30.03 Methoden und Techniken in den Naturwissenschaften
Refine
Keywords
- DMF-DMA (1)
- Derivatisierung (1)
- GC-MS (1)
- Massenspektrometrie (1)
- Perfluorcarbonsäuren (1)
- TESiOH (1)
Perfluorocarboxylic acids (PFCA) are substances of anthropogenic origin and have been used for several decades. These compounds are a new class of environmental pollutants. Their high surface activity, thermal stability, amphipathicity and weak intermolecular interactions lead to persistence and bioaccumulation. Therefore, there is a great need for reliable analytical methods for detecting the presence and determination of concentration in both environmental samples and everyday products. GC-MS is a cost-effective alternative and supplement to established LC-MS/MS methods. The greatest challenge in the method development is the derivatization reaction. Many of the previously published derivatization reactions for PFCA are time consuming and require high reaction temperatures or toxic reagents.
In the present dissertation, two new derivatization reactions for PFCA have been developed and optimized. The first part of the thesis shows the development and optimization of the reaction with triethylsilanol in water. In addition to optimizing the reaction, classical solid-phase extraction was modified to simplify the sample preparation.
In the second part of the work, the reaction products of perfluorooctanoic acid (PFOA) with N,N-dimethylformamide dimethyl acetal (DMF-DMA) and -diethyl acetal (DMF-DEA) were identified. From these measurements, it follows that both DMF-DMA and DMF-DEA in the presence of PFOA form an iminium cation, which leads to salt formation. This PFOA salt react further in the GC injector and a corresponding amine is produced.
In the last part of the thesis, an analytical method based on the DMF-DMA reaction was developed. The matrix effects have been described in detail. The method has been successfully applied for three different types of samples: dental floss, textiles and sewage sludge. The results were verified by LC-MS/MS analysis in an external laboratory. The differences between the PFCA values for a spiked sample measured by GC-MS and LC-MS/MS were less than 10%.