In der vorliegenden Arbeit wird das thermochemische Wechselwirkungsverhalten verschiedener Magnesiakohlenstoffmaterialen in Abhängigkeit verschiedener Einflussgrößen wissenschaftlich untersucht. Schwerpunkte der experimentellen Arbeiten bilden thermoanalytische Experimente, Gefügeuntersuchungen der Magnesiakohlenstoff-Proben sowie thermodyna-mische Berechnungen und Auswertungen durch CAT (Computer Aided Thermochemistry) mittels des Softwarepakets FactSage.
Erster Themenbereich dieser Arbeit ist die Untersuchung des Einflusses der in dem Rohstoff Magnesia enthaltenen mineralogischen Nebenphasen Merwinit (C3MS2), Monticellit (CMS) und Belit (C2S) auf den carbothermisch induzierten Verschleiß im MgO-C-Material. Für die Messreihen wurden die Nebenphasen eigens synthetisiert und hiermit MgO-C-Nebenphase-Modellwerkstoffe hergestellt. Die Nebenphase Monticellit ist unbeständig gegenüber der carbothermischen Reduktion. Monticellit wird im MgO-C-Gefüge durch Kohlenstoff reduziert und hieraus ergibt sich ein erhöhter Gewichtsverlust des Probenmaterials. Auch Merwinit wird bei T = 1600°C reduziert, der Gewichtsverlust wird dadurch allerdings nicht erhöht. Belit ist im MgO-C-Gefüge stabil gegenüber carbothermischer Reduktion.
Ein weiterer Schwerpunkt der Arbeit lag auf der Untersuchung des Einflusses des klassischen Antioxidans Aluminium auf die thermochemische Stabilität von MgO-C. Bei geringen Sauerstoffpartialdrücken ist die Reaktion des Aluminium-Metalls bzw. des bereits zu Al4C3 carbidisierten Aluminiums mit dem steineigenen Periklas unter Mg(g)-Bildung möglich, was einen erhöhten Gewichtsverlust zur Folge hat. Aber auch nach der Oxidation zu Al2O3 bzw. Spinell liegt Aluminium in signifikanten Mengen als Al(g) und Al2O(g) in der Gasphase vor und greift des Weiteren die Nebenphasen an, was ebenfalls zu einem messbaren Gewichtsverlust führt.
Dritter Arbeitsschwerpunkt war die Untersuchung des Einflusses des Umgebungsdruckes auf die carbothermische Reduktion von MgO. Die Ergebnisse zeigen, dass der Druck sich in zweierlei Hinsicht auf die carbothermische Reduktion von MgO auswirkt. Zum einen bewirkt ein sinkender Umgebungsdruck eine Beschleunigung der carbothermischen Reduktion durch die Verschiebung des thermodynamischen Gleichgewichts auf die Produktseite. Des Weiteren sorgt er für einen schnelleren Abtransport der Produktgase vom Reaktionsort und ver-hindert somit die Einstellung eines lokalen Gleichgewichts im Gefüge. Dritter Effekt ist die mit steigendem Druck verstärkt ablaufende Kohlenstoffoxidation durch Umgebungssauerstoff, da die Sauerstoffmenge in der Umgebung des MgO-C-Materials vom Umgebungsdruck bestimmt wird. Für die Geschwindigkeit des thermochemischen Verschleißes von Magnesiakohlenstoffmaterialien, der immer eine Kombination aus Kohlenstoffoxidation und carbothermischer Reduktion darstellt, bedeutet dies, dass sie in Abhängigkeit vom Umgebungsdruck in unterschiedlichem Ausmaß von diesen beiden Reaktionen beeinflusst wird.
Organic binder mixtures and process additives have been used in refractory materials for a long time due to their property-improving effect. Coal tar pitches in particular can contain thousands of chemical compounds, of which especially polycyclic aromatic hydrocarbons (PAHs) are known to be carcinogenic and mutagenic and thus pose a risk to both the environment and human health. However, despite intensive research, the exact structure of these carbon mixtures is still not fully clarified. This is becoming an increasing problem, especially with regard to more stringent legal requirements arising from REACH, the European Chemicals Regulation for the Registration, Evaluation, Authorization and Restriction of Chemicals. Furthermore, the knowledge of the structural and chemical composition is also of great importance for optimal processing of the carbon mixtures to high-quality technical products. In the present work, an analytical strategy for the investigation of complex carbon mixtures containing PAHs is developed. Due to their complexity, a combination of different methods is used, including elemental analysis, solvent extraction, thermogravimetry, differential thermal analysis, raman and infrared spectroscopy as well as high-resolution mass spectrometry. In addition, a procedure for the evaluation of mass spectrometric data based on multivariate statistical methods such as hierarchical cluster analysis and principal component analysis is developed. The application of the developed analytical strategy to various industrially used carbon-based binder mixtures allowed the elucidation of characteristic properties, including aromaticity, molecular mass distribution, degree of alkylation and elemental composition. It was also shown that combining high-resolution time-of-flight mass spectrometry with multivariate statistical data analysis is a fast and effective tool for the classification of complex binder mixtures and the identification of characteristic molecular structures. In addition, the analytical strategy was applied to manufactured refractory products. Despite the small amount of the contained organic phase, characteristic structural features of each sample could be identified and extracted, which enabled an unambiguous classification of the refractory products.
The political targets for CO2 reduction in industrial processes are leading to a technological change in the area of pig iron production. In future, pig iron will be produced by using the direct reduction process instead of the blast furnace process. Direct reduction plants are currently operated with natural gas, this is to be replaced by hydrogen in the future in order to meet the climate targets. Within this work, the influence of hydrogen-containing atmospheres on currently used refractory materials from the Al2O3-SiO2 system was investigated. An experiment was developed to simulate the corrosion of refractory materials in the laboratory under realistic test conditions. Taking into account the atmosphere, the temperature and the sample material, a variety of practical corrosion tests were carried out. By applying a comprehensive analysis strategy, relevant corrosion effects on the materials were subsequently described as a result of the gas composition. The test temperature was in the range of 716 °C < T < 1150 °C. Physical and chemical-mineralogical tests were used to investigate the corrosion effects. In addition, the intensity of the corrosion effects was evaluated based on the gas compositions used. Pure hydrogen atmospheres in particular led to strong gas corrosion, while the presence of water vapor inhibited the chemical reactions. The mixture of methane and hydrogen can create an aggressive H2 / CO atmosphere, which also can lead to the formation of solid carbon. This phenomenon changes the possible causes of damage to refractory material; the crystallization pressure of carbon inside the structure of the refractory can also contribute to material failure. Furthermore, the corrosion reactions could be described by coupling imaging analysis methods and element determination. It was shown that, in contrast to the general opinion in the state of the art, there was not exclusively a decrease in SiO2-amount. Several reactions took place in the investigated, industrially used materials, which led to the local chemical attack of SiO2 (silicate glass phase) and caused a parallel crystallization of cristobalite. The chemical attack of hydrogen on the silicate glass phase can be defined as the primary corrosion reaction in the range of 716 °C < T < 1150 °C in a pure hydrogen atmosphere. In addition, the reaction kinetics as a function of temperature were experimentally investigated and described. Based on these analyses, material properties can be defined that are particularly suitable for the future use of defined refractory qualities within reduction processes.