Fachbereich 4
Refine
Year of publication
Document Type
- Part of Periodical (60)
- Diploma Thesis (14)
- Bachelor Thesis (11)
- Master's Thesis (7)
- Conference Proceedings (5)
- Study Thesis (2)
Language
- English (99) (remove)
Keywords
- Bluetooth (4)
- Knowledge Compilation (3)
- University (3)
- computer clusters (3)
- ontology (3)
- Campus Information System (2)
- Cloud Computing (2)
- E-KRHyper (2)
- Enterprise 2.0 (2)
- Linked Open Data (2)
Information systems research has started to use crowdsourcing platforms such as Amazon Mechanical Turks (MTurk) for scientific research, recently. In particular, MTurk provides a scalable, cheap work-force that can also be used as a pool of potential respondents for online survey research. In light of the increasing use of crowdsourcing platforms for survey research, the authors aim to contribute to the understanding of its appropriate usage. Therefore, they assess if samples drawn from MTurk deviate from those drawn via conventional online surveys (COS) in terms of answers in relation to relevant e-commerce variables and test the data in a nomological network for assessing differences in effects.
The authors compare responses from 138 MTurk workers with those of 150 German shoppers recruited via COS. The findings indicate, inter alia, that MTurk workers tend to exhibit more positive word-of mouth, perceived risk, customer orientation and commitment to the focal company. The authors discuss the study- results, point to limitations, and provide avenues for further research.
The aim of this paper is to identify and understand the risks and issues companies are experiencing from the business use of social media and to develop a framework for describing and categorising those social media risks. The goal is to contribute to the evolving theorisation of social media risk and to provide a foundation for the further development of social media risk management strategies and processes. The study findings identify thirty risk types organised into five categories (technical, human, content, compliance and reputational). A risk-chain is used to illustrate the complex interrelated, multi-stakeholder nature of these risks and directions for future work are identified.
The way information is presented to users in online community platforms has an influence on the way the users create new information. This is the case, for instance, in question-answering fora, crowdsourcing platforms or other social computation settings. To better understand the effects of presentation policies on user activity, we introduce a generative model of user behaviour in this paper. Running simulations based on this user behaviour we demonstrate the ability of the model to evoke macro phenomena comparable to the ones observed on real world data.
Modeling and publishing Linked Open Data (LOD) involves the choice of which vocabulary to use. This choice is far from trivial and poses a challenge to a Linked Data engineer. It covers the search for appropriate vocabulary terms, making decisions regarding the number of vocabularies to consider in the design process, as well as the way of selecting and combining vocabularies. Until today, there is no study that investigates the different strategies of reusing vocabularies for LOD modeling and publishing. In this paper, we present the results of a survey with 79 participants that examines the most preferred vocabulary reuse strategies of LOD modeling. Participants of our survey are LOD publishers and practitioners. Their task was to assess different vocabulary reuse strategies and explain their ranking decision. We found significant differences between the modeling strategies that range from reusing popular vocabularies, minimizing the number of vocabularies, and staying within one domain vocabulary. A very interesting insight is that the popularity in the meaning of how frequent a vocabulary is used in a data source is more important than how often individual classes and properties arernused in the LOD cloud. Overall, the results of this survey help in understanding the strategies how data engineers reuse vocabularies, and theyrnmay also be used to develop future vocabulary engineering tools.
This paper presents a method for the evolution of SHI ABoxes which is based on a compilation technique of the knowledge base. For this the ABox is regarded as an interpretation of the TBox which is close to a model. It is shown, that the ABox can be used for a semantically guided transformation resulting in an equisatisfiable knowledge base. We use the result of this transformation to effciently delete assertions from the ABox. Furthermore, insertion of assertions as well as repair of inconsistent ABoxes is addressed. For the computation of the necessary actions for deletion, insertion and repair, the E-KRHyper theorem prover is used.
Large amounts of qualitative data make the utilization of computer-assisted methods for their analysis inevitable. In this thesis Text Mining as an interdisciplinary approach, as well as the methods established in the empirical social sciences for analyzing written utterances are introduced. On this basis a process of extracting concept networks from texts is outlined and the possibilities of utilitzing natural language processing methods within are highlighted. The core of this process is text processing, to whose execution software solutions supporting manual as well as automated work are necessary. The requirements to be met by these solutions, against the background of the initiating project GLODERS, which is devoted to investigating extortion racket systems as part of the global fiσnancial system, are presented, and their fulσlment by the two most preeminent candidates reviewed. The gap between theory and pratical application is closed by a prototypical application of the method to a data set of the research project utilizing the two given software solutions.
This thesis describes the implementation of a Path-planning algorithm for multi-axle vehicles using machine learning algorithms. For that purpose, a general overview over Genetic Algorithms is given and alternative machine learning algorithms are briefly explained. The software developed for this purpose is based on the EZSystem Simulation Software developed by the AG Echtzeitysteme at the University Koblenz-Landau and a path correction algorithm developed by Christian Schwarz, which is also detailed in this paper. This also includes a description of the vehicle used in these simulations. Genetic Algorithms as a solution for path-planning in complex scenarios are then evaluated based on the results of the developed simulation software and compared to alternative, non-machine learning solutions, which are also shortly presented.
We present the conceptual and technological foundations of a distributed natural language interface employing a graph-based parsing approach. The parsing model developed in this thesis generates a semantic representation of a natural language query in a 3-staged, transition-based process using probabilistic patterns. The semantic representation of a natural language query is modeled in terms of a graph, which represents entities as nodes connected by edges representing relations between entities. The presented system architecture provides the concept of a natural language interface that is both independent in terms of the included vocabularies for parsing the syntax and semantics of the input query, as well as the knowledge sources that are consulted for retrieving search results. This functionality is achieved by modularizing the system's components, addressing external data sources by flexible modules which can be modified at runtime. We evaluate the system's performance by testing the accuracy of the syntactic parser, the precision of the retrieved search results as well as the speed of the prototype.
Iterative Signing of RDF(S) Graphs, Named Graphs, and OWL Graphs: Formalization and Application
(2013)
When publishing graph data on the web such as vocabulariesrnusing RDF(S) or OWL, one has only limited means to verify the authenticity and integrity of the graph data. Today's approaches require a high signature overhead and do not allow for an iterative signing of graph data. This paper presents a formally defined framework for signing arbitrary graph data provided in RDF(S), Named Graphs, or OWL. Our framework supports signing graph data at different levels of granularity: minimum self-contained graphs (MSG), sets of MSGs, and entire graphs. It supports for an iterative signing of graph data, e. g., when different parties provide different parts of a common graph, and allows for signing multiple graphs. Both can be done with a constant, low overhead for the signature graph, even when iteratively signing graph data.
Autonomous systems such as robots already are part of our daily life. In contrast to these machines, humans an react appropriately to their counterparts. People can hear and interpret human speech, and interpret facial expressions of other people.
This thesis presents a system for automatic facial expression recognition with emotion mapping. The system is image-based and employs feature-based feature extraction. This thesis analyzes the common steps of an emotion recognition system and presents state-of-the-art methods. The approach presented is based on 2D features. These features are detected in the face. No neutral face is needed as reference. The system extracts two types of facial parameters. The first type consists of distances between the feature points. The second type comprises angles between lines connecting the feature points. Both types of parameters are implemented and tested. The parameters which provide the best results for expression recognition are used to compare the system with state-of-the-art approaches. A multiclass Support Vector Machine classifies the parameters.
The results are codes of Action Units of the Facial Action Coding System. These codes are mapped to a facial emotion. This thesis addresses the six basic emotions (happy, surprised, sad, fearful, angry, and disgusted) plus the neutral facial expression. The system presented is implemented in C++ and is provided with an interface to the Robot Operating System (ROS).