the example application| . . . . . . .. 45
Relationship between the terms and definitions of SOA used in this work 49
Relationship between goals, concepts and components . . . . .. ... .. 54
Overview of the SODA reference architecture. . . . . . . . ... ... ... 55
Example of a selection decision for a Service Instance having two Re-

quested Interfaces . . . . . . . .. L Lo 58
An example for a DDAS modelled as an Activity Diagram . . . . . . . .. 62
Integration of SODAdev into the V-model of CPSSD| . . . . .. ... ... 62
The Service Candidates derived from the example Activity Diagram| . . . 63

The Servicelnterface of one of the exemplary Services modeled using SoaML. 65
An example contract illustrating to roles and the Sequence Chart of the

communication . . . . . .. .. L. 67
The Signals and data types corresponding to the communication scenario

illustrated in Figure 5.5 . . . . . . . . . .o 67
An example Participant with it’s Service Point| . . . . . . . . .. ... .. 68
An excerpt from a example ServiceArchitecture . . . . . . .. ... ... 69
The HMI of a Visual Assistance System to back up a trailer [23] . . . . . 70
The Activity Diagram of the DDAS . . . ... .. ... ... .. ..... 71
Overview of the Capabilities derived for the example application . . . . . 71
The Servicelnterface of the Service to calculate the trajectory of the center

of the trailer!. . . . . . . . . . . . e 72
The contract of the Service to calculate the trajectory of the center of the

trailer] . . ... L e 73
The Participant of the example Service . . . . . . . . .. ... ... .... 73
The overall ServiceArchitecture of the application . . . . . . . . ... ... 74
Picture of the demonstrator vehicle . . . . . . . .. ... ... ... ... 75
The four phases to re-compose a SODA-based DDAS. . . . ... ... .. 81
Procedure of the Discovery and Selection phase. . . . . . . ... ... ... 82

166



6.3
6.4
6.5
6.6

6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

7.12

7.13
7.14
7.15

8.1
8.2
8.3

8.4
8.5
8.6
8.7

8.8

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

List of Figures

The Service Selection Graph of the Bending Angle Warning System . . . 83
The different Service Execution Graphs for local and global optimization|. 83
A simple Service Selection Graph of the Bending Angle Warning System . 90
The sequence chart of the SODA compositon algorithm for the example

given in Figure 6.5/ . . . . . . ... Lo 91
Some examples for potential Service Selection Graphs . . . . .. ... .. 94
Overview of the SODA architecture. . . . . . ... ... ... ....... 96
Overview of the SOAcom development process. . . . . . .. ... ... .. 100
Example elements . . . . .. ... oL o 101
Example of a communication sequence using Asynchronous Signal Messages.101
Groups of characteristics of a network system.|. . . . . ... .. ... ... 103
An example flowchart diagram.| . . . . . .. .. ..o o000 106
Extract of the document describing the tasks., . . . . . .. ... ... ... 107
Overview of the prototype.[19] . . . . ... ... ... ... ... ... 109
Human Machine Interface of the running example.[19] . . . . ... .. .. 110
Service Architecture of the example application: a visual assistance sys-

tem for cars with one-axle trailers. . . . . . .. .. .. ... .00 110
The largest UML Signals within the SoaML model of the example appli-

cabion. . . . . . .. 111
The Addressing Scheme developed for SODA Service Communication on

CANL . e 115
The bit lengths used for the Addressing Scheme in the given example.| . . 115
Identifier Assignment Algorithm. . . . . .. .. .. ... o000 117
State machine for a periodic message. . . . . . .. ... 118
The modules of SODA and their relationship to AUTOSAR/ . . . ... .. 123
The layered software architecture of AUTOSAR 3] . . . .. ... ... .. 125
Approach 1: bypassing the AUTOSAR BSW by using Complex Drivers

(figure bases on 3])|. . . . . . . . 129
Focus on the Complex Driver approach (figure bases on |3]) . . . . . . .. 130
Integration of XCP into AUTOSAR (figure baseson [3]) . . . .. .. ... 131
Approach 2: medium level of integration (figure bases on [3]) . . . . . .. 133
Integration of the J1939 and the Ethernet protocol on the Communication

Services layer (figure baseson [3|). . . . . .. ... Lo L 134
Approach 3: high level of integration (figure bases on |3|)| . . . . ... .. 135
The HMI of the visual Assistance System for a trailer, . . . . .. .. ... 139
The full scale demonstrator consisting of a Mercedes B-Class car and a

two-axle trailer. . . . . ... Lo 140
The mechanical sensor for the Bending Angle 1.|. . . . . . ... ... ... 141
Simple USB webcam to create a picture of the area behind the trailer.| . . 143
The system architecture of the demonstrator . . . . . ... ... ... .. 144
The time needed to finish ID assignment in the first scenario] . . . . . . . 152
The time needed to finish ID assignment in the second scenario| . . . . . . 153
Chronology of the events in the ignition on scenario, . . .. ... ... .. 155
Chronology of the events when connecting a trailer at runtime . . . . . . 156
Chronology of the events after the failure of the CameraPositionService| . 157
Chronology of the events after the failure of CalcTrajB . . . . . . ... .. 157
Chronology of the events after the failure of CalcTrajAl. . . . . . . .. .. 158

167



List of Tables

2.1

3.1

6.1

7.1

7.2
7.3
7.4

7.5

8.1

8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Service-oriented Computing for embedded systems| . . . . . . ... .. .. 26

Comparison of model-driven development approaches for SOA-based sys-
TEIS| . . . e e e e e e e e e e e e e 36

Comparison of different selection algorithms . . . . . . . . .. .. ... .. 85

Comparison of the some middleware approaches targeting on embedded

systems| . . ... 97
Extract of the questionnaire to characterize a network: Frame prioritization.[104
Extract of the questionnaire to characterize a network: Addressing. . . . . 104
Relation between Communication Model components and flowchart dia-

GIams.| . . . . .o e 109
List of Services in the example application.| . . . . . ... ... ... ... 111

Comparison of different approaches to add runtime adaptation to AU-

TOSARI . . . . e 128
Comparison of the three approaches suggested to integrate SODA into

AUTOSAR! . . . e 136
Description of the computing units used within the demonstrator| . . . . . 144
Values of the Operation Interface Size for the individual Services . . . . . 147
Memory footprint of the Services on the six ECUs . . . .. ... .. ... 148
The number of collaborators of the different Services . . . . . . ... ... 148
The response times of the Services . . . . . . ... ... ... ....... 150
The Network Utilization of the Services . . . . ... .. ... ... .... 151
The time outs of the individual Servicesl . . . . . .. ... ... ... ... 154
The average age of the sensor data, . . . . . . ... ... ... ... .... 158

168



Bibliography

[1]

2]
3]

4]

[5]

[6]
7]

18]

9]

[10]

[11]

[12]

AUTOSAR Administration. AUTOSAR: Classification of interfaces. 2013. URL:
http://www.autosar.org/index . php?p=1\&up=2\&uup=3\&uuup=4\&uuuup=
0\&uuuuup=0

AUTOSAR Administration. AUTOSAR Specification v4.1 Rev2: Specification of
RTE. 2013.

AUTOSAR Administration. Layered Software Architecture. 2013. URL:
lhttp : / / www . autosar . org / download / R4 . O / AUTOSAR \ _EXP \|
|_LayeredsoftwareArchitecture.pdf]

Pekka Aho, Janne Merilinna, and Eila Ovaska. “Model-Driven Open Source Soft-
ware Development - The Open Models Approach”. In: 2009 Fourth International
Conference on Software Engineering Advances (Sept. 2009), pp. 185-190. poI:
[10. 1109 /ICSEA . 2009 . 37| URL: |http://ieeexplore . ieee . org/lpdocs /|
lepic03/wrapper.htm?arnumber=5298439|

Marco Aiello et al. “Optimal QoS-Aware Web Service Composition”. In: 2009
IEEE Conference on Commerce and Enterprise Computing. leee, July 2009,
pp- 491-494. 1SBN: 978-0-7695-3755-9. DOI: [10.1109/CEC. 2009 .63, URL: [http:|
[//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5210754,

Jim Amsden. Modeling SOA : Part 4 . Service composition. 2007. URL:
[//www.ibm.com/developerworks/rational/library/07/1023\_amsden/|

D. Ardagna and B. Pernici. “ Adaptive Service Composition in Flexible Processes”.
In: IEEE Transactions on Software Engineering 33.6 (June 2007), pp. 369-384.
1SSN: 0098-5589. DOI: [10.1109/TSE . 2007 . 1011] URL: http://ieeexplore .|
|[ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4181707|

Danilo Ardagna and Barbara Pernici. “Global and local qos guarantee in web
service selection”. In: Business Process Management Workshops. 2006, pp. 32—46.
DOI: (10.1007/11678564\ _4, URL: http://link.springer.com/chapter/10.|
[L007/11678564\ _4l

A. Arsanjani et al. “SOMA: A method for developing service-oriented solutions”.
In: IBM Systems Journal 47.3 (2008), pp. 377-396. 1SsSN: 0018-8670. DOLI: m
(1147 /sj .473.0377| URL: http://ieeexplore. ieee.org/lpdocs/epic03/|
[wrapper . htm?arnumber=5386496http: //ieeexplore . ieee.org/xpls/abs |
[_all.jsp?arnumber=5356496|

JM Astesana, L. Cosserat, and H Fargier. “Constraint-based Modeling and Ex-
ploitation of a Vehicle Range at Renault’s: Requirement analysis and complexity
study”. In: Workshop on Configuration. Ed. by Lothat Hotz and Alois Haselbdck.
Lisbon, 2010, pp. 33-309.

CAL CAN-in Automation. “CAN Application Layer for Industrial Applications”.
In: CiA Draft Standard DS-201 to DS-207, Version (1996). URL: |http : //

[scholar . google . com/ scholar 7hl=en \ &btnG=Search \ &q=1intitle : CAN +
[Application+layer+for+industrial+applications\#5|

Jakob Axelson and Avenir Kobetski. “On The Conceptual Design of a Dynamic
Component Model for Reconfigurabl e AUTOSAR Systems”. In: 5th Workshop
on AdaPtive and Reconfigurable Embedded Systems (APRES 2013). Philadelphia,
2013, pp. 42-45.

169


http://www.autosar.org/index.php?p=1\&up=2\&uup=3\&uuup=4\&uuuup=0\&uuuuup=0
http://www.autosar.org/index.php?p=1\&up=2\&uup=3\&uuup=4\&uuuup=0\&uuuuup=0
http://www.autosar.org/download/R4.0/AUTOSAR\_EXP\_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/R4.0/AUTOSAR\_EXP\_LayeredSoftwareArchitecture.pdf
http://dx.doi.org/10.1109/ICSEA.2009.37
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5298439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5298439
http://dx.doi.org/10.1109/CEC.2009.63
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5210754
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5210754
http://www.ibm.com/developerworks/rational/library/07/1023\_amsden/
http://www.ibm.com/developerworks/rational/library/07/1023\_amsden/
http://dx.doi.org/10.1109/TSE.2007.1011
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4181707
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4181707
http://dx.doi.org/10.1007/11678564\_4
http://link.springer.com/chapter/10.1007/11678564\_4
http://link.springer.com/chapter/10.1007/11678564\_4
http://dx.doi.org/10.1147/sj.473.0377
http://dx.doi.org/10.1147/sj.473.0377
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5386496 http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5386496
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5386496 http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5386496
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5386496 http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5386496
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:CAN+Application+layer+for+industrial+applications\#5
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:CAN+Application+layer+for+industrial+applications\#5
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:CAN+Application+layer+for+industrial+applications\#5

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

Bibliography

Alberto Ballesteros, Marco Wagner, and Dieter Zoébel. “SOAcom : Designing Ser-
vice communication in adaptive automotive networks”. In: 8th IEEFE International
Symposium on Industrial Embedded Systems. Porto, 2013. 1SBN: 9781479906581.

Luciano Baresi et al. “Hybrid service-oriented architectures: a case-study in the
automotive domain”. In: Proceedings of the 5th international workshop on Soft-
ware Engineering and Middleware. 2005, pp. 62-68. URL: http://dl.acm.org/|

? =

Douglas K. Barry. Web Services, Service-Oriented Architectures, and Cloud Com-
puting (The Savvy Manager’s Guides). Morgan Kaufmann, 2003, p. 264. I1SBN:
1558609067. URL: http://www.amazon . com/Services - Service-Oriented-|
[Architectures-Computing-Managers/dp/1558609067|

Basil Becker, Holger Giese, and Stefan Neumann. “Model-based extension of au-
tosar for architectural online reconfiguration”. In: Models 09. 2009, pp. 123-137.
URL: http://www.springerlink.com/index/V72R656310462M4N . pdf]

Michael Bell. Service-Oriented Modeling Framework. Wiley Publishing Inc., 2008.
Chap. 1, p. 366. 1SBN: 978-0-470-14111-3.

Gorka Benguria and Parque Tecnologico De Zamudio. “A platform independent
model for service oriented architectures”. In: Enterprise Interoperability (2007),
pp- 23-32. URL: http://www.springerlink. com/index/JX7567507X101H6M .|

pdi]

Uwe Berg, Philipp Wojke, and Dieter Zobel. Projekt: Visuelle Riickfahrassistenz
fiir Gespanne. Koblenz, 2007. URL: [attp: //www . uni - koblenz - landau . de /|
[koblenz/fb4/ist/AGZoebel /downloadbereich/flyer/EZlenk\ _Flyer.pdf /|
[at\_download/file|

Uwe Berg and Dieter Zobel. “Gestaltung der Mensch-Maschine-Interaktion von
Lenkas- sistenzsystemen zur Unterstiitzung der Riickwéartsfahrt von Fahrzeu-
gen mit Anhénger”. In: Mechatronik 2007 - Innovative Produktentwicklung 1971
(2007), pp. 575-588.

Uwe Berg and Dieter Zobel. “Visual Steering Assistance for Backing-Up Vehicles
with One-axle Trailer”. In: Vision in Vehicles 11. Dublin, 2006.

Christian Berger and Matthias Tichy. “Towards Transactional Self-Adaptation for
AUTOSAR on the Example of a Collision Detection System”. In: GI Jahrestagung
2012. 2012, pp. 853-862.

Sascha Berkessel. “Uberarbeitung und Erweiterung des Fahrsimulators fiir den
prototypischen Test unterschiedlicher Riickfahrassistenzsysteme”. Master Thesis.
University of Koblenz-Landau, 2012, p. 111.

Barry Boehm. “A Spiral Modell of Software Development and Enhancement”. In:
Coumputer 21.5 (1988), pp. 61-72.

Hendrik Bohn, Andreas Bobek, and Frank Golatowski. “SIRENA-Service In-
frastructure for Real-time Embedded Networked Devices”. In: International
Conference on Mobile Communications and Learning Technologies. 2006. 1SBN:
0769525520. URL: http : // ieeexplore . ieee . org/ xpls/abs\ _all. jsp 7|
larnumber=16282891

David Booth et al. Web Services Architecture. 2004. URL: http://www.w3.org/|
[TR/ws-arch/wsa.pdf]

David Bridges and Shervin Mostashfi. “Dynamic Orchestration of the Sensor Web
(DOSW)”. In: 2008 International Symposium on Collaborative Technologies and
Systems. Ieee, May 2008, pp. 88-94. I1SBN: 978-1-4244-2248-7. DOI:
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.|

? =

170


http://dl.acm.org/citation.cfm?id=1108487
http://dl.acm.org/citation.cfm?id=1108487
http://www.amazon.com/Services-Service-Oriented-Architectures-Computing-Managers/dp/1558609067
http://www.amazon.com/Services-Service-Oriented-Architectures-Computing-Managers/dp/1558609067
http://www.springerlink.com/index/V72R656310462M4N.pdf
http://www.springerlink.com/index/JX7567507X101H6M.pdf
http://www.springerlink.com/index/JX7567507X101H6M.pdf
http://www.uni-koblenz-landau.de/koblenz/fb4/ist/AGZoebel/downloadbereich/flyer/EZlenk\_Flyer.pdf/at\_download/file
http://www.uni-koblenz-landau.de/koblenz/fb4/ist/AGZoebel/downloadbereich/flyer/EZlenk\_Flyer.pdf/at\_download/file
http://www.uni-koblenz-landau.de/koblenz/fb4/ist/AGZoebel/downloadbereich/flyer/EZlenk\_Flyer.pdf/at\_download/file
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1628289
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1628289
http://www.w3.org/TR/ws-arch/wsa.pdf
http://www.w3.org/TR/ws-arch/wsa.pdf
http://dx.doi.org/10.1109/CTS.2008.4543917
http://dx.doi.org/10.1109/CTS.2008.4543917
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543917
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543917

28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

Bibliography

Antonio Brogi et al. “A service-oriented model for embedded peer-to-peer sys-
tems”. In: Electronic Notes in Theoretical Computer Science 194.4 (Apr. 2008),
pp- 5—22. 1SSN: 15710661. DOI: [10.1016/j . entcs.2008.03.096, URL: http :|
[//linkinghub.elsevier.com/retrieve/pii/S1571066108002016|

H Bubb. “Der Fahrprozess Informationsverarbeitung durch den Fahrer”. In:
Tagungsband Technischer Kongress 2002. 2002. URL: http://scholar.google .|
[com / scholar ? hl = en \ &btnG = Search \ &q = intitle : Der + Fahrprozess +
[Informationsverarbeitung+durch+den+Fahrer\#0|

Edmund Burke. Reflections on the Revolution in France. London: James Dodsley,
1790. URL: |http://www.gutenberg.org/ebooks/15679|

Valeria Cardellini et al. “Flow-Based Service Selection forWeb Service Compo-
sition Supporting Multiple QoS Classes”. In: IEEE International Conference on
Web Services (ICWS 2007). Icws. leee, July 2007, pp. 743-750. I1SBN: 0-7695-2924-
0. poI: [10.1109/ICWS.2007.91] URL: http://ieeexplore.ieee.org/lpdocs/|
[epic03/wrapper.htm?arnumber=4279667|

Marlene Caroselli. Leadership Skills for Managers. McGraw-Hill, 2000, p. 169.
ISBN: 0071364307. URL: |http://www . goodreads . com/book/show/ 1508582 .|
[Leadership\_Skills\_for\_Managers|

S. Cavalieri. “Meeting Real-Time Constraints in CAN”. In: IEEE Transactions
on Industrial Informatics 1.2 (May 2005), pp. 124-135. 1SsN: 1551-3203. DOI:
[10.1109/TII.2005.844429 URL: http://ieeexplore. ieee.org/lpdocs/|
[epic03/wrapper.htm?arnumber=1430655|

WC Chang and CS Wu. “Optimizing the Dynamic Composition of Web Service
Components”. In: Journal of Information Technology and Applications 2.4 (2008),

pp- 227-234. URL: http://140.126.5.184/jita\_web/publish/vol2\_num4/|
[OptimizingtheDynamicCompositionofWebsServiceComponents.pdt}

CiA. CANopen. Tech. rep. CiA. URL: http://www.can-cia.org/index.php?
CiA. DeviceNet. URL: http://www.can-cia.org/index.php?id=176|

Arthur C. Clarke. Profiles of the Future. 1st ed. SCIENTIFIC BOOK CLUB,
1962. 1sBN: BOO1GKPECC.

RI Davis et al. “Controller Area Network (CAN) schedulability analysis: Refuted,
revisited and revised”. In: Real-Time Systems 35.0 (2007), pp. 239-272. URL:
http://www.springerlink.com/index/8N32720737877071.pdf|

Steffen Dienst and Stefan Kiihne. Realisierung fachlicher Services auf Basis von
Android-Konzepten. Tech. rep. Leipzig: Leipzig University, 2011, pp. 1-6.

Marco Dorigo and Gianni Di Caro. “The ant colony optimization meta-heuristic”.
In: New Ideas in Optimization. Ed. by David Corne, Marco Dorigo, and Fred
Glover. New York: McGraw-Hill, 1999, p. 450. 1SBN: 0077095065. URL:
[//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.955|

M. Droschel and M. Wiemers. Das V-Modell 97: der Standard fiir die Entwicklung
von IT-Systemen mit Anleitung fir den Praziseinsatz. Miinchen: Oldenburg Wis-
senschaftsverlag, 2000, p. 710. 1SBN: 3486250868. URL: http://books.google .|
[de/books/about/Das\_V\_Modell\_97.html7id=1cHvAAAACAAJ\&pgis=1|

Surekha Durvasula et al. “SOA Practitioners’ Guide, Part 2, SOA Refer-
ence Architecture”. In: Combined Effort (2006), pp. 1-52. URL:
[scholar . google . com/scholar 7hl =en \ &btnG=Search \ &gq=intitle : SOA +
[Practitioners+7+Guide+Part+2+S0A+Reference+Architecture\#0|

171


http://dx.doi.org/10.1016/j.entcs.2008.03.096
http://linkinghub.elsevier.com/retrieve/pii/S1571066108002016
http://linkinghub.elsevier.com/retrieve/pii/S1571066108002016
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Der+Fahrprozess+Informationsverarbeitung+durch+den+Fahrer\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Der+Fahrprozess+Informationsverarbeitung+durch+den+Fahrer\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Der+Fahrprozess+Informationsverarbeitung+durch+den+Fahrer\#0
http://www.gutenberg.org/ebooks/15679
http://dx.doi.org/10.1109/ICWS.2007.91
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279667
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279667
http://www.goodreads.com/book/show/1508582.Leadership\_Skills\_for\_Managers
http://www.goodreads.com/book/show/1508582.Leadership\_Skills\_for\_Managers
http://dx.doi.org/10.1109/TII.2005.844429
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1430655
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1430655
http://140.126.5.184/jita\_web/publish/vol2\_num4/Optimizing the Dynamic Composition of Web Service Components.pdf
http://140.126.5.184/jita\_web/publish/vol2\_num4/Optimizing the Dynamic Composition of Web Service Components.pdf
http://www.can-cia.org/index.php?id=canopen
http://www.can-cia.org/index.php?id=canopen
http://www.can-cia.org/index.php?id=176
http://www.springerlink.com/index/8N32720737877071.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.955
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.955
http://books.google.de/books/about/Das\_V\_Modell\_97.html?id=lcHvAAAACAAJ\&pgis=1
http://books.google.de/books/about/Das\_V\_Modell\_97.html?id=lcHvAAAACAAJ\&pgis=1
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:SOA+Practitioners+?+Guide+Part+2+SOA+Reference+Architecture\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:SOA+Practitioners+?+Guide+Part+2+SOA+Reference+Architecture\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:SOA+Practitioners+?+Guide+Part+2+SOA+Reference+Architecture\#0

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Bibliography

Edsger W. Dijkstra. “The Humble Programmer - ACM Turing Award Lecture”.

In: Communications of the ACM 15.10 (1972), pp. 895-866. URL:
[cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html}

Michael Eichhorn, Martin Pfannenstein, and Eckehard Steinbach. “A flexible in-
vehicle HMI architecture based on web technologies”. In: Proceedings of the 2nd
international workshop on Multimodal interfaces for automotive applications -
MIAA 2010 (2010), pp. 9-12. DoI: [10 . 1145/ 2002368 . 2002374l URL: [http :|
[//portal.acm.org/citation.cfm?doid=2002368.2002374]

Michael Eichhorn et al. “A SOA-based middleware concept for in-vehicle service
discovery and device integration”. In: 2010 IEEE Intelligent Vehicles Symposium.
Teee, June 2010, pp. 663-669. 1SBN: 978-1-4244-7866-8. DOI: [10.1109/IVS.2010.|
5547977 URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?|
arnumber=55479/71|

Brian Elvesze ter and Cyril Carrez. “Model-driven Service Engineering with

SoaML”. In: Service Engineering 25 (2011), pp. 25-54. URL: http: //books .|

[google. com/books?hl=en\&lr=\&id=piuG4bzu9doC\&oi=fnd\&pg=PA25\&dq=|

[Model-driven+Service+Engineering+with+SoaML\&ots=Dc7bz5capG\&sig=|
16XoclJtt ] mKyrlqq:

Vina Ermagan et al. “Towards tool support for service-oriented development of
embedded automotive systems”. In: Tagungsband Dagstuhl-Workshop MBEES :
Modellbasierte Entwicklung eingebetteter Systeme I11. 2007, pp. 1-23.

JA Estefan et al. Reference Architecture Foundation for Service Oriented Archi-
tecture. 2009. URL: http://scholar . google . com/scholar 7hl=en \&btnG=|
[Search\&q=intitle : Reference+Architecture+Foundation+for+Service+

[Oriented+Architecture\#2|

Claudiu Farcas et al. “Addressing the Integration Challenge for Avionics and
Automotive Systems-From Components to Rich Services”. In: Proceedings of the
IEEE 98.4 (2010), pp. 562-583. URL: http://ieeexplore . ieee . org/xpl/|
[Login. jsp?tp=\&arnumber=5433050 \&url=http\%3A\/%2F\/%2Fieeexplore .|
[ieee.org\/42Fxpls\/2Fabs\_all. jsp\/43Farnumber\/3D5433050]

P. Finger and K. Zeppenfeld. SOA und WebServices. Ed. by O. Giinther et al.
Heidelberg: Springer Berlin Heidelberg, 2009, p. 128. 1SBN: 978-3-540-76990-3.

Howard Foster et al. “A model-driven approach to dynamic and adaptive ser-
vice brokering using modes”. In: Lecture Notes in Computer Science 5364 (2008),
pp- 558-564. URL: [http://www.springerlink.com/index/ué42977p04750840r .|

5

Viktor Friesen. Dynamically Self-Configuring Automotive Systems - Scenario and
System Requirements. Tech. rep. DySCAS PMC, 2007, p. 134.

J Gacnik and O Haeger. “Service-oriented architecture for future driver assis-
tance systems”. In: FISITA World Congress 2008. 2008. URL: fhttp : en .
[scientificcommons.org/34613146|

Yan Gao et al. “Optimal Web Services Selection Using Dynamic Programming”.
In: 11th IEEE Symposium on Computers and Communications (ISCC’06). Teee,
2006, pp. 365-370. 1SBN: 0-7695-2588-1. DOI: [10.1109/ISCC. 2006 . 116| URL:
[http://ieeexplore . ieee . org/lpdocs/epic03/wrapper . htm? arnumber =|

H Garcia-Molina. “Elections in a Distributed Computing System”. In: IEFFE
Transactions on Computers C-31.1 (Jan. 1982), pp. 48-59. 1sSN: 0018-9340. DOI:
[10.1109/TC.1982. 1675885 URL: http://ieeexplore. ieee.org/lpdocs/|
lepic03/wrapper.htm?arnumber=1675885|

172


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html
http://dx.doi.org/10.1145/2002368.2002374
http://portal.acm.org/citation.cfm?doid=2002368.2002374
http://portal.acm.org/citation.cfm?doid=2002368.2002374
http://dx.doi.org/10.1109/IVS.2010.5547977
http://dx.doi.org/10.1109/IVS.2010.5547977
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5547977
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5547977
http://books.google.com/books?hl=en\&lr=\&id=piuG4bzu9doC\&oi=fnd\&pg=PA25\&dq=Model-driven+Service+Engineering+with+SoaML\&ots=Dc7bz5capG\&sig=IAi6XocTJttE6MjkXBQmKyr1qqE
http://books.google.com/books?hl=en\&lr=\&id=piuG4bzu9doC\&oi=fnd\&pg=PA25\&dq=Model-driven+Service+Engineering+with+SoaML\&ots=Dc7bz5capG\&sig=IAi6XocTJttE6MjkXBQmKyr1qqE
http://books.google.com/books?hl=en\&lr=\&id=piuG4bzu9doC\&oi=fnd\&pg=PA25\&dq=Model-driven+Service+Engineering+with+SoaML\&ots=Dc7bz5capG\&sig=IAi6XocTJttE6MjkXBQmKyr1qqE
http://books.google.com/books?hl=en\&lr=\&id=piuG4bzu9doC\&oi=fnd\&pg=PA25\&dq=Model-driven+Service+Engineering+with+SoaML\&ots=Dc7bz5capG\&sig=IAi6XocTJttE6MjkXBQmKyr1qqE
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reference+Architecture+Foundation+for+Service+Oriented+Architecture\#2
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reference+Architecture+Foundation+for+Service+Oriented+Architecture\#2
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reference+Architecture+Foundation+for+Service+Oriented+Architecture\#2
http://ieeexplore.ieee.org/xpl/login.jsp?tp=\&arnumber=5433050\&url=http\%3A\%2F\%2Fieeexplore.ieee.org\%2Fxpls\%2Fabs\_all.jsp\%3Farnumber\%3D5433050
http://ieeexplore.ieee.org/xpl/login.jsp?tp=\&arnumber=5433050\&url=http\%3A\%2F\%2Fieeexplore.ieee.org\%2Fxpls\%2Fabs\_all.jsp\%3Farnumber\%3D5433050
http://ieeexplore.ieee.org/xpl/login.jsp?tp=\&arnumber=5433050\&url=http\%3A\%2F\%2Fieeexplore.ieee.org\%2Fxpls\%2Fabs\_all.jsp\%3Farnumber\%3D5433050
http://www.springerlink.com/index/u42977p04750840r.pdf
http://www.springerlink.com/index/u42977p04750840r.pdf
http://en.scientificcommons.org/34613146
http://en.scientificcommons.org/34613146
http://dx.doi.org/10.1109/ISCC.2006.116
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691056
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691056
http://dx.doi.org/10.1109/TC.1982.1675885
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675885
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675885

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

Bibliography

M. Garcia Valls and P. Basanta Val. “A real-time perspective of service com-
position: Key concepts and some contributions”. In: Journal of Systems Archi-
tecture 59.10 (Nov. 2013), pp. 1414-1423. 1sSN: 13837621. DOIL:
[sysarc.2013.06.008. URL: http://linkinghub.elsevier.com/retrieve/|

fpii/S1383762113001239]

M Garcia-Valls, I Rodriguez-Lopez, and L Fernandez-Villar. “iLAND An En-
hanced Middleware for Real-Time Reconfiguration of Service Oriented Dis-
tributed Real-Time Systems”. In: IEEE Transactions on Industrial Informatics
9.1 (2013), pp. 228-236. URL: http://ieeexplore.ieee.org/xpls/abs\_all.|
[Jsp?arnumber=6198329|

Michael Gebhart et al. “SoaML-basierter Entwurf eines dienstorientierten
Uberwachungssystems”. In: 0. Jahrestagung der Gesellschaft fiir Infor-
matik 1 (2010). URL: |http : / / www . researchgate . net / publication /|
[221386038 \ _SoaML - basierter \ _Entwurf \ _eines \ _dienstorientierten \|
[(berwachungssystems/file/79e41503f3b08e096f . pdf]

Holger Giese et al. Modular design and verification of component-based mecha-
tronic systems with online-reconfiguration. 2004. DOI: [10 . 1145 / 1041685 .|
11029920

Google. Google Maps JavaScript API v3: FElevation Service. 2014. URL:
[//developers.google.com/maps/documentation/javascript/elevation|

Michael Goétz and Fabian Keicher. “Konzeption und Konstruktion von Winkelsen-
sorik fiir die Vermessung von Zweiachs-Drehschemel-Anhéngern”. Student Re-
search Project. Heilbronn University, 2013, p. 33.

Jeff Gray et al. “DSLs: the good, the bad, and the ugly”. In: Companion to the 23rd
ACM SIGPLAN conference on Object oriented programming systems languages
and applications - OOPSLA Companion ’08. New York, New York, USA: ACM
Press, Oct. 2008, p. 791. 1SBN: 9781605582207. DoTI: [10. 1145/1449814 . 1449863,
URL: http://dl.acm.org/citation.cfm?id=1449814.1449863|

Georg Grossmann, Michael Schrefl, and Markus Stumptner. “Model-driven frame-
work for runtime adaptation of web service compositions”. In: Proceeding of
the 6th international symposium on Software engineering for adaptive and self-
managing systems - SEAMS ’11 (2011), p. 184. DOI:{10.1145/1988008. 1988034
URL: http://portal.acm.org/citation.cfm?doid=1988008.1988034]

Hugo Haas and Allen Brown. Web Services Glossary, W3C Working Group Note
11 February 2004. 2004. URL: http://www.w3.org/TR/2004/NOTE-ws-gloss-|

Stefan Hack and Markus Lindemann. Enterprise SOA roadmap. Bonn: Galileo

Press, 2008. URL: http://www.galileo-press.de/download/dateien/1436/|
[sappress\_enterprise\_soa\_roadmap.pdf}

Handelsblatt. Lebensdauer eines Autos steigt kaum noch. Feb. 2008. URL:
[/ /www.handelsblatt.com/auto/nachrichten/lebensdauer -eines-autos -|
[steigt-kaum-noch/2918710.html|

Steven Helmis. “Datenqualitit”. In: Webbasierte Datenintegration. 2009, pp. 7-23.
ISBN: 978-3-8348-9280-5.

Hermann Hesse. Steps. 1941. URL: http://mindmastery.wordpress.com/2007/|
[02/17 /hermann-hesse-steps-stufen/|

David Hollingsworth. The Workflow Reference Model. Winchester, 1995.

173


http://dx.doi.org/10.1016/j.sysarc.2013.06.008
http://dx.doi.org/10.1016/j.sysarc.2013.06.008
http://linkinghub.elsevier.com/retrieve/pii/S1383762113001239
http://linkinghub.elsevier.com/retrieve/pii/S1383762113001239
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=6198329
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=6198329
http://www.researchgate.net/publication/221386038\_SoaML-basierter\_Entwurf\_eines\_dienstorientierten\_berwachungssystems/file/79e41503f3b08e096f.pdf
http://www.researchgate.net/publication/221386038\_SoaML-basierter\_Entwurf\_eines\_dienstorientierten\_berwachungssystems/file/79e41503f3b08e096f.pdf
http://www.researchgate.net/publication/221386038\_SoaML-basierter\_Entwurf\_eines\_dienstorientierten\_berwachungssystems/file/79e41503f3b08e096f.pdf
http://dx.doi.org/10.1145/1041685.1029920
http://dx.doi.org/10.1145/1041685.1029920
https://developers.google.com/maps/documentation/javascript/elevation
https://developers.google.com/maps/documentation/javascript/elevation
http://dx.doi.org/10.1145/1449814.1449863
http://dl.acm.org/citation.cfm?id=1449814.1449863
http://dx.doi.org/10.1145/1988008.1988034
http://portal.acm.org/citation.cfm?doid=1988008.1988034
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.galileo-press.de/download/dateien/1436/sappress\_enterprise\_soa\_roadmap.pdf
http://www.galileo-press.de/download/dateien/1436/sappress\_enterprise\_soa\_roadmap.pdf
http://www.handelsblatt.com/auto/nachrichten/lebensdauer-eines-autos-steigt-kaum-noch/2918710.html
http://www.handelsblatt.com/auto/nachrichten/lebensdauer-eines-autos-steigt-kaum-noch/2918710.html
http://www.handelsblatt.com/auto/nachrichten/lebensdauer-eines-autos-steigt-kaum-noch/2918710.html
http://mindmastery.wordpress.com/2007/02/17/hermann-hesse-steps-stufen/
http://mindmastery.wordpress.com/2007/02/17/hermann-hesse-steps-stufen/

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Bibliography

Zhenqgiu Huang et al. “Effective Pruning Algorithm for QoS-Aware Service Com-
position”. In: 2009 IEEE Conference on Commerce and Enterprise Computing.
i. Ieee, July 2009, pp. 519-522. 1sBN: 978-0-7695-3755-9. DOI: [10 . 1109 /CEC .|
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper . htm?|
[arnumber=5210745

International Organization for Standardization. ISO 15765-2:2011 Road vehicles
- Diagnostic communication over Controller Area Network (DoCAN) - Part 2:
Transport protocol and network layer services. 2011. URL: http://www.iso.org/|
[iso/catalogue\_detail.htm?csnumber=46045|

Akihito Iwai and Mikio Aoyama. “Automotive Cloud Service Systems Based on
Service-Oriented Architecture and Its Evaluation”. In: 2011 IEEFE jth Interna-
tional Conference on Cloud Computing (July 2011), pp. 638-645. DOI:
[CLOUD . 2011 . 119] URL: lhttp : //ieeexplore . ieee . org/ lpdocs /epic03/]
[wrapper.htm?7arnumber=6003765|

Isabell Jahnich, Ina Podolski, and Achim Rettberg. “Towards a Middleware Ap-
proach for a Self-configurable Automotive Embedded System”. In: Lectue Notes
in Computer Science 5287 (2008), pp. 55-65.

Nicolai Josuttis. SOA in Practice: The Art of Distributed System Design. 1st ed.
O’Reily Media, 2007, p. 342. 1sBN: 978-0596529550.

JY Jung, BD Adelstein, and SR Ellis. “Discriminability of prediction artifacts
in a time-delayed virtual environment”. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting 44.5 (2000), pp. 499-502. URL: http:
[//pro.sagepub.com/content/44/5/499.short|

Jorg Kaiser, Cristiano Brudna, and Carlos Mitidieri. “COSMIC: A real-time
event-based middleware for the CAN-bus”. In: Journal of Systems and Software
77.1 (July 2005), pp. 27-36. 1SSN: 01641212. por: [10.1016/3 . jss.2003.12. 037}
URL: http://linkinghub.elsevier.com/retrieve/pii/S0164121204001347]

K Kim, G Geon, and Seongsoo Hong. “Resource-conscious customization of
CORBA for CAN-based distributed embedded systems”. In: Proceedings Third
IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2000) (Cat. No. PR00607) (2000), pp. 34-41. DOI:

[TSORC. 2000 . 839509] URL: [http://ieeexplore . ieee . org/1pdocs/epic03/
[wrapper .htm?7arnumber=839509|

Xenofon Koutsoukos et al. “OASIS : A Service-Oriented Architecture for Ambient-
Aware Sensor Networks”. In: Lectue Notes in Computer Science 4888 (2007),
pp. 125-149.

H Kreger. “Web services conceptual architecture (WSCA 1.0)”. In: IBM Software
Group May (2001). URL: http://www.csd.uoc.gr/ hy565/newpage/docs /|
[pdfs/papers/wsca.pdfl

Kim LEMON. “Introduction to the Universal Measurement and Calibration Pro-
tocol XCP”. eng. In: SAF transactions 112.7 (2003), pp. 482-488. 1SsN: 0096-736X.
URL: http://cat.inist.fr/7aModele=afficheN\&cpsidt=16125195|

Stefan Lankes, Andreas Jabs, and T Bernmerl. “Integration of a CAN-based
connection-oriented communication model into Real-Time CORBA”. In: Inter-
national Parallel and Distrubuted Processing Symposium. Vol. 00. C. 2003. 1SBN:
0769519261. URL: http : // ieeexplore . ieee . org/ xpls/abs \ _all. jsp 7|
[arnumber=121323091

174


http://dx.doi.org/10.1109/CEC.2009.41
http://dx.doi.org/10.1109/CEC.2009.41
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5210745
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5210745
http://www.iso.org/iso/catalogue\_detail.htm?csnumber=46045
http://www.iso.org/iso/catalogue\_detail.htm?csnumber=46045
http://dx.doi.org/10.1109/CLOUD.2011.119
http://dx.doi.org/10.1109/CLOUD.2011.119
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6008765
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6008765
http://pro.sagepub.com/content/44/5/499.short
http://pro.sagepub.com/content/44/5/499.short
http://dx.doi.org/10.1016/j.jss.2003.12.037
http://linkinghub.elsevier.com/retrieve/pii/S0164121204001347
http://dx.doi.org/10.1109/ISORC.2000.839509
http://dx.doi.org/10.1109/ISORC.2000.839509
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=839509
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=839509
http://www.csd.uoc.gr/~hy565/newpage/docs/pdfs/papers/wsca.pdf
http://www.csd.uoc.gr/~hy565/newpage/docs/pdfs/papers/wsca.pdf
http://cat.inist.fr/?aModele=afficheN\&cpsidt=16125195
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1213239
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1213239

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

Bibliography

Yang Li et al. “QoS-aware Service Composition in Service Overlay Networks”.
In: IEEE International Conference on Web Services (ICWS 2007). Icws. leee,
July 2007, pp. 703-710. 1SBN: 0-7695-2924-0. poI: [10. 1109 /ICWS . 2007 . 148|
URL: |http://ieeexplore.ieee.org/lpdocs/epic03/wrapper . htm?arnumber=|
4279662

Ying Li et al. “QoS-Driven Dynamic Reconfiguration of the SOA Based Soft-
ware”. In: 2010 International Conference on Service Sciences. leee, 2010, pp. 99—
104. 1SBN: 978-1-4244-6603-0. por: [10. 1109/1ICSS. 2010 . 58 URL:
|[ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5494320}

Jin Liang and Klara Nahrstedt. “Service Composition for Advanced Multimedia
Applications”. In: ACM Multimedia Computing and Networking (MMCN’05). Ed.
by Surendar Chandra and Nalini Venkatasubramanian. Vol. 1. ¢. San Jose, CA,
Jan. 2005, pp. 228-240. DOI1: |10.1117/12.592307, URL: http://proceedings.|
[spiedigitallibrary.org/proceeding.aspx?articleid=858192]

S Liu et al. “A dynamic web service selection strategy with QoS global optimiza-
tion based on multi-objective genetic algorithm”. In: Lectue Notes in Computer
Science 3795 (2005), pp. 84-89. URL: http://www.springerlink.com/index/|

[Y670055622245Q6U . pdf}
Juan Lopez et al. “A Middleware Architecture for Unmanned Aircraft Avion-

ics”. In: Proceedings of the 2007 ACM/IFIP/USENIX international conference
on Middleware companion. 2007, p. 24. 1ISBN: 9781595939357.

Jochen Ludewig. “Models in software engineering - an introduction”. In: Software
and Systems Modeling 2.1 (Mar. 2003), pp. 5-14. 1sSN: 1619-1366. DOI:
[s10270-003-0020-3| URL: lhttp://dblp.uni-trier.de/db/journals/sosym/|
[sosym2.html\#Ludewig03|

C. M. MacKenzie et al. Reference Model for Service Oriented. Tech. rep. October.
OASIS, 2006, p. 31.

Salvatore T. March and Gerald F. Smith. “Design and natural science research on
information technology”. In: Decision Support Systems 15.4 (Dec. 1995), pp. 251—
266. 1ssN: 01679236. por: [10. 1016 /0167 - 9236(94) 00041 - 2| URL:
[Linkinghub.elsevier.com/retrieve/pii/0167923694000412]

H Martorell et al. “Towards Dynamic Updates In AUTOSAR”. In: SAFECOMP
2013 - Workshop CARS (2nd Workshop on Critical Automotive applications :
Robustness & Safety). Toulouse, 2013. URL: http://hal.archives-ouvertes.|
[fr/hal-00848361/]

Christoph Mathas. “Der Service-Lebenszyklus”. In: SOA intern. 1st ed. Carl
Hanser Verlag, 2007. Chap. 3.8, p. 292. 1SBN: 3446411895.

P Mayer, A Schroeder, and N Koch. “MDD4SOA: Model-Driven Service Orches-
tration”. In: Enterprise Distributed Object Computing Conference 2008 EDOC
08 12th International IEEE. Ieee, 2008, pp. 203-212. 1SBN: 9780769533735. DOI:
(10.1109/EDOC. 2008 .55 URL: http://portal.acm.org/citation.cfm?id=|
1437901 . 1438849

Philip Mayer, Andreas Schroeder, and Nora Koch. “A Model-Driven Approach
to Service Orchestration”. In: 2008 IEEE International Conference on Services
Computing. Teee, July 2008, pp. 533-536. ISBN: 978-0-7695-3283-7. DOTI:
SCC.2008.91| URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper .|
lhtm7arnumber=4578572

Willis E. McNelly. Interview with Frank and Beverly Herbert. Fullerton, CA, 1969.
URL: http://www.sinanvural.com/seksek/inien/tvd/tvd2.html

175


http://dx.doi.org/10.1109/ICWS.2007.148
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279662
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4279662
http://dx.doi.org/10.1109/ICSS.2010.58
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5494320
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5494320
http://dx.doi.org/10.1117/12.592307
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858192
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858192
http://www.springerlink.com/index/Y67U055622245Q6U.pdf
http://www.springerlink.com/index/Y67U055622245Q6U.pdf
http://dx.doi.org/10.1007/s10270-003-0020-3
http://dx.doi.org/10.1007/s10270-003-0020-3
http://dblp.uni-trier.de/db/journals/sosym/sosym2.html\#Ludewig03
http://dblp.uni-trier.de/db/journals/sosym/sosym2.html\#Ludewig03
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://linkinghub.elsevier.com/retrieve/pii/0167923694000412
http://linkinghub.elsevier.com/retrieve/pii/0167923694000412
http://hal.archives-ouvertes.fr/hal-00848361/
http://hal.archives-ouvertes.fr/hal-00848361/
http://dx.doi.org/10.1109/EDOC.2008.55
http://portal.acm.org/citation.cfm?id=1437901.1438849
http://portal.acm.org/citation.cfm?id=1437901.1438849
http://dx.doi.org/10.1109/SCC.2008.91
http://dx.doi.org/10.1109/SCC.2008.91
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4578572
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4578572
http://www.sinanvural.com/seksek/inien/tvd/tvd2.htm

[95]

[96]

97]

98]

[99]

[100]
[101]

[102]

103]

[104]

[105]
[106]

[107]

[108]

[109]

Bibliography

Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to de-
velop domain-specific languages”. In: ACM Computing Surveys 37.4 (Dec. 2005),
pp- 316-344. 18SN: 03600300. DOI: (10.1145/1118890.1118892| URL: http://dl.|
[acm.org/citation.cfm?id=1118890.1118892,

Microsoft. System Requirements for Windows Server 2012 R2 Essentials. 2013.
URL: http://technet.microsoft.com/de-de/library/dn383626.aspx|

Megha Mohabey et al. “A Combinatorial Procurement Auction for QoS-Aware
Web Services Composition”. In: 2007 IEEE International Conference on Automa-
tion Science and Engineering. leee, Sept. 2007, pp. 716-721. 1SBN: 978-1-4244-
1153-5. DOI: [10.1109/COASE. 2007 .4341711] URL: http://ieeexplore. ieee.|
[org/1pdocs/epic03/wrapper.htm?arnumber=4341711|

E.G. Nadhan. “Seven Steps to a Service-oriented Evolution”. In: Business Inte-
gration Journal 1 (2004), pp. 41-44.

ODVA. DeviceNet - Technical Overview. Tech. rep. The Open DeviceNet Vendor
Association (ODVA), 2004, pp. 1-8. URL: http://onlinelibrary.wiley. com/|
[doi/10.1002/9781118445983. ch2/summary}

OMG. OMG Unified Modeling Language 2.4.1 - Superstructure specification. 2011.

OMG. Service oriented architecture Modeling Language ( SoaML ) - Specification
for the UML Profile and Metamodel for Services. Needham, MA, 2009.

OMG. Service oriented architecture Modeling Language (SoaML) Specification
v.1.0.1. 2012.

Mark Panahi, Weiran Nie, and Kwei-Jay Lin. “The Design of Middleware
Support for Real-Time SOA”. In: 2011 14th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing (Mar.
2011), pp. 117-124. por: [10.1109/ISORC.2011.24] URL: http://ieeexplore.|
|[ieee.org/lpdocs/epic03/wrapper .htm?arnumber=5753599|

Michael P. Papazoglou and Willem-Jan Van Den Heuvel. “Service-oriented design
and development methodology”. In: International Journal of Web Engineering
and Technology 2.4 (2006), p. 412. 1SSN: 1476-1289. DOLI: [10.1504/IJWET. 2006 .|
[010423] URL: fhttp://www.inderscience.com/link.php7id=10423|

Dirk Pingel. “Der SOA Entwicklungsprozess”. In: SOA FExpertenwissen. Ed. by
G. Starke and S. Tilkov. 2007, pp. 187,200.

Klaus Pohl et al., eds. Model-Based Engineering of Embedded Systems. Springer
Berlin Heidelberg, 2012, p. 229. 1SBN: 9783642346132.

Fang Qiqing et al. “A Global QoS Optimizing Web Services Selection Algorithm
Based on MOACO for Dynamic Web Service Composition”. In: 2009 International
Forum on Information Technology and Applications. leee, May 2009, pp. 37—
42. 18BN: 978-0-7695-3600-2. por: [10. 1109 /IFITA . 2009 . 91] URL:
[ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5231511|

S Veera Ragavan et al. “Services Integration Framework for Vehicle Telematics”.
In: Third international conference on Intelligent robotics and applications. 2010,
pp. 636-648.

Toni Reichelt et al. “IP Based Transport Abstraction for Middleware Technolo-
gies”. In: International Conference on Networking and Services (ICNS ’07). leee,
June 2007, pp. 39-39. 1sBN: 978-0-7695-2858-9. DOI: [10.1109/ICNS . 2007 . 76|
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper . htm?arnumber=|
44383288

176


http://dx.doi.org/10.1145/1118890.1118892
http://dl.acm.org/citation.cfm?id=1118890.1118892
http://dl.acm.org/citation.cfm?id=1118890.1118892
http://technet.microsoft.com/de-de/library/dn383626.aspx
http://dx.doi.org/10.1109/COASE.2007.4341711
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4341711
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4341711
http://onlinelibrary.wiley.com/doi/10.1002/9781118445983.ch2/summary
http://onlinelibrary.wiley.com/doi/10.1002/9781118445983.ch2/summary
http://dx.doi.org/10.1109/ISORC.2011.24
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5753599
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5753599
http://dx.doi.org/10.1504/IJWET.2006.010423
http://dx.doi.org/10.1504/IJWET.2006.010423
http://www.inderscience.com/link.php?id=10423
http://dx.doi.org/10.1109/IFITA.2009.91
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5231511
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5231511
http://dx.doi.org/10.1109/ICNS.2007.76
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4438288
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4438288

[110]

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

119]

[120]

[121]

[122]

[123]

[124]

Bibliography

H. Renkewitz and J. Conradi. “On the effects of tracking errors and latency for
Augmented Reality interaction”. In: Virtuelle und Erweiterte Realitdt, 2. Work-
shop der GI-Fachgruppe VR/AR. Ed. by T. Kuhlen, L. Kobbelt, and S. Miiller.
Aachen: Shaker Verlag, 2005, pp. 95-106.

D. Rocco et al. “Domain-specific Web service discovery with service class descrip-
tions”. In: IEEE International Conference on Web Services (ICWS’05). Teee, 2005.

ISBN: 0-7695-2409-5. DOT: [10.1109/ICWS.2005.49 URL: http://ieeexplore.|
|[ieee.org/lpdocs/epic03/wrapper.htm?arnumber=15630838|

M Rockl. “Integration of Car-2-Car communication as a virtual sensor in auto-
motive sensor fusion for advanced driver assistance systems”. In: FISITA 2008.
1. 2008. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.|
[1.140.5067

Pablo Rossi and Zahir Tari. “Software Metrics for the Efficient Execution of Mo-
bile Services”. In: Emerging Web Services Technology. Ed. by Cesare Pautasso
and Christoph Bussler. Birkh&user Basel, 2007, pp. 135-152.

Winston Royce. “Managing the Development of Large Software Systems”. In:
IEEE WESCON. 1970.

Antoine de Saint-Exupéry. “L’Avion”. In: Terre des Hommes. 1939. Chap. III.

Hans-Werner Schaal. “Ethernet und IP im Kraftfahrzeug”. In: FElektronik Au-
tomotive 4 (2012), pp. 38-41. URL: http : / / www . vector . com / portal /|
medien/cmc/press/PON/Ethernet \ _IP\_ElektronikAutomotive \ _201204\|
[_PressArticle\_DE.pdf}|

Jorg Schéuffele and Thomas Zurawka. Automotive Software Engineering. 5th.
Heidelberg: Springer Vieweg, 2013. ISBN: 9783834824691.

August-Wilhelm Scheer. “ARIS House of Business Engineering - Konzept zur
Beschreibung und Ausfithrung von Referenzmodellen”. In: Entwicklungsstand und
Entwicklungsperspektiven der Referenzmodellierung. Ed. by Jorg Becker, Michael
Rosemann, and Reinhard Schiitte. 52. Miinster: Institut fiir Wirtschaftsinformatik
der Westfilischen Wilhelms-Universitat Miinster, 1997. Chap. 1, pp. 3-15.

Roland Schmelzer. zapthink’s Service-Oriented Architecture Roadmap. 2005. URL:
lhttp://www.zapthink.com/2005/10/31/zapthinks - service - oriented -|
[architecture-roadmap/|

D.C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. en. In:
Computer 39.2 (Feb. 2006), pp. 25-31. 1ssN: 0018-9162. DO1: [10.1109/MC. 2006 .|
URL: http://www.computer.org/csdl/mags/co/2006/02/r2025. html}

Andreas Scholz et al. “eSOA - Service Oriented Architectures adapted for embed-
ded networks”. In: 2009 7th IEEE International Conference on Industrial Infor-
matics. 1. Teee, June 2009, pp. 599-605. ISBN: 978-1-4244-3759-7. DOI:

[INDIN.2009.5195871] URL: http://ieeexplore.ieee.org/lpdocs/epic03/
[wrapper.htm?7arnumber=5195871]

H Shokry and M Ali Babar. Dynamic software product line architectures using
service based computing for automotive systems. Tech. rep. 2008. URL:
[//ulir.ul.ie/handle/10344/1897|

Jan Sonnenberg. “A distributed in-vehicle service architecture using dynamically
created web Services”. In: IEEFE International Symposium on Consumer Elec-
tronics (ISCE 2010). leee, June 2010, pp. 1-5. ISBN: 978-1-4244-6671-9. DOIL:
[10.1109/ISCE.2010.5523715 URL: http://ieeexplore.ieee.org/lpdocs/|
l[epic03/wrapper.htm?arnumber=5523715|

David Sprott. Cloud-SOA Meta Model L1. 2011. URL: |ttp : / /|
|[davidsprottsblog.blogspot.de/2011/06/cloud-soa-meta-model-11.html|

177


http://dx.doi.org/10.1109/ICWS.2005.49
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530838
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530838
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.5067
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.5067
http://www.vector.com/portal/medien/cmc/press/PON/Ethernet\_IP\_ElektronikAutomotive\_201204\_PressArticle\_DE.pdf
http://www.vector.com/portal/medien/cmc/press/PON/Ethernet\_IP\_ElektronikAutomotive\_201204\_PressArticle\_DE.pdf
http://www.vector.com/portal/medien/cmc/press/PON/Ethernet\_IP\_ElektronikAutomotive\_201204\_PressArticle\_DE.pdf
http://www.zapthink.com/2005/10/31/zapthinks-service-oriented-architecture-roadmap/
http://www.zapthink.com/2005/10/31/zapthinks-service-oriented-architecture-roadmap/
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/MC.2006.58
http://www.computer.org/csdl/mags/co/2006/02/r2025.html
http://dx.doi.org/10.1109/INDIN.2009.5195871
http://dx.doi.org/10.1109/INDIN.2009.5195871
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195871
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5195871
http://ulir.ul.ie/handle/10344/1897
http://ulir.ul.ie/handle/10344/1897
http://dx.doi.org/10.1109/ISCE.2010.5523715
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5523715
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5523715
http://davidsprottsblog.blogspot.de/2011/06/cloud-soa-meta-model-l1.html
http://davidsprottsblog.blogspot.de/2011/06/cloud-soa-meta-model-l1.html

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Bibliography

Thomas Stahl. Modellgetriebene Softwareentwicklung: Techniken, FEngineering,
Management. Dpunkt Verlag; Auflage: 1, 2005, p. 410. 1SBN: 3898643107. URL:
[http : / / www . amazon . com / Modellgetriebene - Softwareentwicklung -|
[Techniken-Engineering-Management/dp/3898643107|

Sebastian Stein and Konstantin Ivanov. Vorgehensmodell zur entwicklung von
geschdiftsservicen. Tech. rep. 2007. URL: http : / / sebstein . hpfsc . de /|
[publications/stein2007ie.pdf}

Anja Strunk. “QoS-Aware Service Composition: A Survey”. In: 2010 Fighth IEEE
European Conference on Web Services. 1. Ieee, Dec. 2010, pp. 67-74. ISBN: 978-
1-4244-9397-5. DOI: {10.1109/ECOWS.2010. 16| URL: http://ieeexplore.iecee.|
[org/1pdocs/epic03/wrapper.htm?arnumber=5693246|

Longji Tang, Jing Dong, and Tu Peng. “A Generic Model of Enterprise Service-
Oriented Architecture”. In: 2008 IEEE International Symposium on Service-
Oriented System Engineering (Dec. 2008), pp. 1-7. DOI:{10.1109/S0SE. 2008 . 37}
URL: |http://ieeexplore.ieee.org/lpdocs/epic03/wrapper . htm?arnumber=|

Fei Tao et al. “FC-PACO-RM: a parallel method for service composition optimal-
selection in cloud manufacturing system”. In: IEEE Transactions on Industrial
Informatics 9.4 (2013), pp. 2023 —2033. URL: |http://ieeexplore. ieee.org/|
[xpls/abs\_all. jsp7arnumber=6376181|

The AUTOSAR development partnership. AUTOSAR - The Worldwide Automo-
tive Standard for E/E Systems. Tech. rep. The AUTOSAR development partner-
ship, 2011, p. 4.

Oliver Thomas, Katrina Leyking, and Michael Scheid. “Serviceorientierte Vorge-
hensmodelle: Uberblick, Klassifikation und Vergleich”. In: Informatik-Spektrum
33.4 (Nov. 2009), pp. 363-379. 1SsN: 0170-6012. DOT: {10 . 1007 / s00287 - 009 -|
[0399-5| URL: http://www.springerlink.com/index/10.1007/s00287-009-]

[0399-8

Bruce Tognazzini. “Principles, Techniques, and Ethics of Stage Magic and Their
Application to Human Interface Design”. In: InterCHI ’93. 1993, pp. 355-362.
ISBN: 0-89791-575-5. DOI: [10.1145/169059. 169284

Wolfgang Trumler, Markus Helbig, and Andreas Pietzowski. “Self-configuration
and Self-healing in AUTOSAR?”. In: Proceedings of the 14th Asia Pacific Autom-
tive Engineering Conference. SAE International, Aug. 2007. DOI:[10.4271/2007-|
01-3507, URL: http://www.sae.org/technical/papers/2007-01-3507https:|
[/ /www . informatik . uni- augsburg . de/lehrstuehle/sik/publikationen/|
[papers/2007\_apac\_tru/2007\_apac\_tru.pdf]

Wei-Tek Tsai et al. “Service-oriented system engineering (SOSE) and its appli-
cations to embedded system development”. In: Service Oriented Computing and
Applications 1.1 (Mar. 2007), pp. 3-17. 1SSN: 1863-2386. DOI: [10.1007/s11761-|
[007-0003-2| URL: http://www.springerlink.com/index/10.1007/s11761-|

[007-0003-2]

VDE. Hightech-Autos stellen FElektronik-Branche vor neue Herausforderungen.
2007. URL: lhttp://www .vde .com/de/fg/ITG/ Aktuelles /Seiten /KFZ -|
[Positionspapier.aspx|

Vijay Vaishnavi and William Kuechler. Design research in information systems.
Boca Raton, FL: Auerbach Publications, 2004, p. 248. 1SBN: 978-1-4200-5932-8.

9

Dung Vi. “Middleware for Dynamically Self-Configuring Automotive Systems”.
PhD thesis. Jonképing University, 2006, p. 48.

178


http://www.amazon.com/Modellgetriebene-Softwareentwicklung-Techniken-Engineering-Management/dp/3898643107
http://www.amazon.com/Modellgetriebene-Softwareentwicklung-Techniken-Engineering-Management/dp/3898643107
http://sebstein.hpfsc.de/publications/stein2007ie.pdf
http://sebstein.hpfsc.de/publications/stein2007ie.pdf
http://dx.doi.org/10.1109/ECOWS.2010.16
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5693246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5693246
http://dx.doi.org/10.1109/SOSE.2008.37
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4730454
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4730454
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=6376181
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=6376181
http://dx.doi.org/10.1007/s00287-009-0399-5
http://dx.doi.org/10.1007/s00287-009-0399-5
http://www.springerlink.com/index/10.1007/s00287-009-0399-5
http://www.springerlink.com/index/10.1007/s00287-009-0399-5
http://dx.doi.org/10.1145/169059.169284
http://dx.doi.org/10.4271/2007-01-3507
http://dx.doi.org/10.4271/2007-01-3507
http://www.sae.org/technical/papers/2007-01-3507 https://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/papers/2007\_apac\_tru/2007\_apac\_tru.pdf
http://www.sae.org/technical/papers/2007-01-3507 https://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/papers/2007\_apac\_tru/2007\_apac\_tru.pdf
http://www.sae.org/technical/papers/2007-01-3507 https://www.informatik.uni-augsburg.de/lehrstuehle/sik/publikationen/papers/2007\_apac\_tru/2007\_apac\_tru.pdf
http://dx.doi.org/10.1007/s11761-007-0003-2
http://dx.doi.org/10.1007/s11761-007-0003-2
http://www.springerlink.com/index/10.1007/s11761-007-0003-2
http://www.springerlink.com/index/10.1007/s11761-007-0003-2
http://www.vde.com/de/fg/ITG/Aktuelles/Seiten/KFZ-Positionspapier.aspx
http://www.vde.com/de/fg/ITG/Aktuelles/Seiten/KFZ-Positionspapier.aspx

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

147]

[148]

[149]

[150]

Bibliography

Lars Volker. “SOME/IP - Die Middleware fiir Ethernet- basierte Kommunika-
tion”. In: HANSER automotive networks Special Issue 2013 (2013), pp. 17-19.
URL: http://www.hanser-automotive.de/uploads/media/FA\_BMW\_stemp.|

pdi]

Marco Wagner, Ansgar Meroth, and Dieter Zobel. “Developing self-adaptive auto-
motive systems”. In: Design Automation for Embedded Systems (Dec. 2013). ISSN:
0929-5585. DOI: [10.1007/810617-013-9124-3] URL: http://link.springer.|
[com/10.1007/s10617-013-9124-3|

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “A CAN-based Communication
Model for Service- Oriented Driver Assistance Systems”. In: Proc. of the IEEE
Vehicular Networking Conference (VNC) 2012. Seoul, Korea: IEEE, 2012.

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “Model-driven development of
SOA-based Driver Assistance Systems”. In: Proc. of the 4th Workshop on Adaptive
and Reconfigurable Embedded Systems (APRES ’12) in conjunction with the IEEE

/ ACM CPSWeek ’12. Beijing, China: IEEE, 2012, pp. 27-32. URL: http://cps.
kaist.ac.kr/apres2012/apresl12.pdfl

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “Model-driven development of
SOA-based Driver Assistance Systems”. In: SIGBED Review 10.1 (2013).

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “Re-configuration in SOA-
based adaptive Driver Assistance Systems”. In: in Proc. of the 6th Workshop on
Adaptive and Reconfigurable Embedded Systems (APRES ’1}) in conjunction with
the IEEE / ACM CPSWeek ’14. Berlin: IEEE Computer Society, 2014.

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “SODA: Service-oriented Ar-
chitecture for runtime adaptive Driver Assistance Systems”. In: Proceedings of the
17th IEEE Computer Society symposium (ISORC). Reno, NV: IEEE Computer
Society, 2014.

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “Towards an adaptive Software
and System Architecture for Driver Assistance Systems Introducing a new ap-
proach to address dynamically changing automotive software systems”. In: Proc.
of the 4th IEEE International Conference on Computer Science and Information
Technology (ICCSIT ’2011). figure 2. Chengdu, China: IEEE, 2011, pp. 174-178.

Marco Wagner, Dieter Zobel, and Ansgar Meroth. “Towards runtime adaptation
in AUTOSAR: adding Service-orientation to automotive software architecture”.
In: 9th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’2014). Barcelona: IEEE Computer Society, 2014.

Changlin Wan et al. “On Solving QoS-Aware Service Selection Problem with
Service Composition”. In: 2008 Seventh International Conference on Grid and
Cooperative Computing. leee, Oct. 2008, pp. 467-474. 1SBN: 978-0-7695-3449-7.
DOI: [10.1109/GCC . 2008 . 75, URL: http://ieeexplore.ieee.org/lpdocs/|
l[epic03/wrapper.htm?arnumber=4662903|

Mark Wilkins and Oracle. Oracle Reference Architecture. Tech. rep. September.
Oracle Corporation, 2010, p. 74. URL: http://www.oracle.com/technetwork/|
[topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf]

Matthias Wissmann. carIT, eine strategische Aufgabe in der Automobilindustrie.
Frankfurt, 2011. URL: http://www.youtube.com/watch?v=WtCpxIo0KBM

Minghui Wu et al. “QoS-driven Global Optimization Approach for Large-scale
Web Services Composition”. In: Journal of Computers 6.7 (July 2011), pp. 1452—
1460. 1ssN: 1796-203X. DOI: [10.4304/jcp.6.7.1452-1460| URL: http://0js.
[academypublisher.com/index.php/jcp/article/view/4879|

179


http://www.hanser-automotive.de/uploads/media/FA\_BMW\_stemp.pdf
http://www.hanser-automotive.de/uploads/media/FA\_BMW\_stemp.pdf
http://dx.doi.org/10.1007/s10617-013-9124-3
http://link.springer.com/10.1007/s10617-013-9124-3
http://link.springer.com/10.1007/s10617-013-9124-3
http://cps.kaist.ac.kr/apres2012/apres12.pdf
http://cps.kaist.ac.kr/apres2012/apres12.pdf
http://dx.doi.org/10.1109/GCC.2008.75
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4662903
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4662903
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf
http://www.oracle.com/technetwork/topics/entarch/oracle-ra-soa-foundation-r3-1-176715.pdf
http://www.youtube.com/watch?v=WtCpxIoOKBM
http://dx.doi.org/10.4304/jcp.6.7.1452-1460
http://ojs.academypublisher.com/index.php/jcp/article/view/4879
http://ojs.academypublisher.com/index.php/jcp/article/view/4879

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Bibliography

Yi Xu and Jun Yan. “A Cloud Based Information Integration Platform for Smart
Cars”. In: 2nd International Conference on Security-enriched Urban Computing
and Smart Grids. 2011, pp. 241-250.

Yadunandana Yellambalase and Min Choi. “Automatic Node Discovery in CAN
(Controller Area Network) Controllers using Reserved Identifier Bits”. In: 2007
IEEEFE Instrumentation & Measurement Technology Conference IMTC 2007 (May
2007), pp. 1-3. 1ssN: 1091-5281. Dor: [10. 1109/IMTC. 2007 . 379338 URL: [attp:|
[//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4258116|

Tao Yu, Yue Zhang, and Kwei-Jay Lin. “Efficient algorithms for Web services
selection with end-to-end QoS constraints”. In: ACM Transactions on the Web
1.1 (May 2007), 6-es. 1sSN: 15591131. DOI: [10.1145/1232722 . 1232728] URL:
lhttp://portal.acm.org/citation.cfm?doid=1232722.1232728|

Xin Yuan and Xingming Liu. “Heuristic algorithms for multi-constrained quality
of service routing”. In: Proceedings IEEE INFOCOM 2001. Conference on Com-
puter Communications. Twentieth Annual Joint Conference of the IEEE Com-
puter and Communications Society (Cat. No.01CH37213) 2 (2001), pp. 844-853.
DOI: [10. 1109 /INFCOM. 2001 .916275| URL: http://ieeexplore. ieee . org/|
[Lpdocs/epic03/wrapper.htm?arnumber=916275|

Alexander Zeeb. “Plug- And-Play-Lésung fiir AUTOSAR-Software-Komponenten”.
In: Kompendium ausgewdhlter Fachartikel zur Elektronik-Entwicklung in verteil-
ten Systemen. 4th Editio. Stuttgart: Vector Informatik GmbH, 2013, pp. 6/22—
6/26.

Marc Zeller et al. “Towards Runtime Adaptation in AUTOSAR?. In: 5th Workshop
on AdaPtive and Reconfigurable Embedded Systems (APRES 2013). Philadelphia,
2013, pp. 38-41.

Liangzhao Zeng and Boualem Benatallah. “QoS-aware middleware for web ser-
vices composition”. In: IEEE Transactions on Software Engineering 30.5 (2004),
pp- 311-327. URL: http://ieeexplore . ieee . org/xpls/abs\ _all . jsp 7|
larnumber=1291834]

Chun-Jie Zhou et al. “Self-organization of reconfigurable protocol stack for net-
worked control systems”. In: International Journal of Automation and Computing
8.2 (May 2011), pp. 221-235. 1SSN: 1476-8186. DOI:{10.1007/s11633-011-0577-|
URL: http://www.springerlink.com/index/10.1007/s11633-011-0577-1|

180


http://dx.doi.org/10.1109/IMTC.2007.379338
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4258116
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4258116
http://dx.doi.org/10.1145/1232722.1232728
http://portal.acm.org/citation.cfm?doid=1232722.1232728
http://dx.doi.org/10.1109/INFCOM.2001.916275
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=916275
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=916275
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1291834
http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=1291834
http://dx.doi.org/10.1007/s11633-011-0577-1
http://dx.doi.org/10.1007/s11633-011-0577-1
http://www.springerlink.com/index/10.1007/s11633-011-0577-1

	1 Introduction
	1.1 Software and System Architectures in state-of-the-art Driver Assistance Systems
	1.1.1 Today's Software and System Architecture for Driver Assistance Systems
	1.1.2 Automotive network systems
	1.1.3 AUTOSAR
	1.1.4 Coordination of development processes

	1.2 Attributes of Distributed Driver Assistance Systems (DDAS)
	1.3 Service-oriented Computing
	1.3.1 Areas of application

	1.4 Objectives and contributions of this work
	1.4.1 Main objectives
	1.4.2 Contributions to fulfill the objectives

	1.5 Research Methodology: Design Research

	2 State-of-the-art in Service-oriented Architectures for embedded systems
	2.1 Requirements on Service-oriented Architectures for DDAS
	2.2 Discussion of Service-oriented approaches in embedded systems
	2.3 Summary

	3 State-of-the-art in Model-driven development of SOA-based Systems
	3.1 Introduction
	3.2 Model-driven software development
	3.2.1 Benefits of model-driven software development
	3.2.2 Benefits of model-driven software development for DDAS

	3.3 Best practices in the development of Automotive Software Systems
	3.4 Model-driven process models for Service-oriented Architectures
	3.4.1 Requirements in the domain of DDAS
	3.4.2 State-of-the-art in model-driven development of SOA-based systems

	3.5 OMG's Service-oriented Architecture Modeling Language (SoaML)
	3.6 IBM's Service-oriented Modeling and Architecture
	3.7 Summary

	4 A Reference Model for SOA in the automotive domain
	4.1 Introduction
	4.2 The SODA reference model
	4.2.1 Terms and concepts of Service-oriented Computing
	4.2.2 Goals of introducing Service-orientation into DDAS
	4.2.3 Concepts of Service-orientation used within SODA
	4.2.4 A Reference Architecture for automotive SOA

	4.3 Quality Model
	4.3.1 The SODA Quality vector
	4.3.2 Propagation and calculation of the QoS parameter
	4.3.3 Calculation of the end-to-end QoS of an application

	4.4 Summary

	5 Model-driven development of SOA-based DDAS
	5.1 Introduction
	5.2 SODAdev: Model-based development of SODA-based DDAS
	5.2.1 Application Level Design
	5.2.2 Component Level Design

	5.3 Case Study
	5.4 Summary

	6 Adaptation through Re-Composition
	6.1 Introduction
	6.2 Events of re-configuration in DDAS for truck and trailer combinations
	6.3 Architecture-driven vs. Interface-driven adaptation
	6.4 Phases of the re-composition procedure
	6.5 Service Selection
	6.5.1 State-of-the-art in Service composition algorithms
	6.5.2 The Service composition algorithm in SODA

	6.6 Summary

	7 A Communication Model for SOA in the automotive domain
	7.1 Introduction
	7.2 Related Work
	7.3 Overview of the SODA Communication Model for SOA-based DDAS
	7.4 SOAcom: A development process for SODA Communication Models in automotive SOA-based systems
	7.4.1 Overview of the SOAcom process model
	7.4.2 Phase 1: Determining the requirements of the Communication Model set up by the application.
	7.4.3 Phase 2: Characterization of the network protocol
	7.4.3.1 Characteristic attributes of a network protocol
	7.4.3.2 A questionnaire to characterize a network protocol

	7.4.4 Phase 3: Mapping requirements to attributes
	7.4.4.1 Flowchart diagrams to guide the developer through the process
	7.4.4.2 Flowchart diagram example

	7.4.5 Phase 4: Implementing the components of the Communication Model

	7.5 The usage of SOAcom in a real world example
	7.5.1 Example application
	7.5.2 Applying the SOAcom process
	7.5.3 Design and implementation of the Communication Model
	7.5.3.1 Related work in high-level protocols on the Controller Area Network
	7.5.3.2 Addressing Scheme
	7.5.3.3 Ability to assign addresses dynamically
	7.5.3.4 Trigger condition

	7.5.4 Assessment of the running example

	7.6 Summary

	8 Integration of the SODA middleware into AUTOSAR
	8.1 Introduction
	8.1.1 The AUTomotive Open System ARchitecture
	8.1.2 AUTOSAR in runtime adaptive systems

	8.2 On the integration of the SODA framework into AUTOSAR
	8.2.1 Integration using the Complex Drivers
	8.2.2 Integration through replacing the XCP component
	8.2.3 Integration through transport protocol enhancements
	8.2.4 Comparison of the three approaches

	8.3 Summary

	9 Evaluation
	9.1 Example application description
	9.2 System description of the demonstrator
	9.3 Evaluation of the demonstrator
	9.3.1 Evaluation on the Service level
	9.3.2 Evaluation on the System level

	9.4 Summary

	10 Summary

