43.12 Umweltchemie
Filtern
Dokumenttyp
- Dissertation (2)
- Bachelorarbeit (1)
Schlagworte
- Bodenchemie (2)
- 1H-NMR Relaxometry (1)
- Agriculture (1)
- Bodenphysik (1)
- FTIR (1)
- Hydrogel (1)
- Interparticulate hydrogel swelling (1)
- Landwirtschaft (1)
- Microplastics (1)
- Mikroplastik (1)
Institut
The use of agricultural plastic covers has become common practice for its agronomic benefits such as improving yields and crop quality, managing harvest times better, and increasing pesticide and water use efficiency. However, plastic covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. A better understanding of the sources and fate of plastic debris in terrestrial systems has so far been hindered by the lack of adequate analytical techniques for the mass-based and polymer-selective quantification of plastic debris in soil. The aim of this dissertation was thus to assess, develop, and validate thermoanalytical methods for the mass-based quantification of relevant polymers in and around agricultural fields previously covered with fleeces, perforated foils, and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled direct plastic analyses of 50 mg of soil without any sample preparation. With polyethylene terephthalate (PET) as a preliminary model, the method limit of detection (LOD) was 0.7 g kg−1. But the missing chromatographic separation complicated the quantification of polymer mixtures. Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was developed that additionally exploited the selective solubility of polymers in specific solvents prior to analysis. By dissolving polyethylene (PE), polypropylene (PP), and polystyrene (PS) in a mixture of 1,2,4-trichlorobenzene and p-xylene after density separation, up to 50 g soil became amenable to routine plastic analysis. Method LODs were 0.7–3.3 mg kg−1, and the recovery of 20 mg kg−1 PE, PP, and PS from a reference loamy sand was 86–105%. In the reference silty clay, however, poor PS recoveries, potentially induced by the additional separation step, suggested a qualitative evaluation of PS. Yet, the new solvent-based Py-GC/MS method enabled a first exploratory screening of plastic-covered soil. It revealed PE, PP, and PS contents above LOD in six of eight fields (6% of all samples). In three fields, PE levels of 3–35 mg kg−1 were associated with the use of 40 μm thin perforated foils. By contrast, 50 μm PE films were not shown to induce plastic levels above LOD. PP and PS contents of 5–19 mg kg−1 were restricted to single observations in four fields and potentially originated from littering. The results suggest that the short-term use of thicker and more durable plastic covers should be preferred to limit plastic emissions and accumulation in soil. By providing mass-based information on the distribution of the three most common plastics in agricultural soil, this work may facilitate comparisons with modeling and effect data and thus contribute to a better risk assessment and regulation of plastics. However, the fate of plastic debris in the terrestrial environment remains incompletely understood and needs to be scrutinized in future, more systematic research. This should include the study of aging processes, the interaction of plastics with other organic and inorganic compounds, and the environmental impact of biodegradable plastics and nanoplastics.
Organische Substanzen spielen eine wichtige Rolle bei der Bildung von stabilen Bodenstrukturen. Dabei sind maßgeblich deren physikochemischen Eigenschaften, Wechselwirkungen mit der mineralischen Bodenphase und die daraus resultierende Boden-Wasser Interaktionen von Bedeutung. Dennoch weiß man nur wenig über zugrunde liegenden Mechanismen der Partikelverkittung durch organische Substanzen und inwieweit deren Quellung unter Bildung von interpartikulären Hydrogelen die bodenstrukturelle Stabilität beeinflusst. Bis heute existiert kein mechanistisches Model, dass deren Quellung im Boden beschreibt und daraus resultierende Boden-Wasser Interaktionen in Zusammenhang mit bodenstruktureller Stabilität bringt. Dies ist maßgeblich auf das Fehlen bzw. eine unzureichende Adaptierung geeigneter Testmethoden zur Erfassung von Quellungsprozessen interpartikulärer Hydrogele in Böden zurückzuführen.
In der vorliegenden Dissertation wurde die 1H NMR Relaxometrie mit mikro- und makrostrukturellen Bodenstabilitätstests kombiniert um Boden-Wasser Interaktionen mit der strukturellen Stabilität wassergesättigter und ungesättigter, feuchter Böden zu verknüpfen. Der Erste Teil der Arbeit erfasste Potential und Grenzen der 1H-NMR Relaxometry zur Erfassung unterschiedlicher Wasserpopulationen und struktureller Stabilisierungsmechanismen Boden. Im zweiten Teil der Arbeit wurde die 1H-NMR Relaxometrie zur Untersuchung von Quellungsprozessen einer hydrogel-bildenden organischen Modelsubstanz in Modelböden unterschiedlicher Komplexität eingesetzt. Mittels der Kombination mit Bodenrheologie sollten die zugrundeliegenden Mechanismen identifiziert werden, die im Zusammenhang mit der strukturellen Bodenstabilität stehen. Im letzten Teil der Arbeit wurden die zuvor gesammelten Erkenntnisse auf einen humosen, landwirtschaftlichen Boden übertragen und die Effekte einzelner organischer und mineralischer Bo-denbestandteile auf Boden-Wasser-Interaktionen und bodenstrukturelle Stabilität mittels Dichtefraktionierung noch detaillierter erfasst.
Die zunehmende Komplexität der Experimente ermöglichten eine Brücke zwischen den physikochemischen Eigenschaften interpartikulären Hydrogels und bodenstruktureller Stabilität zu schlagen und ein Modell für die zugrunde liegenden Prozesse für wassergesättigte und ungesättigte, feuchte Böden abzuleiten: Während gequollene Tonpartikel die Reibung zwischen Bodenpartikeln erniedrigen und somit die bodenstrukturelle Stabilität herabsetzen, zeigen gequollen Hydrogelstrukturen den gegenteiligen Effekt und erhöhen die bodenstrukturelle Stabilität. Dies ist zurückzuführen auf die Bildung eines flexiblen und viskosen Polymernetzwerkes, welches mineralische Bodenpartikel über weite Bereiche verbindet und eine deutlich höhere Stabilität als Poren- oder Kapillarwasser aufweist. Es zeigte sich zudem, dass die bodenstrukturelle Stabilität mit steigender Viskosität des interpartikulären Hydrogels zunimmt und dabei von der Inkubationszeit, Bodentextur, Zusammensetzung der Bodenlösung und externen Faktoren wie Bodenfeuchtedynamik und landwirtschaftliche Bewirtschaftungsweisen abhängt. Die stabilisierende Wirkung von interpartikulärem Hydrogel wird zusätzlich durch Tonpartikeln verstärkt, was maßgeblich aus Polymer-Ton-Interaktionen und der Aufnahme von Tonpartikeln in das Hydrogelnetzwerk resultiert. Zusätzlich konnte gezeigt werden, dass die gleichzeitige Quellung von Hydrogelstrukturen und Tonpartikeln und der dabei vorhandenen Konkurrenz um verfügbares Wasser und freien Raum zu einer gegenseitigen Quellungshemmung führen. Somit erhöhen Polymer-Ton-Interaktionen nicht nur die Viskosität des interpartikulären Hydrogels und damit dessen Stabilisierungspotential, sondern erniedrigen zudem die Quellung von Tonpartikeln und damit deren negativen Effekte auf die bodenstrukturelle Stabilität. Das Wissen um diese zugrunde liegenden Prozesse erweitert das Verständnis zur Bildung stabiler Bodenstrukturen und ermöglicht das Ergreifen geeigneter, nachhaltiger Bodenbewirtschaftungsmaßnahmen. Die zudem aufgezeigten Limitierungen des mechanistischen Modells sollen Ansatzpunkte für weitere Forschungs- und Optimierungspotentiale aufzeigen.
Bei der Olivenölproduktion fallen innerhalb kürzester Zeit große Mengen Olivenabwasser (OMW) an. OMW kann aufgrund seines hohen Nährstoffgehalts als landwirtschaftlicher Dünger eingesetzt werden. Doch seine öligen und phenolischen Bestandteile schaden dem Boden. Es ist nicht bekannt, inwiefern jahreszeitliche Temperatur- und Niederschlagsschwankungen den Verbleib und die Wirkung der Abwasserkomponenten im Boden längerfristig beeinflussen. Um dem nachzugehen, wurden jeweils 14 L OMW m-2 im Winter, Frühling und Sommer auf verschiedenen Parzellen einer Olivenplantage ausgebracht. Hydrologische Bodeneigenschaften (Wassertropfeneindringzeit, Wasserleitfähigkeit, Kontaktwinkel), physikalisch-chemische Parameter (pH, EC, lösliche Ionen, phenolische Verbindungen, organischer Kohlenstoff) sowie der biologische Abbau (Köderstreifen) wurden erfasst, um den Zustand des Bodens nach der Applikation zu beurteilen. Nach einer Regensaison war die Bodenqualität der im Sommer behandelten Flächen signifikant reduziert. Dies wurde insbesondere anhand einer dreimal niedrigeren biologischen Fraßaktivität, zehnmal höherer Hydrophobizität, sowie einem viermal höheren Gehalt an phenolischen Substanzen im Vergleich zu den Kontrollflächen deutlich. Die Ausbringung im Winter zeigte gegenteilige Effekte, welche das natürliche Regenerierungspotential des Bodens erkennen lassen. Der Einfluss der Frühlingsapplikation lag zwischen den zuvor genannten. Es wurden keinerlei Anzeichen auf Verlagerung von OMW-Bestandteilen in tiefere Bodenschichten beobachtet. Während der feuchten Jahreszeiten gilt die Ausbringung gesetzlich begrenzter Mengen Olivenabwasser somit als vertretbar. Weitere Forschung ist notwendig um den Einfluss von Frühlingsapplikationen zu quantifizieren und weitere Erkenntnisse über die Zusammensetzung und Mobilität organischer OMW-Bestandteile im Boden zu gewinnen.