Institut für Informatik
Refine
Year of publication
Document Type
- Part of Periodical (38)
- Doctoral Thesis (32)
- Diploma Thesis (24)
- Study Thesis (19)
- Bachelor Thesis (14)
- Master's Thesis (14)
- Report (1)
Keywords
- Routing (5)
- Bluetooth (4)
- Knowledge Compilation (4)
- Netzwerk (4)
- Semantic Web (4)
- Software Engineering (4)
- VNUML (4)
- E-KRHyper (3)
- Netzwerksimulation (3)
- RIP-MTI (3)
Institute
The trends of industry 4.0 and the further enhancements toward an ever changing factory lead to more mobility and flexibility on the factory floor. With that higher need of mobility and flexibility the requirements on wireless communication rise. A key requirement in that setting is the demand for wireless Ultra-Reliability and Low Latency Communication (URLLC). Example use cases therefore are cooperative Automated Guided Vehicles (AGVs) and mobile robotics in general. Working along that setting this thesis provides insights regarding the whole network stack. Thereby, the focus is always on industrial applications. Starting on the physical layer, extensive measurements from 2 GHz to 6 GHz on the factory floor are performed. The raw data is published and analyzed. Based on that data an improved Saleh-Valenzuela (SV) model is provided. As ad-hoc networks are highly depended onnode mobility, the mobility of AGVs is modeled. Additionally, Nodal Encounter Patterns (NEPs) are recorded and analyzed. A method to record NEP is illustrated. The performance by means of latency and reliability are key parameters from an application perspective. Thus, measurements of those two parameters in factory environments are performed using Wireless Local Area Network (WLAN) (IEEE 802.11n), private Long Term Evolution (pLTE) and 5G. This showed auto-correlated latency values. Hence, a method to construct confidence intervals based on auto-correlated data containing rare events is developed. Subsequently, four performance improvements for wireless networks on the factory floor are proposed. Of those optimization three cover ad-hoc networks, two deal with safety relevant communication, one orchestrates the usage of two orthogonal networks and lastly one optimizes the usage of information within cellular networks.
Finally, this thesis is concluded by an outlook toward open research questions. This includes open questions remaining in the context of industry 4.0 and further the ones around 6G. Along the research topics of 6G the two most relevant topics concern the ideas of a network of networks and overcoming best-effort IP.
In the last decade, policy-makers around the world have turned their attention toward the creative industry as the economic engine and significant driver of employments. Yet, the literature suggests that creative workers are one of the most vulnerable work-forces of today’s economy. Because of the highly deregulated and highly individuated environment, failure or success are believed to be the byproduct of individual ability and commitment, rather than a structural or collective issue. This thesis taps into the temporal, spatial, and social resolution of digital behavioural data to show that there are indeed structural and historical issues that impact individuals’ and
groups’ careers. To this end, this thesis offers a computational social science research framework that brings together the decades-long theoretical and empirical knowledge of inequality studies, and computational methods that deal with the complexity and scale of digital data. By taking music industry and science as use cases, this thesis starts off by proposing a novel gender detection method that exploits image search and face-detection methods.
By analysing the collaboration patterns and citation networks of male and female computer scientists, it sheds lights on some of the historical biases and disadvantages that women face in their scientific career. In particular, the relation of scientific success and gender-specific collaboration patterns is assessed. To elaborate further on the temporal aspect of inequalities in scientific careers, this thesis compares the degree of vertical and horizontal inequalities among the cohorts of scientists that started their career at different point in time. Furthermore, the structural inequality in music industry is assessed by analyzing the social and cultural relations that breed from live performances and musics releases. The findings hint toward the importance of community belonging at different stages of artists’ careers. This thesis also quantifies some of the underlying mechanisms and processes of inequality, such as the Matthew Effect and the Hipster Paradox, in creative careers. Finally, this thesis argues that online platforms such as Wikipedia could reflect and amplify the existing biases.
Currently, there are a variety of digital tools in the humanities, such
as annotation, visualization, or analysis software, which support researchers in their work and offer them new opportunities to address different research questions. However, the use of these tools falls far
short of expectations. In this thesis, twelve improvement measures are
developed within the framework of a design science theory to counteract the lack of usage acceptance. By implementing the developed design science theory, software developers can increase the acceptance of their digital tools in the humanities context.
For software engineers, conceptually understanding the tools they are using in the context of their projects is a daily challenge and a prerequisite for complex tasks. Textual explanations and code examples serve as knowledge resources for understanding software languages and software technologies. This thesis describes research on integrating and interconnecting
existing knowledge resources, which can then be used to assist with understanding and comparing software languages and software technologies on a conceptual level. We consider the following broad research questions that we later refine: What knowledge resources can be systematically reused for recovering structured knowledge and how? What vocabulary already exists in literature that is used to express conceptual knowledge? How can we reuse the
online encyclopedia Wikipedia? How can we detect and report on instances of technology usage? How can we assure reproducibility as the central quality factor of any construction process for knowledge artifacts? As qualitative research, we describe methodologies to recover knowledge resources by i.) systematically studying literature, ii.) mining Wikipedia, iii.) mining available textual explanations and code examples of technology usage. The theoretical findings are backed by case studies. As research contributions, we have recovered i.) a reference semantics of vocabulary for describing software technology usage with an emphasis on software languages, ii.) an annotated corpus of Wikipedia articles on software languages, iii.) insights into technology usage on GitHub with regard to a catalog of pattern and iv.) megamodels of technology usage that are interconnected with existing textual explanations and code examples.
Social media provides a powerful way for people to share opinions and sentiments about a specific topic, allowing others to benefit from these thoughts and feelings. This procedure generates a huge amount of unstructured data, such as texts, images, and references that are constantly increasing through daily comments to related discussions. However, the vast amount of unstructured data presents risks to the information-extraction process, and so decision making becomes highly challenging. This is because data overload may cause the loss of useful data due to its inappropriate presentation and its accumulation. To this extent, this thesis contributed to the field of analyzing and detecting feelings in images and texts. And that by extracting the feelings and opinions hidden in a huge collection of image data and texts on social networks After that, these feelings are classified into positive, negative, or neutral, according to the features of the classified data. The process of extracting these feelings greatly helps in decision-making processes on various topics as will be explained in the first chapter of the thesis. A system has been built that can classify the feelings inherent in the images and texts on social media sites, such as people’s opinions about products and companies, personal posts, and general messages. This thesis begins by introducing a new method of reducing the dimension of text data based on data-mining approaches and then examines the sentiment based on neural and deep neural network classification algorithms. Subsequently, in contrast to sentiment analysis research in text datasets, we examine sentiment expression and polarity classification within and across image datasets by building deep neural networks based on the attention mechanism.
Connected vehicles will have a tremendous impact on tomorrow’s mobility solutions. Such systems will heavily rely on information delivery in time to ensure the functional reliability, security and safety. However, the host-centric communication model of today’s networks questions efficient data dissemination in a scale, especially in networks characterized by a high degree of mobility. The Information-Centric Networking (ICN) paradigm has evolved as a promising candidate for the next generation of network architectures. Based on a loosely coupled communication model, the in-network processing and caching capabilities of ICNs are promising to solve the challenges set by connected vehicular systems. In such networks, a special class of caching strategies which take action by placing a consumer’s anticipated content actively at the right network nodes in time are promising to reduce the data delivery time. This thesis contributes to the research in active placement strategies in information-centric and computation-centric vehicle networks for providing dynamic access to content and computation results. By analyzing different vehicular applications and their requirements, novel caching strategies are developed in order to reduce the time of content retrieval. The caching strategies are compared and evaluated against the state-of-the-art in both extensive simulations as well as real world deployments. The results are showing performance improvements by increasing the content retrieval (availability of specific data increased up to 35% compared to state-of-the-art caching strategies), and reducing the delivery times (roughly double the number of data retrieval from neighboring nodes). However, storing content actively in connected vehicle networks raises questions regarding security and privacy. In the second part of the thesis, an access control framework for information-centric connected vehicles is presented. Finally, open security issues and research directions in executing computations at the edge of connected vehicle networks are presented.
Virtual reality is a growing field of interest as it provides a particular intuitive way of user-interaction. However, there are still open technical issues regarding latency — the delay between interaction and display reaction — and the trade-off between visual quality and frame-rate of real-time graphics, especially when taking visual effects like specular and semi-transparent surfaces and volumes into account. One solution, a distributed rendering setup, is presented in this thesis, in which the image synthesis is divided into an accurate but costly physically based rendering thread with a low refresh rate and a fast reprojection thread to remain a responsive interactivity with a high frame-rate. Two novel reprojection techniques are proposed that cover reflections and refractions produced by surface ray-tracing as well as volumetric light transport generated by volume ray-marching. The introduced setup can enhance the VR experience within several domains. In this thesis, three innovative training applications have been realized to investigate the added value of virtual reality to the three learning stages of observation, interaction and collaboration. For each stage an interdisciplinary curriculum, currently taught with traditional media, was transferred to a VR setting in order to investigate how virtual reality is capable of providing a natural, flexible and efficient learning environment
Initial goal of the current dissertation was the determination of image-based biomarkers sensitive for neurodegenerative processes in the human brain. One such process is the demyelination of neural cells characteristic for Multiple sclerosis (MS) - the most common neurological disease in young adults for which there is no cure yet. Conventional MRI techniques are very effective in localizing areas of brain tissue damage and are thus a reliable tool for the initial MS diagnosis. However, a mismatch between the clinical fndings and the visualized areas of damage is observed, which renders the use of the standard MRI diffcult for the objective disease monitoring and therapy evaluation. To address this problem, a novel algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain is developed in the current work. The method extents a previously published approach for the simultaneous measurement of brain T1, T∗ 2 and total water content. Employing the multiexponential T∗ 2 decay signal of myelinated tissue, myelin water content is measured based on the quantifcation of two water pools (myelin water and rest) with different relaxation times. Whole brain in vivo myelin water content maps are acquired in 10 healthy controls and one subject with MS. The in vivo results obtained are consistent with previous reports. The acquired quantitative data have a high potential in the context of MS. However, the parameters estimated in a multiparametric acquisition are correlated and constitute therefore an ill-posed, nontrivial data analysis problem. Motivated by this specific problem, a new data clustering approach is developed called Nuclear Potential Clustering, NPC. It is suitable for the explorative analysis of arbitrary dimensional and possibly correlated data without a priori assumptions about its structure. The developed algorithm is based on a concept adapted from nuclear physics. To partition the data, the dynamic behavior of electrically even charged nucleons interacting in a d-dimensional feature space is modeled. An adaptive nuclear potential, comprised of a short-range attractive (Strong interaction) and a long-range repulsive term (Coulomb potential), is assigned to each data point. Thus, nucleons that are densely distributed in space fuse to build nuclei (clusters), whereas single point clusters are repelled (noise). The algorithm is optimized and tested in an extensive study with a series of synthetic datasets as well as the Iris data. The results show that it can robustly identify clusters even when complex configurations and noise are present. Finally, to address the initial goal, quantitative MRI data of 42 patients are analyzed employing NPC. A series of experiments with different sets of image-based features show a consistent grouping tendency: younger patients with low disease grade are recognized as cohesive clusters, while those of higher age and impairment are recognized as outliers. This allows for the definition of a reference region in a feature space associated with phenotypic data. Tracking of the individual's positions therein can disclose patients at risk and be employed for therapy evaluation.
Modern software projects are composed of several software languages, software technologies and different kind of artifacts. Therefore, the understanding of the software project at hand, including the semantic links between the different parts, becomes a difficult challenge for a developer. One approach to attack this issue is to document the software project with the help of a linguistic architecture. This kind of architecture can be described with the help of the MegaL ontology. A remaining challenge is the creation of it since it requires different kind of skills. Therefore, this paper proposes an approach for the automatic extraction of a linguistic architecture. The open source framework Apache Jena, which is focusing on semantic web technologies like RDF and OWL, is used to define custom rules that are capable to infer new knowledge based on the defined or already extracted RDF triples. The complete approach is tested in a case study on ten different open source projects. The aim of the case study is to extract a linguistic architecture that is describing the use of Hibernate in the selected projects. In the end, the result is evaluated with the help of different metrics. The evaluation is performed with the help of an internal and external approach.