Refine
Document Type
- Doctoral Thesis (2)
- Master's Thesis (1)
Keywords
- Biomechanics (1)
- Biomechanik (1)
- Computersimulation (1)
- Individuelle Computermodelle (1)
- Kinematik (1)
- Knieverletzungen (1)
- Lendenwirbelsäule (1)
- Modellierung (1)
- Sport (1)
- Wirbelsäule (1)
Institute
- Institut für Sportwissenschaft (3) (remove)
Computer modelling of human partial body structures is becoming increasingly important for medical application. This is an interdisciplinary field of research in which new methods can be developed through the cooperation of physics, mathematics, computer visualistics and medicine. These methods can be used to make more precise statements about the mechanical loads of internal force-transmitting structures, such as intervertebral discs, ligaments, joints and muscles, during motion sequences.
At the beginning of this work, the importance of the need for research in computer modeling, specialized in the area of the spine, is presented.
In the following, the basic anatomical structures will be discussed, including intervertebral discs, ligaments, facet joints and musculature.
Algorithms are then developed to create individual lumbar spine models from CT data in a short time and semi-automatically. Methods will be developed to model the presented force transmitting structures of the spine, such as the intervertebral discs, ligaments, facet joints and muscles.
In addition different imaging methods (MRT data, x-ray film, x-ray functional images) will be presented and validate the lumbar spine models.
Finally, the algorithms developed will be used to create a larger number of individual lumbar spine models, which will then be examined for similarities and differences with regard to internal loads as well as for physiologically correct movement sequences. In particular, the relative momentary center of rotation between two adjacent vertebrae is calculated.
Hintergrund
Das neue Modell einer Knieorthese Condlya 4 soll die Bewegungsfreiheit im Knie nur geringfügig einschränken, so dass viele sportliche Bewegungen weiterhin gewährleistet sind. Dennoch stabilisiert die Orthese das Gelenk soweit, dass Scherbewegungen vermieden werden und während der Rehabilitationsphase nach Knieverletzungen und Instabilitäten bereits nach kurzer Zeit mit dem Sport wieder begonnen werden kann.
Das Ziel der Arbeit
Ziel der Masterarbeit war es mittels Bewegungsanalyse den Einfluss der Knieorhese auf die Bewegungsqualität des Handstands zu prüfen. Zu dieser 2D- Analyse wurden die Bewegungsabläufe mit mehreren digitalen Hochgeschwindigkeitskameras (OptiTrack Flex 3) aus zwei Ebenen gefilmt. Über die an anatomischen Fixpunkten angebrachten Markern wurden die Aufnahmen mit der Software MyoVideo am Rechner mittels automatischem Marker Tracking verarbeitet. Damit konnten die zeitlichen Verläufe von Marker-Koordinaten und Gelenkwinkeln aufgezeigt werden.
Ergebnisse
Die Ergebnisse dieser Untersuchung bestätigten, dass die untersuchte Knieorthese Condyla 4 für den Sport geeignet ist und keinen negativen Einfluss auf die Bewegungsqualität des Handstands nimmt. Die Anwendung der Knieorthese lässt sich dadurch auch auf andere Elemente aus dem Bereich des Turnens übertragen, bei denen die unteren Extremitäten ähnlichen Belastungen ausgesetzt sind.
Degenerative changes in the spine as well as back pain can be considered a common ailment. Incorrect loading of the lumbar spine structures is often considered as one of the factors that can accelerate degenerative processes, leading to back pain. For example, a degenerative change could be the occurrence of spinal stenosis following spondylolisthesis. Surgical treatment of spinal stenosis mainly focuses on decompressing the spinal canal with or without additional fusion through dorsal spondylodesis. There are differing opinions on whether fusion along with decompression provides potential benefits to patients or represents an overtreatment. Both conventional therapies and surgical methods aim to restore a “healthy” (or at least pain-free) distribution of load. Surprisingly little is known about the interindividual variability of load distribution in “healthy” lumbar spines. Since medical imaging does not provide information on internal forces, computer simulation of individual patients could be a tool to gain a set of new decision criteria for these cases. The advantage lies in calculating the internal load distribution, which is not feasible in in-vivo studies, as measurements of internal forces in living subjects are ethically and partially technically unfeasible. In the present research, the forward dynamic approach is used to calculate load distribution in multi-body models of individual lumbar spines. The work is structured into three parts: (I) Load distribution is quantified depending on the individual curvature of the lumbar spine. (II) Confidence intervals of the instantaneous center of rotation over time are determined, with which the motion behavior of healthy lumbar spines can be described. (III) Lastly, the effects of decompression surgeries on the load distribution of lumbar spines are determined.