Fachbereich 4
Refine
Document Type
- Part of Periodical (3)
- Bachelor Thesis (1)
Keywords
- ontology (4) (remove)
Institute
Polsearchine: Implementation of a policy-based search engine for regulating information flows
(2013)
Many search engines regulate Internet communication in some way. It is often difficult for end users to notice such regulation, as well as obtaining background information for it. Additionally, the regulation can usually be circumvented easily. This bachelor thesis presents the prototypical metasearch engine "Polsearchine" for addressing these weaknesses. Its regulation is established through InFO, a model for regulating information flows developed by Kasten and Scherp. More precisely, the extension for regulating search engines SEFCO is being used. For retrieving search results, Polsearchine uses an external search engine API. The API can be interchanged easily to make this metasearch engine independent from one specific API.
Expert-driven business process management is an established means for improving efficiency of organizational knowledge work. Implicit procedural knowledge in the organization is made explicit by defining processes. This approach is not applicable to individual knowledge work due to its high complexity and variability. However, without explicitly described processes there is no analysis and efficient communication of best practices of individual knowledge work within the organization. In addition, the activities of the individual knowledge work cannot be synchronized with the activities in the organizational knowledge work.rnrnSolution to this problem is the semantic integration of individual knowledgernwork and organizational knowledge work by means of the patternbased core ontology strukt. The ontology allows for defining and managing the dynamic tasks of individual knowledge work in a formal way and to synchronize them with organizational business processes. Using the strukt ontology, we have implemented a prototype application for knowledge workers and have evaluated it at the use case of an architectural fifirm conducting construction projects.
Existing tools for generating application programming interfaces (APIs) for ontologies lack sophisticated support for mapping the logics-based concepts of the ontology to an appropriate object-oriented implementation of the API. Such a mapping has to overcome the fundamental differences between the semantics described in the ontology and the pragmatics, i.e., structure, functionalities, and behavior implemented in the API. Typically, concepts from the ontology are mapped one-to-one to classes in the targeted programming language. Such a mapping only produces concept representations but not an API at the desired level of granularity expected by an application developer. We present a Model-Driven Engineering (MDE) process to generate customized APIs for ontologies. This API generation is based on the semantics defined in the ontology but also leverages additional information the ontology provides. This can be the inheritance structure of the ontology concepts, the scope of relevance of an ontology concept, or design patterns defined in the ontology.
The novel mobile application csxPOI (short for: collaborative, semantic, and context-aware points-of-interest) enables its users to collaboratively create, share, and modify semantic points of interest (POI). Semantic POIs describe geographic places with explicit semantic properties of a collaboratively created ontology. As the ontology includes multiple subclassiffcations and instantiations and as it links to DBpedia, the richness of annotation goes far beyond mere textual annotations such as tags. With the intuitive interface of csxPOI, users can easily create, delete, and modify their POIs and those shared by others. Thereby, the users adapt the structure of the ontology underlying the semantic annotations of the POIs. Data mining techniques are employed to cluster and thus improve the quality of the collaboratively created POIs. The semantic POIs and collaborative POI ontology are published as Linked Open Data.