54.79 Computermethodik: Sonstiges
Filtern
Schlagworte
Social-Media Plattformen wie Twitter oder Reddit bieten Nutzern nahezu ohne Beschränkungen die Möglichkeit, ihre Meinungen über aktuelle Ereignisse zu veröffentlichen, diese mit anderen zu teilen und darüber zu diskutieren. Während die Mehrheit der Nutzer diese Plattformen nur als reines Diskussionsportal verwenden, gibt es jedoch Nutzergruppen, welche aktiv und gezielt versuchen, diese veröffentlichten Meinungen in ihrem Sinne zu beeinflussen bzw. zu manipulieren. Durch wiederholtes Verbreiten von bearbeiteten Fake-News oder stark polarisierenden Meinungen im gesamten politischen Spektrum können andere Nutzer beeinflusst, manipuliert und unter Umständen zum Träger von Hassreden und extremen politischen Positionen werden. Viele dieser Nutzergruppen sind vor allem in englischsprachigen Portalen anzutreffen, in denen sie sich überwiegend als Muttersprachler ausgeben. In dieser Arbeit stellen wir eine Methode vor, englische Muttersprachler und Nicht-Muttersprachler, die Englisch als Fremdsprache verwenden, anhand von ausgewählten englischen Social Media Texten zu unterscheiden. Dazu implementieren wir textmerkmalbasierte Modelle, welche für traditionelle Machine-Learning Prozesse und neuartigen AutoML-Pipelines zur Klassifizierung von Texten verwendet werden. Wir klassifizieren dabei Sprachfamilie, Muttersprache und Ursprung eines beliebigen englischen Textes. Die Modelle werden an einem bestehenden Datensatz von Reddit, welcher hauptsächlich aus englischen Texten von europäischen Nutzern besteht, und einem neu erstellten Twitter Datensatz, der Tweets von aktuellen Themen in verschiedenen Ländern enthält, angewandt. Wir evaluieren dabei vergleichsweise die erhaltenen Resultate unserer Pipeline zu traditionellen Maschinenlernprozessen zur Texterkennung anhand von Präzision, Genauigkeit und F1-Maßen der Vorhersagen. Wir vergleichen zudem die Ergebnisse auf Unterschiede der Sprachnutzung auf den unterschiedlichen Plattformen sowie den ausgewählten Themenbereichen. Dabei erzielen wir eine hohe Vorhersagewahrscheinlichkeit für alle gewählten Kategorien des erstellten Twitter Datensatzes und stellen unter anderem eine hohe Abweichung in Bezug auf die durchschnittliche Textlänge insbesondere bei Nutzern aus dem baltoslawischen Sprachraum fest.