50 Naturwissenschaften
Filtern
Schlagworte
Agricultural land-use may lead to brief pulse exposures of pesticides in edge-of-field streams, potentially resulting in adverse effects on aquatic macrophytes, invertebrates and ecosystem functions. The higher tier risk assessment is mainly based on pond mesocosms which are not designed to mimic stream-typical conditions. Relatively little is known on exposure and effect assessment using stream mesocosms.
Thus the present thesis evaluates the appliacability of the stream mesocosms to mimic stream-typical pulse exposures, to assess resulting effects on flora and fauna and to evaluate aquatic-terrestrial food web coupling. The first objective was to mimic stream-typical pulse exposure scenarios with different durations (≤ 1 to ≥ 24 hours). These exposure scenarios established using a fluorescence tracer were the methodological basis for the effect assessment of an herbicide and an insecticide. In order to evaluate the applicability of stream mesocosms for regulatory purposes, the second objective was to assess effects on two aquatic macrophytes following a 24-h pulse exposure with the herbicide iofensulfuron-sodium (1, 3, 10 and 30 µg/L; n = 3). Growth inhibition of up to 66 and 45% was observed for the total shoot length of Myriophyllum spicatum and Elodea canadensis, respectively. Recovery of this endpoint could be demonstrated within 42 days for both macrophytes. The third objective was to assess effects on structural and functional endpoints following a 6-h pulse exposure of the pyrethroid ether etofenprox (0.05, 0.5 and 5 µg/L; n = 4). The most sensitive structural (abundance of Cloeon simile) and functional (feeding rates of Asellus aquaticus) endpoint revealed significant effects at 0.05 µg/L etofenprox. This concentration was below field-measured etofenprox concentrations and thus suggests that pulse exposures adversely affect invertebrate populations and ecosystem functions in streams. Such pollutions of streams may also result in decreased emergence of aquatic insects and potentially lead to an insect-mediated transfer of pollutants to adjacent food webs. Test systems capable to assess aquatic-terrestrial effects are not yet integrated in mesocosm approaches but might be of interest for substances with bioaccumulation potential. Here, the fourth part provides an aquatic-terrestrial model ecosystem capable to assess cross-ecosystem effects. Information on the riparian food web such as the contribution of aquatic (up to 71%) and terrestrial (up to 29%) insect prey to the diet of the riparian spider Tetragnatha extensa was assessed via stable isotope ratios (δ13C and δ15N). Thus, the present thesis provides the methodological basis to assess aquatic-terrestrial pollutant transfer and effects on the riparian food web.
Overall the results of this thesis indicate, that stream mesocosms can be used to mimic stream-typical pulse exposures of pesticides, to assess resulting effects on macrophytes and invertebrates within prospective environmental risk assessment (ERA) and to evaluate changes in riparian food webs.
The global problematic issue of the olive oil industry is in its generation of large amounts of olive mill wastewater (OMW). The direct discharge of OMW to the soil is very common which presents environmental problems for olive oil producing countries. Both, positive as well as negative effects on soil have been found in earlier studies. Therefore, the current study hypothesized that whether beneficial effects or negative effects dominate depends on the prevailing conditions before and after OMW discharge to soil. As such, a better understanding of the OMW-soil interaction mechanisms becomes essential for sustainable safe disposal of OMW on soil and sustainable soil quality.
A field experiment was carried out in an olive orchard in Palestine, over a period of 24 months, in which the OMW was applied to the soil as a single application of 14 L m-2 under four different environmental conditions: in winter (WI), spring (SP), and summer with and without irrigation (SUmoist and SUdry). The current study investigated the effects of seasonal conditions on the olive mill wastewater (OMW) soil interaction in the short-term and the long-term. The degree and persistence of soil salinization, acidification, accumulation of phenolic compounds and soil water repellency were investigated as a function of soil depth and time elapsed after the OMW application. Moreover, the OMW impacts on soil organic matter SOM quality and quantity, total organic carbon (SOC), water-extractable soil organic carbon (DOC), as well as specific ultraviolet absorbance analysis (SUVA254) were also investigated for each seasonal application in order to assess the degree of OMW-OM decomposition or accumulation in soil, and therefore, the persisting effects of OMW disposal to soil.
The results of the current study demonstrate that the degree and persistence of relevant effects due to OMW application on soil varied significantly between the different seasonal OMW applications both in the short-term and the long-term. The negative effects of the potentially hazardous OMW residuals in the soil were highly dependent on the dominant transport mechanisms and transformation mechanisms, triggered by the ambient soil moisture and temperature which either intensified or diminished negative effects of OMW in the soil during and after the application season. The negative effects of OMW disposal to the soil decreased by increasing the retention time of OMW in soil under conditions favoring biological activity. The moderate conditions of soil moisture and temperature allowed for a considerable amount of applied OMW to be biologically degraded, while the prolonged application time under dry conditions and high temperature resulted in a less degradable organic fraction of the OMW, causing the OMW constituents to accumulate and polymerize without being degraded. Further, the rainfall during winter season diminished negative effects of OMW in the soil; therefore, the risk of groundwater contamination by non-degraded constituents of OMW can be highly probable during the winter season.
Aktuelle Schätzungen bestätigten, dass Binnengewässer eine erhebliche Menge Methan (CH4) und Kohlendioxid (CO2) sowohl auf regionaler Ebene, als auch global freisetzen. Jedoch basieren diese Schätzungen auf extrapolierten gemessenen Daten, ungenügender Auflösung der räumlich-zeitlichen Variabilität und es mangelt an Daten aus ariden und semi-ariden Gebieten, sowie den Kohlestoffquellen aus Kläranlagen.
Für die hier vorliegende Studie analysierten wir monatliche hydrologische und meteorologische Daten sowie Daten zur Wasserqualität von drei Stauseen aus dem Gebiet des unteren Jordans, die zur Trinkwassergewinnung und zur Bewässerung genutzt werden, und schätzten damit deren Emissionsrate an CO2 ab. Wir untersuchten den Effekt von Kläranlagen auf die umliegenden Gewässer im Hinblick auf CH4 und CO2-Emissionen indem wir saisonal aufgelöste Daten der Konzentration der beiden gelösten Gase in Kläranlagenauslässen und in Vorflutern von neun Kläranlagen in Deutschland analysierten. Mithilfe von Low-Cost-Methoden die die CO2-Transportrate und die Ausgasungsrate über Gasblasen messen, untersuchten wir die räumliche und zeitliche Variabilität der CH4 und CO2-Emissionen von aquatischen Süßwasser-Ökosystemen.
Unsere Schätzungen zeigen, dass Stauseen in semi-ariden Regionen CO2 übersättigt sind und somit CO2 an die Atmosphäre abgeben, also eine Netto-Quelle sind.
Die Größenordnung der beobachteten Transportraten der drei jordanischen Stauseen ist vergleichbar mit denen von tropischen Stauseen (3,3 g CO2 m-2 Tag-1). Die CO2-Emissionsrate ist abhängig von Änderungen der Wasseroberfläche, welche durch den Betrieb der Stauseen verursacht sind. Kläranlagen entlassen eine beachtlichen Menge an CH4 (30.9±40.7 kg Jahr-1) und CO2 (0.06±0.05 Gg Jahr-1) in ihre umgebenden Flüsse und Bäche. Deren Emissionsraten sind durch diese Einleitung der Kläranlagen um 1,2-fach für CH4 oder 8,6-fach für CO2 erhöht. Unsere Ergebnisse zeigen, dass sowohl die diffusive als auch die Gasblasenemissionsrate räumlich und zeitlich variabel ist, weshalb beide Emissionsraten bei zukünftigen Studien auch in der nötigen Auflösung gemessen werden sollten.
Wir schlussfolgern, dass bei zukünftigen Emissionsmessungen und –schätzungen von Binnengewässern auch die Gewässerbewirtschaftung, die Kohlenstoffquelle von Kläranlagen und die räumliche und zeitliche Variabilität der Emissionen beachtet werden sollten.