30 Naturwissenschaften allgemein
Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Keywords
- agriculture (1)
- amphibians (1)
Institute
- Fachbereich 7 (2) (remove)
Ponds in agricultural landscapes are often used by amphibians as breeding habitat. However, the characteristics of agricultural ponds and especially the surrounding area are usually said to be suboptimal for many amphibian species. Using suboptimal habitats might allow a species’ survival and reproduction, but can have negative consequences at the individual and population level. In the present study, we investigated Palmate Newt (Lissotriton helveticus) populations from an intensive wine-growing region in southern Germany and compared them with populations located in a nearby forested area in terms of biometric traits, age and genetic structure. By analyzing over 900 adult newts from 11 ponds, we could show that newts reproducing in forest ponds were larger than newts reproducing in agricultural ponds. We did not find differences in the newt age and growth rate between habitat types. Therefore, differences in the body size of newts might already existed in larvae and/or juveniles, what might be related to a lower habitat quality for larvae and/or juveniles in the agricultural landscape. Body mass, body condition and sexual dimorphic traits (length of the caudal filament and max. height of the tail) correlated with body size, but no additional effect of the habitat type was found. The analysis of microsatellites revealed a higher genetic diversity in forest ponds. However, no clear sign of inbreeding was observed in any agricultural population, suggesting some degree of gene flow between them. We conclude, that agricultural ponds can be suitable habitats for the Palmate Newt and that conservation effort should aim to preserve them. The observed effects on body size indicate the need to increase the quality of the aquatic and terrestrial habitat for early life stages of this newt species in agricultural landscapes.
With 47% land coverage in 2016, agricultural land was one of the largest terrestrial biomes in Germany. About 70% of the agricultural land was cropped area with associated pesticide applications. Agricultural land also represents an essential habitat for amphibians. Therefore, exposure of amphibians to agrochemicals, such as fertilizers and pesticides, seems likely. Pesticides can be highly toxic for amphibians, even a fraction of the original application rate may result in high amphibian mortality.
To evaluate the potential risk of pesticide exposure for amphibians, the temporal coincidence of amphibian presence on agricultural land and pesticide applications (N = 331) was analyzed for the fire-bellied toad (Bombina bombina), moor frog (Rana arvalis), spadefoot toad (Pelobates fuscus) and crested newt (Triturus cristatus) during spring migration. In 2007 and 2008, up to 80% of the migrating amphibians temporally coincided with pesticide applications in the study area of Müncheberg, about 50 km east of Berlin. Pesticide interception by plants ranged between 50 to 90% in winter cereals and 80 to 90% in winter rape. The highest coincidence was observed for the spadefoot toad, where 86.6% of the reproducing population was affected by a single pesticide in winter rape during stem elongation with 80% pesticide interception by plants. Late migrating species, such as the fire-bellied toad and the spadefoot toad, overlapped more with pesticide applications than early migrating species, such as the moor frog, did. Under favorable circumstances, the majority of early migrants may not coincide with the pesticide applications of arable fields during spring migration.
To evaluate the potential effect of pesticide applications on populations of the common frog (Rana temporaria), a landscape genetic study was conducted in the vinicultural area of Southern Palatinate. Due to small sample sizes at breeding sites within viniculture, several DNA sampling methods were tested. Furthermore, the novel repeated randomized selection of genotypes approach was developed to utilize genetic data from siblings for more reliable estimates of genetic parameters. Genetic analyses highlighted three of the breeding site populations located in viniculture as isolated from the meta-population. Genetic differentiation among breeding site populations in the viniculture (median pairwise FST=0.0215 at 2.34 km to 0.0987 at 2.39 km distance) was higher compared to genetic differentiation among breeding site populations in the Palatinate Forest (median pairwise FST=0.0041 at 5.39 km to 0.0159 at 9.40 km distance).
The presented studies add valuable information about the risk of pesticide exposure for amphibians in the terrestrial life stage and possible effects of agricultural land on amphibian meta-populations. To conserve endemic amphibian species and their (genetic) diversity in the long run, the risk assessment of pesticides and applied agricultural management measures need to be adjusted to protect amphibians adequately. In addition, other conservation measures such as the creation of new suitable breeding site should be considered to improve connectivity between breeding site populations and ensure the persistence of amphibians in the agricultural land.