30 Naturwissenschaften allgemein
Refine
Document Type
- Doctoral Thesis (5)
- Article (1)
- Master's Thesis (1)
Keywords
- Biomechanics (1)
- Biomechanik (1)
- Computersimulation (1)
- Experimente (1)
- Experimentieren (1)
- Förderschwerpunkt geistige Entwicklung (1)
- Lernmaterial (1)
- Modellierung (1)
- Naturwissenschaften (1)
- Pestizid (1)
Degenerative changes in the spine as well as back pain can be considered a common ailment. Incorrect loading of the lumbar spine structures is often considered as one of the factors that can accelerate degenerative processes, leading to back pain. For example, a degenerative change could be the occurrence of spinal stenosis following spondylolisthesis. Surgical treatment of spinal stenosis mainly focuses on decompressing the spinal canal with or without additional fusion through dorsal spondylodesis. There are differing opinions on whether fusion along with decompression provides potential benefits to patients or represents an overtreatment. Both conventional therapies and surgical methods aim to restore a “healthy” (or at least pain-free) distribution of load. Surprisingly little is known about the interindividual variability of load distribution in “healthy” lumbar spines. Since medical imaging does not provide information on internal forces, computer simulation of individual patients could be a tool to gain a set of new decision criteria for these cases. The advantage lies in calculating the internal load distribution, which is not feasible in in-vivo studies, as measurements of internal forces in living subjects are ethically and partially technically unfeasible. In the present research, the forward dynamic approach is used to calculate load distribution in multi-body models of individual lumbar spines. The work is structured into three parts: (I) Load distribution is quantified depending on the individual curvature of the lumbar spine. (II) Confidence intervals of the instantaneous center of rotation over time are determined, with which the motion behavior of healthy lumbar spines can be described. (III) Lastly, the effects of decompression surgeries on the load distribution of lumbar spines are determined.
Ponds in agricultural landscapes are often used by amphibians as breeding habitat. However, the characteristics of agricultural ponds and especially the surrounding area are usually said to be suboptimal for many amphibian species. Using suboptimal habitats might allow a species’ survival and reproduction, but can have negative consequences at the individual and population level. In the present study, we investigated Palmate Newt (Lissotriton helveticus) populations from an intensive wine-growing region in southern Germany and compared them with populations located in a nearby forested area in terms of biometric traits, age and genetic structure. By analyzing over 900 adult newts from 11 ponds, we could show that newts reproducing in forest ponds were larger than newts reproducing in agricultural ponds. We did not find differences in the newt age and growth rate between habitat types. Therefore, differences in the body size of newts might already existed in larvae and/or juveniles, what might be related to a lower habitat quality for larvae and/or juveniles in the agricultural landscape. Body mass, body condition and sexual dimorphic traits (length of the caudal filament and max. height of the tail) correlated with body size, but no additional effect of the habitat type was found. The analysis of microsatellites revealed a higher genetic diversity in forest ponds. However, no clear sign of inbreeding was observed in any agricultural population, suggesting some degree of gene flow between them. We conclude, that agricultural ponds can be suitable habitats for the Palmate Newt and that conservation effort should aim to preserve them. The observed effects on body size indicate the need to increase the quality of the aquatic and terrestrial habitat for early life stages of this newt species in agricultural landscapes.
Scientific experimentation in the special needs schools for pupils with intellectual disabilities
(2022)
Naturwissenschaftliches Experimentieren im Förderschwerpunkt geistige Entwicklung: An Schulen mit dem Förderschwerpunkt geistige Entwicklung führen Schülerinnen und Schüler nur selten naturwissenschaftliche Experimente durch. Doch auch diese Schülerschaft kann mit adressatengerechten Lernmaterialien Experimente durchführen, deren Gestaltungskriterien in dieser Studie ermittelt werden. Zudem wird in der Studie erfasst, wie sich die Schülerinnen und Schüler über ein Schuljahr in ihrer experimentellen Kompetenz weiterentwickeln.
Stream ecosystems are one of the most threatened ecosystems worldwide due to their exposure to diverse anthropogenic stressors. Pesticides appear to be the most relevant stressor for agricultural streams. Due to the current mismatch of modelled and measured pesticide concentrations, monitoring is necessary to inform risk assessment or improve future pesticide approvals. Knowing if biotic stress responses are similar across large scales and long time frames could ultimately help in estimating protective stressor thresholds.
This thesis starts with an overview of entry pathways of pesticides to streams as well as the framework of current pesticide monitoring and gives an outline of the objectives of the thesis. In chapter 2, routine monitoring data based on grab sampling from several countries is analysed to identify the most frequently occurring pesticide mixtures. These mixtures are comprised of relatively low numbers of pesticides, of which herbicides are dominating. The detected pesticide mixtures differ between regions and countries, due to differences in the spectrum of analysed compounds and limits of quantification. Current routine monitoring does not include sampling during pesticide peaks associated with heavy rainfall events which likely influences the detected pesticide mixtures. In chapter 3, sampling rates of 42 organic pesticides for passive sampling are provided together with recommendations for the monitoring of field-relevant peaks. Using this information, in chapter 4 a pesticide gradient is established in an Eastern European region where agricultural intensity adjacent to sampled streams ranges from low to high. In contrast to current routine monitoring, rainfall events were sampled and a magnitude of pesticides were analysed. This led to the simultaneous detection of numerous pesticides of which one to three drive the pesticide toxicity. The toxicity, however, showed no relationship to the agricultural intensity. Using microcosms, the stress responses of fungal communities, the hyphomycetes, and the related ecosystem function of leaf decomposition, is investigated in chapter 5. Effects of a field-relevant fungicide mixture are examined across three biogeographical regions for three consecutive cycles of microbial leaf colonisation and decomposition. Despite different initial communities, stress responses as well as recoveries were similar across biogeographical regions, indicating a general pattern.
Overall, this thesis contributes to an improved understanding of occurrence and concentrations of pesticides mixtures in streams, their monitoring and impact on an ecosystem function. We showed that estimated pesticide toxicities reach levels that affect non-target organisms and thereby potentially whole ecosystems. Routine monitoring, however, likely underestimates the threat by pesticides. Effects leading to a loss in biodiversity or functions in streams ecosystems can be reduced by reassessing approved pesticides with ongoing targeted monitoring and increased knowledge of effects caused by these pesticides.
With 47% land coverage in 2016, agricultural land was one of the largest terrestrial biomes in Germany. About 70% of the agricultural land was cropped area with associated pesticide applications. Agricultural land also represents an essential habitat for amphibians. Therefore, exposure of amphibians to agrochemicals, such as fertilizers and pesticides, seems likely. Pesticides can be highly toxic for amphibians, even a fraction of the original application rate may result in high amphibian mortality.
To evaluate the potential risk of pesticide exposure for amphibians, the temporal coincidence of amphibian presence on agricultural land and pesticide applications (N = 331) was analyzed for the fire-bellied toad (Bombina bombina), moor frog (Rana arvalis), spadefoot toad (Pelobates fuscus) and crested newt (Triturus cristatus) during spring migration. In 2007 and 2008, up to 80% of the migrating amphibians temporally coincided with pesticide applications in the study area of Müncheberg, about 50 km east of Berlin. Pesticide interception by plants ranged between 50 to 90% in winter cereals and 80 to 90% in winter rape. The highest coincidence was observed for the spadefoot toad, where 86.6% of the reproducing population was affected by a single pesticide in winter rape during stem elongation with 80% pesticide interception by plants. Late migrating species, such as the fire-bellied toad and the spadefoot toad, overlapped more with pesticide applications than early migrating species, such as the moor frog, did. Under favorable circumstances, the majority of early migrants may not coincide with the pesticide applications of arable fields during spring migration.
To evaluate the potential effect of pesticide applications on populations of the common frog (Rana temporaria), a landscape genetic study was conducted in the vinicultural area of Southern Palatinate. Due to small sample sizes at breeding sites within viniculture, several DNA sampling methods were tested. Furthermore, the novel repeated randomized selection of genotypes approach was developed to utilize genetic data from siblings for more reliable estimates of genetic parameters. Genetic analyses highlighted three of the breeding site populations located in viniculture as isolated from the meta-population. Genetic differentiation among breeding site populations in the viniculture (median pairwise FST=0.0215 at 2.34 km to 0.0987 at 2.39 km distance) was higher compared to genetic differentiation among breeding site populations in the Palatinate Forest (median pairwise FST=0.0041 at 5.39 km to 0.0159 at 9.40 km distance).
The presented studies add valuable information about the risk of pesticide exposure for amphibians in the terrestrial life stage and possible effects of agricultural land on amphibian meta-populations. To conserve endemic amphibian species and their (genetic) diversity in the long run, the risk assessment of pesticides and applied agricultural management measures need to be adjusted to protect amphibians adequately. In addition, other conservation measures such as the creation of new suitable breeding site should be considered to improve connectivity between breeding site populations and ensure the persistence of amphibians in the agricultural land.
The physical-biological interactions that affect the temporal variability of benthic oxygen fluxes were investigated to gain improved understanding of the factors that control these processes. This study, for the first time is able to resolve benthic diffusive boundary layer (DBL) dynamics using the newly developed lifetime-based laser induced fluorescence (τLIF) oxygen imaging system, which enables study of the role of small-scale fluid mechanics generated by benthic organism activity, and hence a more detailed analysis of oxygen transport mechanisms across the sediment-water interface (SWI).
The net benthic oxygen flux across the sediment-water interface is controlled by sediment oxygen uptake and oxygen transport. While the oxygen transport is largely influenced by turbulence driven by large-scale flows, sediment oxygen uptake is mainly affected by oxygen production and biological- and chemical-oxygen degradation of organic matter. Both processes can be enhanced by the presence of fauna and are intimately coupled. The benthic oxygen flux can be influenced by fauna in two ways, i.e. by modulating the availability of oxygen, which enhances the sediment oxygen uptake, and by enhancing the transport of oxygen.
In-situ and a series of laboratory measurements were conducted to estimate the short- and seasonal variability of benthic fluxes including the effects of burrow ventilation activity by tube-dwelling animals using eddy correlation (EC) and τLIF oxygen imaging techniques, respectively.
The in-situ benthic oxygen fluxes showed high variability at hourly and seasonal timescales, where statistical analysis indicated that current velocity and water depth were the most significant predictors of benthic oxygen flux at the waterside, which co-varied with the discharge, temperature, and oxygen concentration. The range of variability of seasonal fluxes corresponded to the friction velocities which were driven by large-scale flows. Application of a simplified analytical model that couples the effect of hydrodynamic forcing of the diffusive boundary layer with a temperature-dependent oxygen consumption rate within the sediment showed that friction velocity and temperature cause similar variability of the steady-state benthic oxygen flux.
The application of τLIF oxygen imaging system in bioturbation experiments enabled the investigation and discovery of insights into oxygen transport mechanisms across the sediment-water interface. Distinct oxygen structures above burrow openings were revealed, these were associated with burrow ventilation. The DBL was degraded in the presence of burrow ventilation. Advective transport generated by the energetic plumes released at burrow outlets was the dominant transport driving mechanism. The contribution of diffusive flux to the total estimated decreased with increasing larval density. For a range of larvae densities, commonly observed in ponds and lakes, sediment oxygen uptake rates increased up to 2.5-fold in the presence of tube-dwelling animals, and the oxygen transport rate exceeded chironomid respiration by up to a factor of 4.
The coupled physical-biological factors affecting net benthic oxygen flux can be represented by temperature, which is a prominent factor that accounts for both oxygen transport and sediment oxygen uptake. Low oxygen transport by flow coincided with high summer temperatures, amplified by a reduction of benthic population density and pupation. It can also, however, be offset by increased ventilation activity. In contrast, low temperature coincided with high oxygen concentrations, an abundance of larvae, and higher flow is offset by less burrow ventilation activity. Investigation of the effect of hydrodynamics on oxygen transport alone suggested that the expected increase of benthic oxygen flux under global warming can be offset by a reduction in flow velocity, which could ultimately lead to increasing carbon burial rates, and in a growing importance of anaerobic mineralization pathways with increasing emission rates of methane.
This study suggests a significant contribution of biological induced benthic oxygen flux to physical transport driven by large-scale flow-fields contributing to bottom-boundary layer turbulence.
One of the greatest goals in computer graphics is the aesthetic representation of objects. In addition to conventional methods, another field focuses on non-photorealistic renderings. The so-called example-based rendering is an area where users can transfer their art style to a pre-computed 3D rendering, using a hand-painted template. There are some algorithms that already provide impressive results, but their problem is that most of these procedures count as offline methods and are not able to produce results in real-time. For this reason, this work show a method that satisfies this condition. In addition, the influence of the run-time reduction on the results is investigated. Requirements are defined, to which the method and its results are examined. Other methods in this field are referenced and compared with their results.