54.82 Textverarbeitung
Filtern
Schlagworte
- Articles for Deletion (1)
- Function Words (1)
- I-messages (1)
- Wikipedia (1)
- You-messages (1)
“Did I say something wrong?” A word-level analysis of Wikipedia articles for deletion discussions
(2016)
Diese Arbeit beschäftigt sich damit, linguistische Erkenntnisse auf Wortebene über schriftlichen Diskussionen zu gewinnen. Die Unterscheidung zwischen Botschaften, welche sich förderlich auf Diskussionen auswirken und jene, welche diese unterbrechen, spielte dabei eine besondere Rolle. Hierbei lag ein Schwerpunkt darauf, zu ermitteln, ob Ich- und Du-Botschaften charakteristisch für die beiden Kommunikationsarten sind. Diese Botschaften sind über Jahre hinweg zu Empfehlungen für erfolgreiche Kommunikation avanciert. Ihre zugeschriebene Wirkung wurde zwar mehrfach bestätigt, jedoch geschah dies stets in kleineren Studien. Deshalb wurde in dieser Arbeit mithilfe der Löschdiskussionen der englischen Wikipedia und der Liste gesperrter Nutzer eine vollautomatische Erstellung eines annotierten Datensatzes entwickelt. Dabei wurden Diskussionsbotschaften entweder als förderlich oder schädlich für einen konstruktiven Diskussionsverlauf markiert. Dieser Datensatz wurde anschließend im Rahmen einer binären Klassifikation verwendet, um charakteristische Worte für die beiden Kommunikationsarten zu bestimmen. Es wurde zudem untersucht, ob anhand von Synsemantika (auch bekannt als Funktionswörter) wie Pronomen oder Konjunktionen eine Entscheidung über die Kommunikationsart einer Botschaft getroffen werden kann. Du-Botschaften wurden, übereinstimmend mit ihrer zugeschriebenen negativen Auswirkung auf Kommunikation, als schädlich in den durchgeführten Untersuchungen identifiziert. Entgegen der zugeschriebenen positiven Auswirkung von Ich-Botschaften, wurde bei diesen ebenfalls eine schädlich Wirkung festgestellt. Eine klare Aussage über die Relevanz von Synsemantika konnte anhand der Ergebnisse nicht getroffen werden. Weitere charakteristische Worte konnten nicht festgestellt werden. Die Ergebnisse deuten darauf hin, dass ein anderes Modell textliche Diskussionen potentiell besser abbilden könnte.