54.38 Computersicherheit
Filtern
Schlagworte
- model-based (3)
- BPMN (1)
- Data protection (1)
- Datenschutz (1)
- GDPR (1)
- Rückverfolgbarkeit (1)
- Tracking (1)
- UML (1)
- conflict detection (1)
- data protection (1)
Data-minimization and fairness are fundamental data protection requirements to avoid privacy threats and discrimination. Violations of data protection requirements often result from: First, conflicts between security, data-minimization and fairness requirements. Second, data protection requirements for the organizational and technical aspects of a system that are currently dealt with separately, giving rise to misconceptions and errors. Third, hidden data correlations that might lead to influence biases against protected characteristics of individuals such as ethnicity in decision-making software. For the effective assurance of data protection needs,
it is important to avoid sources of violations right from the design modeling phase. However, a model-based approach that addresses the issues above is missing.
To handle the issues above, this thesis introduces a model-based methodology called MoPrivFair (Model-based Privacy & Fairness). MoPrivFair comprises three sub-frameworks: First, a framework that extends the SecBPMN2 approach to allow detecting conflicts between security, data-minimization and fairness requirements. Second, a framework for enforcing an integrated data-protection management throughout the development process based on a business processes model (i.e., SecBPMN2 model) and a software architecture model (i.e., UMLsec model) annotated with data protection requirements while establishing traceability. Third, the UML extension UMLfair to support individual fairness analysis and reporting discriminatory behaviors. Each of the proposed frameworks is supported by automated tool support.
We validated the applicability and usability of our conflict detection technique based on a health care management case study, and an experimental user study, respectively. Based on an air traffic management case study, we reported on the applicability of our technique for enforcing an integrated data-protection management. We validated the applicability of our individual fairness analysis technique using three case studies featuring a school management system, a delivery management system and a loan management system. The results show a promising outlook on the applicability of our proposed frameworks in real-world settings.
In IT-Systemen treten viele Datenschutzrisiken auf, wenn Datenschutzbedenken in den frühen Phasen des Entwicklungsprozesses nicht angemessen berücksichtigt werden. Die Datenschutz-Grundverordnung (DSGVO) schreibt das Prinzip des Datenschutz durch Technikgestaltung (PbD) vor. PbD erfordert den Schutz personenbezogener Daten von Beginn des Entwicklungsprozesses an, durch das frühzeitige Integrieren geeigneter Maßnahmen. Bei der Realisierung von PbD ergeben sich nachfolgende Herausforderungen: Erstens benötigen wir eine präzise Definition von Datenschutzbedenken. Zweitens müssen wir herausfinden, wo genau in einem System die Maßnahmen angewendet werden müssen. Drittens ist zur Auswahl geeigneter Maßnahmen, ein Mechanismus zur Ermittlung der Datenschutzrisiken erforderlich. Viertens müssen bei der Auswahl und Integration geeigneter Maßnahmen, neben den Risiken, die Abhängigkeiten zwischen Maßnahmen und die Kosten der Maßnahmen berücksichtigt werden.
Diese Dissertation führt eine modellbasierte Methodik ein, um die oben genannten Herausforderungen zu bewältigen und PbD zu operationalisieren. Unsere Methodik basiert auf einer präzisen Definition von Datenschutzbedenken und umfasst drei Untermethodiken: modellbasierte Datenschutzanalyse, modellbasierte Datenschutz-Folgenabschätzung und datenschutzfreundliche Systemmodellierung. Zunächst führen wir eine Definition für Datenschutzpräferenzen ein, anhand derer die Datenschutzbedenken präzisiert werden können und überprüft werden kann, ob die Verarbeitung personenbezogener Daten autorisiert ist. Zweitens präsentieren wir eine modellbasierte Methodik zur Analyse eines Systemmodells. Die Ergebnisse dieser Analyse ergeben die Menge der Verstöße gegen die Datenschutzpräferenzen in einem Systemmodell. Drittens führen wir eine modellbasierte Methode zur Datenschutzfolgenabschätzung ein, um konkrete Datenschutzrisiken in einem Systemmodell zu identifizieren. Viertens schlagen wir in Bezug auf die Risiken, Abhängigkeiten zwischen Maßnahmen und Kosten der Maßnahmen, eine Methodik vor, um geeignete Maßnahmen auszuwählen und in ein Systemdesign zu integrieren. In einer Reihe von realistischen Fallstudien bewerten wir unsere Konzepte und geben einen vielversprechenden Ausblick auf die Anwendbarkeit unserer Methodik in der Praxis.
Softwaresysteme haben einen zunehmenden Einfluss auf unser tägliches Leben. Viele Systeme verarbeiten sensitive Daten oder steuern wichtige Infrastruktur, was die Bereitstellung sicherer Software unabdingbar macht. Derartige Systeme werden aus Aufwands- und Kostengründen selten erneuert. Oftmals werden Systeme, die zu ihrem Entwurfszeitpunkt als sicheres System geplant und implementiert wurden, deswegen unsicher, weil sich die Umgebung dieser Systeme ändert. Dadurch, dass verschiedenste Systeme über das Internet kommunizieren, sind diese auch neuen Angriffsarten stetig ausgesetzt. Die Sicherheitsanforderungen an ein System bleiben unberührt, aber neue Erkenntnisse wie die Verwundbarkeit eines zum Entwurfszeitpunkt als sicher geltenden Verschlüsselungsalgorithmus erzwingen Änderungen am System. Manche Sicherheitsanforderungen können dabei nicht anhand des Designs sondern nur zur Laufzeit geprüft werden. Darüber hinaus erfordern plötzlich auftretende Sicherheitsverletzungen eine unverzügliche Reaktion, um eine Systemabschaltung vermeiden zu können. Wissen über geeignete Sicherheitsverfahren, Angriffe und Abwehrmechanismen ist grundsätzlich verfügbar, aber es ist selten in die Softwareentwicklung integriert und geht auf Evolutionen ein.
In dieser Arbeit wird untersucht, wie die Sicherheit langlebiger Software unter dem Einfluss von Kontext-Evolutionen bewahrt werden kann. Der vorgestellte Ansatz S²EC²O hat zum Ziel, die Sicherheit von Software, die modellbasiert entwickelt wird, mithilfe von Ko-Evolutionen wiederherzustellen.
Eine Ontologie-basierende Wissensbasis wird eingeführt, die sowohl allgemeines wie auch systemspezifisches, sicherheitsrelevantes Wissen verwaltet. Mittels einer Transformation wird die Verbindung der Wissensbasis zu UML-Systemmodellen hergestellt. Mit semantischen Differenzen, Inferenz von Wissen und der Erkennung von Inkonsistenzen in der Wissensbasis werden Kontext-Evolutionen erkannt.
Ein Katalog mit Regeln zur Verwaltung und Wiederherstellung von Sicherheitsanforderungen nutzt erkannte Kontext-Evolutionen, um mögliche Ko-Evolutionen für das Systemmodell vorzuschlagen, welche die Einhaltung von Sicherheitsanforderungen wiederherstellen.
S²EC²O unterstützt Sicherheitsannotationen, um Modelle und Code zum Zwecke einer Laufzeitüberwachung zu koppeln. Die Adaption laufender Systeme gegen Bedrohungen wird ebenso betrachtet wie Roundtrip-Engineering, um Erkenntnisse aus der Laufzeit in das System-Modell zu integrieren.
S²EC²O wird ergänzt um eine prototypische Implementierung. Diese wird genutzt, um die Anwendbarkeit von S²EC²O im Rahmen einer Fallstudie an dem medizinischen Informationssystem iTrust zu zeigen.
Die vorliegende Arbeit leistet einen Beitrag, um die Entwicklung und Wartung langlebiger Softwaresysteme in Bezug auf ihre Sicherheit zu begleiten. Der vorgestellte Ansatz entlastet Sicherheitsexperten bei ihrer Arbeit, indem er sicherheitsrelevante Änderungen des Systemkontextes erfasst, den Einfluss auf die Sicherheit der Software prüft und Ko-Evolutionen zur Bewahrung der Sicherheitsanforderungen ermöglicht.
Retrospektive Analyse der Ausbreitung und dynamische Erkennung von Web-Tracking durch Sandboxing
(2018)
Aktuelle quantitative Analysen von Web-Tracking bieten keinen umfassenden Überblick über dessen Entstehung, Ausbreitung und Entwicklung. Diese Arbeit ermöglicht durch Auswertung archivierter Webseiten eine rückblickende Erfassung der Entstehungsgeschichte des Web-Trackings zwischen den Jahren 2000 und 2015. Zu diesem Zweck wurde ein geeignetes Werkzeug entworfen, implementiert, evaluiert und zur Analyse von 10000 Webseiten eingesetzt. Während im Jahr 2005 durchschnittlich 1,17 Ressourcen von Drittparteien eingebettet wurden, zeigt sich ein Anstieg auf 6,61 in den darauffolgenden 10 Jahren. Netzwerkdiagramme visualisieren den Trend zu einer monopolisierten Netzstruktur, in der bereits ein einzelnes Unternehmen 80 % der Internetnutzung überwachen kann.
Trotz vielfältiger Versuche, dieser Entwicklung durch technische Maßnahmen entgegenzuwirken, erweisen sich nur wenige Selbst- und Systemschutzmaßnahmen als wirkungsvoll. Diese gehen häufig mit einem Verlust der Funktionsfähigkeit einer Webseite oder mit einer Einschränkung der Nutzbarkeit des Browsers einher. Mit der vorgestellten Studie wird belegt, dass rechtliche Vorschriften ebenfalls keinen hinreichenden Schutz bieten. An Webauftritten von Bildungseinrichtungen werden Mängel bei Erfüllung der datenschutzrechtlichen Pflichten festgestellt. Diese zeigen sich durch fehlende, fehlerhafte oder unvollständige Datenschutzerklärungen, deren Bereitstellung zu den Informationspflichten eines Diensteanbieters gehören.
Die alleinige Berücksichtigung klassischer Tracker ist nicht ausreichend, wie mit einer weiteren Studie nachgewiesen wird. Durch die offene Bereitstellung funktionaler Webseitenbestandteile kann ein Tracking-Unternehmen die Abdeckung von 38 % auf 61 % erhöhen. Diese Situation wird durch Messungen von Webseiten aus dem Gesundheitswesen belegt und aus technischer sowie rechtlicher Perspektive bewertet.
Bestehende systemische Werkzeuge zum Erfassen von Web-Tracking verwenden für ihre Messung die Schnittstellen der Browser. In der vorliegenden Arbeit wird mit DisTrack ein Framework zur Web-Tracking-Analyse vorgestellt, welches eine Sandbox-basierte Messmethodik verfolgt. Dies ist eine Vorgehensweise, die in der dynamischen Schadsoftwareanalyse erfolgreich eingesetzt wird und sich auf das Erkennen von Seiteneffekten auf das umliegende System spezialisiert. Durch diese Verhaltensanalyse, die unabhängig von den Schnittstellen des Browsers operiert, wird eine ganzheitliche Untersuchung des Browsers ermöglicht. Auf diese Weise können systemische Schwachstellen im Browser aufgezeigt werden, die für speicherbasierte Web-Tracking-Verfahren nutzbar sind.