“Did I say something wrong?” A word-level analysis of Wikipedia articles for deletion discussions

  • This thesis focuses on gaining linguistic insights into textual discussions on a word level. It was of special interest to distinguish messages that constructively contribute to a discussion from those that are detrimental to them. Thereby, we wanted to determine whether “I”- and “You”-messages are indicators for either of the two discussion styles. These messages are nowadays often used in guidelines for successful communication. Although their effects have been successfully evaluated multiple times, a large-scale analysis has never been conducted. Thus, we used Wikipedia Articles for Deletion (short: AfD) discussions together with the records of blocked users and developed a fully automated creation of an annotated data set. In this data set, messages were labelled either constructive or disruptive. We applied binary classifiers to the data to determine characteristic words for both discussion styles. Thereby, we also investigated whether function words like pronouns and conjunctions play an important role in distinguishing the two. We found that “You”-messages were a strong indicator for disruptive messages which matches their attributed effects on communication. However, we found “I”-messages to be indicative for disruptive messages as well which is contrary to their attributed effects. The importance of function words could neither be confirmed nor refuted. Other characteristic words for either communication style were not found. Yet, the results suggest that a different model might represent disruptive and constructive messages in textual discussions better.
  • Diese Arbeit beschäftigt sich damit, linguistische Erkenntnisse auf Wortebene über schriftlichen Diskussionen zu gewinnen. Die Unterscheidung zwischen Botschaften, welche sich förderlich auf Diskussionen auswirken und jene, welche diese unterbrechen, spielte dabei eine besondere Rolle. Hierbei lag ein Schwerpunkt darauf, zu ermitteln, ob Ich- und Du-Botschaften charakteristisch für die beiden Kommunikationsarten sind. Diese Botschaften sind über Jahre hinweg zu Empfehlungen für erfolgreiche Kommunikation avanciert. Ihre zugeschriebene Wirkung wurde zwar mehrfach bestätigt, jedoch geschah dies stets in kleineren Studien. Deshalb wurde in dieser Arbeit mithilfe der Löschdiskussionen der englischen Wikipedia und der Liste gesperrter Nutzer eine vollautomatische Erstellung eines annotierten Datensatzes entwickelt. Dabei wurden Diskussionsbotschaften entweder als förderlich oder schädlich für einen konstruktiven Diskussionsverlauf markiert. Dieser Datensatz wurde anschließend im Rahmen einer binären Klassifikation verwendet, um charakteristische Worte für die beiden Kommunikationsarten zu bestimmen. Es wurde zudem untersucht, ob anhand von Synsemantika (auch bekannt als Funktionswörter) wie Pronomen oder Konjunktionen eine Entscheidung über die Kommunikationsart einer Botschaft getroffen werden kann. Du-Botschaften wurden, übereinstimmend mit ihrer zugeschriebenen negativen Auswirkung auf Kommunikation, als schädlich in den durchgeführten Untersuchungen identifiziert. Entgegen der zugeschriebenen positiven Auswirkung von Ich-Botschaften, wurde bei diesen ebenfalls eine schädlich Wirkung festgestellt. Eine klare Aussage über die Relevanz von Synsemantika konnte anhand der Ergebnisse nicht getroffen werden. Weitere charakteristische Worte konnten nicht festgestellt werden. Die Ergebnisse deuten darauf hin, dass ein anderes Modell textliche Diskussionen potentiell besser abbilden könnte.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Michael Ruster
URN:urn:nbn:de:kola-12565
Gutachter:Steffen Staab, René Pickhardt
Dokumentart:Masterarbeit
Sprache:Englisch
Datum der Fertigstellung:26.01.2016
Datum der Veröffentlichung:15.03.2016
Veröffentlichende Institution:Universität Koblenz, Universitätsbibliothek
Titel verleihende Institution:Universität Koblenz, Fachbereich 4
Datum der Abschlussprüfung:04.02.2016
Datum der Freischaltung:15.03.2016
Freies Schlagwort / Tag:Articles for Deletion; Function Words; I-messages; Wikipedia; You-messages
Seitenzahl:iii, 73
Institute:Fachbereich 4 / Institute for Web Science and Technologies
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
BKL-Klassifikation:54 Informatik / 54.82 Textverarbeitung
Lizenz (Deutsch):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG