543 Analytische Chemie
Filtern
Schlagworte
- Agriculture (1)
- Bodenchemie (1)
- Environmental organic chemistry (1)
- FTIR (1)
- Landwirtschaft (1)
- Microplastics (1)
- Micropollutants (1)
- Mikroplastik (1)
- Plastic mulching (1)
- Py-GC/MS (1)
Institut
The use of agricultural plastic covers has become common practice for its agronomic benefits such as improving yields and crop quality, managing harvest times better, and increasing pesticide and water use efficiency. However, plastic covers are suspected of partially breaking down into smaller debris and thereby contributing to soil pollution with microplastics. A better understanding of the sources and fate of plastic debris in terrestrial systems has so far been hindered by the lack of adequate analytical techniques for the mass-based and polymer-selective quantification of plastic debris in soil. The aim of this dissertation was thus to assess, develop, and validate thermoanalytical methods for the mass-based quantification of relevant polymers in and around agricultural fields previously covered with fleeces, perforated foils, and plastic mulches. Thermogravimetry/mass spectrometry (TGA/MS) enabled direct plastic analyses of 50 mg of soil without any sample preparation. With polyethylene terephthalate (PET) as a preliminary model, the method limit of detection (LOD) was 0.7 g kg−1. But the missing chromatographic separation complicated the quantification of polymer mixtures. Therefore, a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was developed that additionally exploited the selective solubility of polymers in specific solvents prior to analysis. By dissolving polyethylene (PE), polypropylene (PP), and polystyrene (PS) in a mixture of 1,2,4-trichlorobenzene and p-xylene after density separation, up to 50 g soil became amenable to routine plastic analysis. Method LODs were 0.7–3.3 mg kg−1, and the recovery of 20 mg kg−1 PE, PP, and PS from a reference loamy sand was 86–105%. In the reference silty clay, however, poor PS recoveries, potentially induced by the additional separation step, suggested a qualitative evaluation of PS. Yet, the new solvent-based Py-GC/MS method enabled a first exploratory screening of plastic-covered soil. It revealed PE, PP, and PS contents above LOD in six of eight fields (6% of all samples). In three fields, PE levels of 3–35 mg kg−1 were associated with the use of 40 μm thin perforated foils. By contrast, 50 μm PE films were not shown to induce plastic levels above LOD. PP and PS contents of 5–19 mg kg−1 were restricted to single observations in four fields and potentially originated from littering. The results suggest that the short-term use of thicker and more durable plastic covers should be preferred to limit plastic emissions and accumulation in soil. By providing mass-based information on the distribution of the three most common plastics in agricultural soil, this work may facilitate comparisons with modeling and effect data and thus contribute to a better risk assessment and regulation of plastics. However, the fate of plastic debris in the terrestrial environment remains incompletely understood and needs to be scrutinized in future, more systematic research. This should include the study of aging processes, the interaction of plastics with other organic and inorganic compounds, and the environmental impact of biodegradable plastics and nanoplastics.
Die Anwendung von Chemikalien führt in vielen Fällen zu deren Emission in die Umwelt. Besonders organische Substanzen wie zum Beispiel Pharmazeutika, Biozide und Waschmittelinhaltsstoffe wurden in den letzten Jahren vermehrt als Umweltkontaminanten in Oberflächengewässern nachgewiesen. Die organischen Umweltkontaminanten, auch Spurenstoffe genannt, haben oftmals i) unbekannte ökotoxikologische Wirkungen, ii) unbekannte Verteilungsverhalten, und iii) sind bisher hinsichtlich der Emission kaum reguliert. Wie bei allen Substanzen können Spurenstoffe in der Umweltmatrix und insbesondere auch in der Kläranlage zu sogenannten Transformationsprodukten (TPs) umgewandelt werden. Um den durch Spurenstoffe verursachten Herausforderungen technologisch begegnen zu können, wird ein besseres Verständnis über diese Transformationsprozesse benötigt. Diese Dissertationsarbeit befasst sich deshalb mit der Aufklärung von Transformationsprozessen ausgewählter Spurenstoffe während der biologischen Abwasserreinigung.
Für die Untersuchung des Abbaus von Trimethoprim wurden Inkubationsversuche angewendet und die Auswirkung der steigenden Dotierungskonzentrationen systematisch untersucht. Es wurden insgesamt sechs TPs charakterisiert. Die Dotierungskonzentration hatte sowohl Auswirkungen auf die kinetischen Konstanten, als auch auf die Transformationsreaktionen. Ein solcher Einfluss der experimentellen Bedingungen wurde bisher in der Literatur noch nicht berichtet. Nur bei niedriger Dotierungskonzentration wurde am Ende des Transformationswegs ein stabiles TP gebildet, die 2,4-Diaminopyrimidin-5-carbonsäure (DAPC). Diese Substanz konnte in Laborversuchen den Großteil der abgebauten Menge von Trimethoprim erklären. Durch Untersuchungen an einer Referenzkläranlage konnte festgestellt werden, dass nur die Inkubationsversuche bei niedriger Dotierungskonzentration die realen Prozesse adäquat abbilden konnten. Die Anwendung hoher Dotierungskonzentrationen führte in Laborversuchen zu einer veränderten TP-Bildung.
Drei phenolische Spurenstoffe wurden in Bezug auf ihre Transformation, insbesondere hin zu potenziell toxischen nitrophenolischen TPs, untersucht: das Desinfektionsmittel ortho-Phenylphenol (OPP), das Kunststoffadditiv Bisphenol-A (BPA) und das Hustenmittel Dextrorphan. Nitrit wurde als ein potenzieller Auslöser für die Nitrierung postuliert. Inkubationsversuche in Reinstwasser wurden mit OPP in Anwesenheit von Nitrit durchgeführt und bestätigten, dass nitro-(und nitroso-) phenolische TPs unter leicht sauren Bedingungen gebildet werden. Da in kommunalen Kläranlagen der pH-Wert in Belebtschlamm zumeist zwischen 7,5 und 8,5 liegt und Nitrit als Zwischenprodukt oft nur in niedrigen Konzentration vorhanden ist, wurde die Bildung von signifikanten Konzentrationen nitrophenolischer TPs als unwahrscheinlich eingestuft. Aufgrund der Ergebnisse von Inkubationsversuchen mit inokulierten Belebtschlamm war festzustellen, dass die drei untersuchten Spurenstoffe schnell zu biologischen TPs umgewandelt wurden. Die Studie zeigte wie das Bildungspotenzial von nitrophenolischen TPs gesteigert wird, wenn bestimmte Bedingungen im Belebtschlamm vorliegen: saurer pH und erhöhte Nitritkonzentration. Zudem wurde auch gezeigt, dass die Bildung von nitrophenolischen TPs durch das Ansäuern oder das Einfrieren von Proben initiiert werden kann.
Die Transformation vom Antiphlogistikum Diclofenac wurde in zwei unterschiedlichen Kläranlagen verglichen. Die erste Kläranlage verwendet Aufwuchskörper für ein verstärktes Biofilmwachstum, während die zweite mit einer konventionellen nitrifizierenden Belebtschlammbehandlung ausgestattet ist. Trotz der unterschiedlichen Behandlungstechniken konnten in beiden Fällen ähnliche Transformationsreaktionen festgestellt werden. Der wesentliche Unterschied bestand in den veränderten Kinetiken: Geschwindigkeitskonstanten (kbiol) waren ca. 50 Mal höher in Kontakt mit Aufwuchskörpern als im konventionellen Belebtschlamm. Der Transformationsweg führte zur Bildung einer Vielzahl an gering konzentrierten TPs. Monitoring-Kampagnen an den zwei Kläranlagen wurden zur Bestätigung der Ergebnisse angeschlossen. In der konventionellen Kläranlage wurde keine signifikante Diclofenac Entfernung gemessen. Wohingegen im Aufwuchskörperreaktor eine mittlere Entfernung von 88% gemessen wurde. Damit wäre die vorgeschlagene Umweltqualitätsnorm von 0.05 μg/L möglicherweise auch ohne die Anwendung von weiteren Behandlungsschritten wie z.B. Aktivkohlefiltration oder Ozonung erreichbar.