004 Datenverarbeitung; Informatik
Filtern
Erscheinungsjahr
Dokumenttyp
- Diplomarbeit (185)
- Bachelorarbeit (163)
- Studienarbeit (137)
- Ausgabe (Heft) zu einer Zeitschrift (126)
- Masterarbeit (84)
- Dissertation (48)
- Konferenzveröffentlichung (6)
- Buch (Monographie) (1)
- Habilitation (1)
- Bericht (1)
Sprache
- Deutsch (546)
- Englisch (203)
- Mehrsprachig (3)
Schlagworte
- Bildverarbeitung (13)
- Augmented Reality (10)
- Computersimulation (10)
- Robotik (10)
- Computergraphik (9)
- OpenGL (8)
- Routing (8)
- Semantic Web (8)
- Computerspiel (7)
- Informatik (7)
Institut
- Fachbereich 4 (273)
- Institut für Computervisualistik (222)
- Institut für Informatik (114)
- Institut für Wirtschafts- und Verwaltungsinformatik (104)
- Institut für Management (49)
- Institut für Softwaretechnik (47)
- Institute for Web Science and Technologies (34)
- Institut für Integrierte Naturwissenschaften (4)
- An-Institute (1)
Leichte Sprache (LS) ist eine vereinfachte Varietät des Deutschen in der barrierefreie Texte für ein breites Spektrum von Menschen, einschließlich gering literalisierten Personen mit Lernschwierigkeiten, geistigen oder entwicklungsbedingten Behinderungen (IDD) und/oder komplexen Kommunikationsbedürfnissen (CCN), bereitgestellt werden. LS-Autor*innen sind i.d.R. der deutschen Standardsprache mächtig und gehören nicht der genannten Personengruppe an. Unser Ziel ist es, diese zu befähigen, selbst am schriftlichen Diskurs teilzunehmen. Hierfür bedarf es eines speziellen Schreibsystems, dessen linguistische Unterstützung und softwareergonomische Gestaltung den spezifischen Bedürfnissen der Zielgruppe gerecht wird. EasyTalk ist ein System basierend auf computerlinguistischer Verarbeitung natürlicher Sprache (NLP) für assistives Schreiben in einer erweiterten Variante von LS (ELS). Es stellt den Nutzenden ein personalisierbares Vokabular mit individualisierbaren Kommunikationssymbolen zur Verfügung und unterstützt sie entsprechend ihres persönlichen Fähigkeitslevels durch interaktive Benutzerführung beim Schreiben. Intuitive Formulierungen für linguistische Entscheidungen minimieren das erforderliche grammatikalische Wissen für die Erstellung korrekter und kohärenter komplexer Inhalte. Einfache Dialoge kommunizieren mit einem natürlichsprachlichen Paraphrasengenerator, der kontextsensitiv Vorschläge für Satzkomponenten und korrekt flektierte Wortformen bereitstellt. Außerdem regt EasyTalk die Nutzer*innen an, Textelemente hinzuzufügen, welche die Verständlichkeit des Textes für dessen Leserschaft fördern (z.B. Zeit- und Ortsangaben) und die Textkohärenz verbessern (z.B. explizite Diskurskonnektoren). Um das System auf die Bedürfnisse der Zielgruppe zuzuschneiden, folgte die Entwicklung von EasyTalk den Grundsätzen der menschzentrierten Gestaltung (UCD). Entsprechend wurde das System in iterativen Entwicklungszyklen ausgereift, kombiniert mit gezielten Evaluierungen bestimmter Aspekte durch Gruppen von Expert*innen aus den Bereichen CCN, LS und IT sowie L2-Lernende der deutschen Sprache. Eine Fallstudie, in welcher Mitglieder der Zielgruppe das freie Schreiben mit dem System testeten, bestätigte, dass Erwachsene mit geringen Lese-, Schreib- und Computerfähigkeiten mit IDD und/oder CCN mit EasyTalk eigene persönliche Texte in ELS verfassen können. Das positive Feedback aller Tests inspiriert Langzeitstudien mit EasyTalk und die Weiterentwicklung des prototypischen Systems, wie z.B. die Implementierung einer s.g. Schreibwerkstatt.
On the recognition of human activities and the evaluation of its imitation by robotic systems
(2023)
This thesis addresses the problem of action recognition through the analysis of human motion and the benchmarking of its imitation by robotic systems.
For our action recognition related approaches, we focus on presenting approaches that generalize well across different sensor modalities. We transform multivariate signal streams from various sensors to a common image representation. The action recognition problem on sequential multivariate signal streams can then be reduced to an image classification task for which we utilize recent advances in machine learning. We demonstrate the broad applicability of our approaches formulated as a supervised classification task for action recognition, a semi-supervised classification task for one-shot action recognition, modality fusion and temporal action segmentation.
For action classification, we use an EfficientNet Convolutional Neural Network (CNN) model to classify the image representations of various data modalities. Further, we present approaches for filtering and the fusion of various modalities on a representation level. We extend the approach to be applicable for semi-supervised classification and train a metric-learning model that encodes action similarity. During training, the encoder optimizes the distances in embedding space for self-, positive- and negative-pair similarities. The resulting encoder allows estimating action similarity by calculating distances in embedding space. At training time, no action classes from the test set are used.
Graph Convolutional Network (GCN) generalized the concept of CNNs to non-Euclidean data structures and showed great success for action recognition directly operating on spatio-temporal sequences like skeleton sequences. GCNs have recently shown state-of-the-art performance for skeleton-based action recognition but are currently widely neglected as the foundation for the fusion of various sensor modalities. We propose incorporating additional modalities, like inertial measurements or RGB features, into a skeleton-graph, by proposing fusion on two different dimensionality levels. On a channel dimension, modalities are fused by introducing additional node attributes. On a spatial dimension, additional nodes are incorporated into the skeleton-graph.
Transformer models showed excellent performance in the analysis of sequential data. We formulate the temporal action segmentation task as an object detection task and use a detection transformer model on our proposed motion image representations. Experiments for our action recognition related approaches are executed on large-scale publicly available datasets. Our approaches for action recognition for various modalities, action recognition by fusion of various modalities, and one-shot action recognition demonstrate state-of-the-art results on some datasets.
Finally, we present a hybrid imitation learning benchmark. The benchmark consists of a dataset, metrics, and a simulator integration. The dataset contains RGB-D image sequences of humans performing movements and executing manipulation tasks, as well as the corresponding ground truth. The RGB-D camera is calibrated against a motion-capturing system, and the resulting sequences serve as input for imitation learning approaches. The resulting policy is then executed in the simulated environment on different robots. We propose two metrics to assess the quality of the imitation. The trajectory metric gives insights into how close the execution was to the demonstration. The effect metric describes how close the final state was reached according to the demonstration. The Simitate benchmark can improve the comparability of imitation learning approaches.
Soziale Netzwerke sind allgegenwärtige Strukturen, die wir jeden Tag generieren und bereichern, während wir uns über Plattformen der sozialen Medien, E-Mails und jede andere Art von Interaktion mit Menschen verbinden. Während diese Strukturen für uns nicht greifbar sind, sind sie sehr wichtige Informationsträger. Zum Beispiel kann die politische Neigung unserer Freunde ein Näherungswert sein, um unsere eigenen politischen Präferenzen zu identifizieren. Gleichermaßen
kann die Kreditwürdigkeit unserer Freunde entscheidend bei der Gewährung oder Ablehnung unserer eigenen Kredite sein. Diese Erklärungskraft wird bei der Gesetzgebung, bei Unternehmensentscheidungen und in der Forschung genutzt, da sie maschinellen Lerntechniken hilft, genaue Vorhersagen zu treffen. Diese Verallgemeinerungen kommen jedoch häufig nur der Mehrheit der Menschen zugute, welche die allgemeine Struktur des Netzwerks prägen, und benachteiligen unterrepräsentierte Gruppen, indem sie ihre Mittel und Möglichkeiten begrenzen. Daher ist es wichtig zuerst zu verstehen, wie sich soziale Netzwerke bilden, um dann zu überprüfen, inwieweit ihre Mechanismen der Kantenbildung dazu beitragen, soziale Ungleichheiten in Algorithmen des maschinellen Lernens zu verstärken.
Zu diesem Zweck schlage ich im ersten Teil dieser Arbeit HopRank und Janus vor, zwei Methoden um die Mechanismen der Kantenbildung in realen ungerichteten sozialen Netzwerken zu charakterisieren. HopRank ist ein Modell der Daten-Hamsterei in Netzwerken. Sein Schlüsselkonzept ist ein gezinkter zufälliger Wanderer, der auf Übergangswahrscheinlichkeiten zwischen K-Hop-Nachbarschaften basiert. Janus ist ein Bayessches Rahmenwerk, mit dem wir plausible Hypothesen der Kantenbildung in Fällen identifizieren und bewerten können, in denen Knoten zusätzliche Daten enthalten. Im zweiten Teil dieser Arbeit untersuche ich die Auswirkungen dieser Mechanismen - welche die Kantenbildung in sozialen Netzwerken erklären - auf das maschinelle Lernen. Insbesondere untersuche ich den Einfluss von Homophilie, bevorzugter Bindung, Kantendichte, Anteil von Minderheiten und der Richtung von Verbindungen sowohl auf Leistung als auch auf systematische Fehler von kollektiver Klassifizierung und auf die Sichtbarkeit von Minderheiten in Top-K-Rängen. Meine Ergebnisse zeigen eine starke Korrelation zwischen der Netzwerkstruktur und den Ergebnissen des maschinellen Lernens. Dies legt nahe, dass die systematische Diskriminierung spezieller Personen: (i) durch den Netzwerktyp vorweggenommen und (ii) durch strategisches Verbinden im Netzwerk verhindert werden kann.
In dieser Arbeit werden die Möglichkeiten der Echtzeitvisualisierung von
OpenVDB-Dateien untersucht. Die Grundlagen von OpenVDB, dessen
Möglichkeiten, und NanoVDB, der GPU-Schnittstelle, werden erforscht.
Es wird ein System entwickelt, welches PNanoVDB, die Grafik-APIPortierung
von OpenVDB, verwendet. Außerdem werden Techniken
zur Verbesserung und Beschleunigung eines Einzelstrahlansatzes zur
Strahlenverfolgung getestet und angepasst. Um eine Echtzeitfähigkeit
zu realisieren, werden zwei Einzelstreuungsansätze implementiert, von
denen einer ausgewählt, weiter untersucht und optimiert wird.
Dies ermöglicht potenziellen Nutzern eine direkte Rückmeldung über
ihre Anpassungen zu erhalten, sowie die Möglichkeit, alle Parameter zu
ändern, um einen freien Gestaltungsprozess zu gewährleisten.
Neben dem visuellen Rendering werden auch entsprechende Benchmarks
gesammelt, um verschiedene Verbesserungsansätze zu vergleichen und
deren Relevanz zu beweisen. Um eine optimale Nutzung zu erreichen,
wird auf die Rendering-Zeiten und den Speicherverbrauch auf der GPU
geachtet. Ein besonderes Augenmerk wird auf die Integrierbarkeit und
Erweiterbarkeit des Programms gelegt, um eine einfache Integration in
einen bestehenden Echtzeit-Renderer wie U-Render zu ermöglichen.
Semantic-Web-Technologien haben sich als Schlüssel für die Integration verteilter und heterogener Datenquellen im Web erwiesen, da sie die Möglichkeit bieten, typisierte Verknüpfungen zwischen Ressourcen auf dynamische Weise und nach den Prinzipien von sogenannten Dataspaces zu definieren. Die weit verbreitete Einführung dieser Technologien in den letzten Jahren führte zu einer großen Menge und Vielfalt von Datensätzen, die als maschinenlesbare RDF-Daten veröffentlicht wurden und nach ihrer Verknüpfung das sogenannte Web of Data bilden. Angesichts des großen Datenumfangs werden diese Verknüpfungen normalerweise durch Berechnungsmethoden generiert, den Inhalt von RDF-Datensätzen analysieren und die Entitäten und Schemaelemente identifizieren, die über die Verknüpfungen verbunden werden sollen. Analog zu jeder anderen Art von Daten müssen Links die Kriterien für Daten hoher Qualität erfüllen (z. B. syntaktisch und semantisch genau, konsistent, aktuell), um wirklich nützlich und leicht zu konsumieren zu sein. Trotz der Fortschritte auf dem Gebiet des maschinellen Lernens ist die menschliche Intelligenz für die Suche nach qualitativ hochwertigen Verbindungen nach wie vor von entscheidender Bedeutung: Menschen können Algorithmen trainieren, die Ausgabe von Algorithmen in Bezug auf die Leistung validieren, und auch die resultierenden Links erweitern. Allerdings sind Menschen – insbesondere erfahrene Menschen – nur begrenzt verfügbar. Daher kann die Ausweitung der Datenqualitätsmanagementprozesse von Dateneigentümern/-verlegern auf ein breiteres Publikum den Lebenszyklus des Datenqualitätsmanagements erheblich verbessern.
Die jüngsten Fortschritte bei Human Computation und bei Peer-Production-Technologien eröffneten neue Wege für Techniken zur Verwaltung von Mensch-Maschine-Daten, die es ermöglichten, Nicht-Experten in bestimmte Aufgaben einzubeziehen und Methoden für kooperative Ansätze bereitzustellen. Die in dieser Arbeit vorgestellten Forschungsarbeiten nutzen solche Technologien und untersuchen Mensch-Maschine-Methoden, die das Management der Verbindungsqualität im Semantic Web erleichtern sollen. Zunächst wird unter Berücksichtigung der Dimension der Verbindungsgenauigkeit eine Crowdsourcing Methode zur Ontology Alignment vorgestellt. Diese Methode, die auch auf Entitäten anwendbar ist, wird als Ergänzung zu automatischen Ontology Alignment implementiert. Zweitens werden neuartige Maßnahmen zur Dimension des Informationsgewinns eingeführt, die durch die Verknüpfungen erleichtert werden. Diese entropiezentrierten Maßnahmen liefern Datenmanagern Informationen darüber, inwieweit die Entitäten im verknüpften Datensatz Informationen in Bezug auf Entitätsbeschreibung, Konnektivität und Schemaheterogenität erhalten. Drittens wenden wir Wikidata - den erfolgreichsten Fall eines verknüpften Datensatzes, der von einer Gemeinschaft von Menschen und Bots kuratiert, verknüpft und verwaltet wird - als Fallstudie an und wenden deskriptive und prädiktive Data Mining-Techniken an, um die Ungleichheit der Teilnahme und den Nutzerschwung zu untersuchen. Unsere Ergebnisse und Methoden können Community-Managern helfen, Entscheidungen darüber zu treffen, wann/wie mit Maßnahmen zur Nutzerbindung eingegriffen werden soll. Zuletzt wird eine Ontologie zur Modellierung der Geschichte der Crowd-Beiträge auf verschiedenen Marktplätzen vorgestellt. Während der Bereich des Mensch-Maschine-Datenmanagements komplexe soziale und technische Herausforderungen mit sich bringt, zielen die Beiträge dieser Arbeit darauf ab, zur Entwicklung dieses noch aufstrebenden Bereichs beizutragen.
Aktuell gibt es in den Geisteswissenschaften eine Vielzahl von digitalen Werkzeugen, wie beispielsweise Annotations-, Visualisierungs-oder Analyseanwendungen, welche Forscherinnen bei ihrer Arbeitunterstützen und ihnen neue Möglichkeiten zur Bearbeitung unterschiedlicher Forschungsfragen bieten. Allerdings bleibt die Nutzung dieser Werkzeuge stark hinter den Erwartungen zurück. In der vorliegenden Arbeit werden im Rahmen einer Design-Science-Theorie zwölf Verbesserungsmaßnahmen entwickelt, um der fehlenden Nutzungsakzeptanz entgegenzuwirken. Durch die Implementierungen der entwickelten Design-Science-Theorie, können SoftwareentwicklerInnen die Akzeptanz ihrer digitalen Werkzeuge, im geisteswissenschaftlichen Kontext, steigern.
Softwaresprachen und Technologien zu verstehen, die bei der Entwicklung einer Software verwendet werden, ist eine alltägliche Herausforderung für Software Engineers. Textbasierte Dokumentationen und Codebeispiele sind typische Hilfsmittel, die zu einem besseren Verständnis führen sollen. In dieser Dissertation werden verschiedene Forschungsansätze beschrieben, wie existierende Textpassagen und Codebeispiele identifiziert und miteinander verbunden werden können. Die Entdeckung solcher bereits existierender Ressourcen soll dabei helfen Softwaresprachen und Technologien auf einem konzeptionellen Level zu verstehen und zu vergleichen. Die Forschungsbeiträge fokussieren sich auf die folgenden Fragen, die später präzisiert werden. Welche existierenden Ressourcen lassen sich systematisch identifizieren, um strukturiertes Wissen zu extrahieren? Wie lassen sich die Ressourcen extrahieren? Welches Vokabular wird bereits in der Literatur verwendet, um konzeptionelles Wissen zur Struktur und Verwendung einer Software auszudrücken? Wie lassen sich Beiträge auf Wikipedia wiederverwenden? Wie können Codebeispiele zur Verwendung von ausgewählten Technologien auf GitHub gefunden werden? Wie kann ein Modell, welches Technologieverwendung repräsentiert, reproduzierbar konstruiert werden? Zur Beantwortung der Forschungsfragen werden qualitative Forschungsmethoden verwendet, wie zum Beispiel Literaturstudien. Des Weiteren werden Methoden entwickelt und
evaluiert, um relevante Artikel auf Wikipedia, relevante Textpassagen in der Literatur und Codebeispiele auf GitHub zu verlinken. Die theoretischen Beiträge werden in Fallstudien evaluiert. Die folgenden wissenschaftlichen Beiträge werden dabei erzielt: i.) Eine Referenzsemantik zur Formalisierung von Typen und Relationen in einer sprachfokussierten Beschreibung von Software; ii.) Ein Korpus bestehend aus Wikipedia Artikeln zu einzelnen Softwaresprachen; iii) Ein Katalog mit textuell beschriebenen Verwendungsmustern einer Technologie zusammen mit Messergebnissen zu deren Frequenz auf GitHub; iv.) Technologiemodelle, welche sowohl mit verschiedenen existierenden Codebeispielen als auch mit Textpassagen verknüpft sind.
Das Web ist ein wesentlicher Bestandteil der Transformation unserer Gesellschaft in das digitale Zeitalter. Wir nutzen es zur Kommunikation, zum Einkaufen und für unsere berufliche Tätigkeit. Der größte Teil der Benutzerinteraktion im Web erfolgt über Webseiten. Daher sind die Benutzbarkeit und Zugänglichkeit von Webseiten relevante Forschungsbereiche, um das Web nützlicher zu machen. Eyetracking ist ein Werkzeug, das in beiden Bereichen hilfreich sein kann. Zum einen um Usability-Tests durchzuführen, zum anderen um die Zugänglichkeit zu verbessern. Es kann verwendet werden, um die Aufmerksamkeit der Benutzer auf Webseiten zu verstehen und Usability-Experten in ihrem Entscheidungsprozess zu unterstützen. Darüber hinaus kann Eyetracking als Eingabemethode zur Steuerung einer Webseite verwendet werden. Dies ist besonders nützlich für Menschen mit motorischen Beeinträchtigungen, die herkömmliche Eingabegeräte wie Maus und Tastatur nicht benutzen können. Allerdings werden Webseiten aufgrund von Dynamiken, d. h. wechselnden Inhalten wie animierte Menüs und Bilderkarussells, immer komplexer. Wir brauchen allgemeine Ansätze zum Verständnis der Dynamik auf Webseiten, die eine effiziente Usability-Analyse und eine angenehme Interaktion mit Eyetracking ermöglichen. Im ersten Teil dieser Arbeit berichten wir über unsere Forschung zur Verbesserung der blickbasierten Analyse von dynamischen Webseiten. Eyetracking kann verwendet werden, um die Blicke von Nutzern auf Webseiten zu erfassen. Die Blicke zeigen einem Usability-Experten, welche Teile auf der Webseite gelesen, überflogen oder übersprungen worden sind. Die Aggregation von Blicken ermöglicht einem Usability-Experten allgemeine Eindrücke über die Aufmerksamkeit der Nutzer, bevor sie sich mit dem individuellen Verhalten befasst. Dafür müssen alle Blicke entsprechend des von den Nutzern erlebten Inhalten verstanden werden. Die Benutzererfahrung wird jedoch stark von wechselnden Inhalten beeinflusst, da diese einen wesentlichen Teil des angezeigten Bildes ausmachen können. Wir grenzen unterschiedliche Zustände von Webseiten inklusive wechselnder Inhalte ab, so dass Blicke von mehreren Nutzern korrekt aggregiert werden können. Im zweiten Teil dieser Arbeit berichten wir über unsere Forschung zur Verbesserung der blickbasierten Interaktion mit dynamischen Webseiten. Eyetracking kann verwendet werden, um den Blick während der Nutzung zu erheben. Der Blick kann als Eingabe zur Steuerung einer Webseite interpretiert werden. Heutzutage wird die Blicksteuerung meist zur Emulation einer Maus oder Tastatur verwendet, was eine komfortable Bedienung erschwert. Es gibt wenige Webbrowser-Prototypen, die Blicke direkt zur Interaktion mit Webseiten nutzen. Diese funktionieren außerdem nicht auf dynamischen Webseiten. Wir haben eine Methode entwickelt, um Interaktionselemente wie Hyperlinks und Texteingaben effizient auf Webseiten mit wechselnden Inhalten zu extrahieren. Wir passen die Interaktion mit diesen Elementen für Eyetracking an, so dass ein Nutzer bequem und freihändig im Web surfen kann. Beide Teile dieser Arbeit schließen mit nutzerzentrierten Evaluationen unserer Methoden ab, wobei jeweils die Verbesserungen der Nutzererfahrung für Usability-Experten bzw. für Menschen mit motorischen Beeinträchtigungen untersucht werden.
Die Raytracing-Beschleunigung durch dedizierte Datenstrukturen ist schon lange ein wichtiges Thema der Computergrafik. Im Allgemeinen werden dafür zwei unterschiedliche Ansätze vorgeschlagen: räumliche und richtungsbezogene Beschleunigungsstrukturen. Die vorliegende Arbeit stellt einen innovativen kombinierten Ansatz dieser beiden Bereiche vor, welcher weitere Beschleunigung der Strahlenverfolgung ermöglicht. Dazu werden moderne räumliche Datenstrukturen als Basisstrukturen verwendet und um vorberechnete gerichtete Sichtbarkeitsinformationen auf Basis von Schächten innerhalb einer originellen Struktur, dem Line Space, ergänzt.
Im Laufe der Arbeit werden neuartige Ansätze für die vorberechneten Sichtbarkeitsinformationen vorgeschlagen: ein binärer Wert, der angibt, ob ein Schacht leer oder gefüllt ist, sowie ein einzelner Vertreter, der als repräsentativer Kandidat die tatsächliche Oberfläche approximiert. Es wird gezeigt, wie der binäre Wert nachweislich in einer einfachen, aber effektiven Leerraumüberspringungs-Technik (Empty Space Skipping) genutzt wird, welche unabhängig von der tatsächlich verwendeten räumlichen Basisdatenstruktur einen Leistungsgewinn beim Raytracing von bis zu 40% ermöglicht. Darüber hinaus wird gezeigt, dass diese binären Sichtbarkeitsinformationen eine schnelle Technik zur Berechnung von weichen Schatten und Umgebungsverdeckung auf der Grundlage von Blockerapproximationen ergeben. Obwohl die Ergebnisse einen gewissen Ungenauigkeitsfehler enthalten, welcher auch dargestellt und diskutiert wird, zeigt sich, dass eine weitere Traversierungsbeschleunigung von bis zu 300% gegenüber der Basisstruktur erreicht wird. Als Erweiterung zu diesem Ansatz wird die repräsentative Kandidatenvorberechnung demonstriert, welche verwendet wird, um die indirekte Lichtberechnung durch die Integration von kaum wahrnehmbaren Bildfehlern signifikant zu beschleunigen. Schließlich werden Techniken vorgeschlagen und bewertet, die auf zweistufigen Strukturen und einer Nutzungsheuristik basieren. Diese reduzieren den Speicherverbrauch und die Approximationsfehler bei Aufrechterhaltung des Geschwindigkeitsgewinns und ermöglichen zusätzlich weitere Möglichkeiten mit Objektinstanziierungen und starren Transformationen.
Alle Beschleunigungs- und Speicherwerte sowie die Näherungsfehler werden gemessen, dargestellt und diskutiert. Insgesamt zeigt sich, dass durch den Line Space eine deutliche Erhöhung der Raytracing Leistung auf Kosten eines höheren Speicherverbrauchs und möglicher Annäherungsfehler erreicht wird. Die vorgestellten Ergebnisse zeigen damit die Leistungsfähigkeit des kombinierten Ansatzes und eröffnen weitere Möglichkeiten für zukünftige Arbeiten.
Die Umsetzung einer flexiblen Integration von Informationen aus verteilten und komplexen Informationssystemen stellt Unternehmen aktuell vor große Herausforderungen. Das im Rahmen dieser Dissertation entwickelte Ontologie-basierte Informationsintegrationskonzept SoNBO (Social Network of Business Objects) adressiert diese Herausforderungen. Bei einem Ontologie-basierten Konzept werden die Daten in den zu integrierenden Quellsystemen (z. B. betriebliche Anwendungssysteme) mithilfe eines Schemas (= Ontologie) beschrieben. Die Ontologie in Verbindung mit den Daten aus den Quellsystemen ergibt dann einen (virtualisierten oder materialisierten) Knowledge Graph, welcher für den Informationszugriff verwendet wird. Durch den Einsatz eines Schemas ist dieses flexibel auf die sich ändernden Bedürfnisse des Unternehmens bezüglich einer Informationsintegration anpassbar. SoNBO unterscheidet sich von existierenden Konzepten aus dem Semantic Web (OBDA = Ontology-based Data Access, EKG = Enterprise Knowledge Graph) sowohl im Aufbau der unternehmensspezifischen Ontologie (= Social Network of Concepts) als auch im Aufbau des nutzerspezifischen Knowledge Graphen (= Social Network of Business Objects) unter der Verwendung von sozialen Prinzipien (bekannt aus Enterprise Social Software). Aufbauend auf diesem SoNBO-Konzept wird das im Rahmen dieser Dissertation entwickelte SoNBO-Framework (nach Design Science Research) zur Einführung von SoNBO in einem beliebigen Unternehmen und die aus der Evaluation (im Unternehmen KOSMOS Verlag) gewonnenen Erkenntnisse vorgestellt. Die Ergebnisse (SoNBO-Konzept und SoNBO-Framework) basieren auf der Synthese der Erkenntnisse zu Ontologie-basierter Informationsintegration aus dem Status quo in Praxis und Wissenschaft: Für den Status quo in der Praxis wird mithilfe einer Tiefenfallstudie (Ingenieurbüro Vössing) die grundlegende Idee zu SoNBO in Form einer vom Fallstudienunternehmen entwickelten und dort seit Jahren eingesetzten Individualsoftware analysiert. Für den Status quo in der Wissenschaft wird das Ergebnis einer im Rahmen der Dissertation durchgeführten strukturierten Literaturanalyse zu Ontologie-basierten Informationsintegrationsansätzen präsentiert. Diese Dissertation liefert damit einen Beitrag sowohl für die Wissenschaft (Erkenntnisgewinn im Bereich der Ontologie-basierten Informationsintegrationsansätze für die Wirtschaftsinformatik u. a. durch die Entwicklung eines evaluierten Artefaktes) als auch für die Praxis (Schaffung eines evaluierten Artefaktes).